CS31 Worksheet: Week 2: C basics

Discussion Block 1

Q1. There is no boolean type in C, instead integer expressions used in conditional statements are interpreted as true or false according to this rule:

0 : is false non-zero value: is true
int x, y;
$x=4 ;$
$y=-10$

Expression	Value	Evaluates to: (T/F)
if $(x<y)$		
if (y)		
if (0)		

For Loops

Q2. What does this for loop print?
int arr[5]; // an array of 5 integers
float rates[40]; // an array of 40 floats
for (i=0; $i<5 ; i++)\{$

$$
\operatorname{arr}[i]=i ;
$$

rates[i] $=\operatorname{arr}[i] * 2$;
\}
OUTPUT HERE:

Q3. Consider the following array layout in memory for an integer array "january_temps" that has 31 buckets.
int january_temps[31];
"january_temps" Location of [0] in memory.

\uparrow Array bucket indices.

What happens if we try to print january_temps[35]?
A) Error message because it is out of bounds of the array
B) It's 0 because it is out of bounds of the array
C) It's a garbage value because C doesn't care, it's your problem as a programmer to not ask for random offsets...
D) Something else, list here: \qquad

Q4. Given what we know about arrays, how can we add a temperature reading to the second element in the array using the same library functions (read_int and read_float) as in Lab 1 from a text file?
A) read_float (january_temps);
B) read_float(\&january_temps[1]);
C) read_float(\&january_temps[2]);

Q5. Draw the stack diagram for the following code

```
int func(int a, int y, int my_array[]) {
    y = 1;
    my_array[a] = 0;
    my_array[y] = 8;
    return y;
}
int main() {
    int x;
    int values[2];
    x = 0;
    values[0] = 5;
    values[1] = 10;
    x = func(x, x, values);
    printf("%d, %d, %d", x, values[0], values[1]);
}
```


Discussion Block 2

Q1. Consider the following partial program:

```
#include <stdio.h>
struct personT {
    char name[32];
    int age;
    float heart_rate;
};
int main(void) {
    struct personT p1;
    struct personT people[40];
    return 0;
}
```

(1) What type is each of the following expressions?

expression	type
p1	
p1.name	
p1.heart_rate	
people	
people[0[
people[0].name	
people[0].name[3]	

(2) Write the C code to set the age of the 3 rd person in the people array to 18 :

Q2. Data representation:

A number, written as the sequence of N digits $d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:
$\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]$
i) What is the value of 0 b110101 in decimal?
Options: a) 26
b) 53
c) 61
d) 106
e) 128
ii) What is the value of 0×1 B7 in decimal?(Note: $\mathbf{1 6}^{\mathbf{2}}=\mathbf{2 5 6}$)
$\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]$

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Options: a) 397
b) 409
c) 419
d) 437
e) 439

iii) Converting Binary to Hexadecimal

Each hexadecimal has 16 possible values (= 2^{4} bits of information).
Therefore 1 hexadecimal = 4 bit value
$0 \times 1 B 7$ in binary $=000110110111$
$1 \quad$ B 7

Now, try converting 0b0011 11001010110110110011 to Hexadecimal

