
CS 31: Intro to Systems C Programming
L03: Data representation

Vasanta Chaganti & Kevin Webb
Swarthmore College
September 12, 2023

Announcements

• HW1 is due Thursday before class
• up to groups of four
• invitations sent from gradescope

• Lab 1 is due Thursday, 11.59 PM

• Clickers will count for credit from this week

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Check your frequency:

• Iclicker2: frequency AA
• Iclicker+: green light next to selection

For new devices this should be okay,
For used you may need to reset frequency

Reset:
1. hold down power button until

blue light flashes (2secs)
2. Press the frequency code: AA

vote status light will indicate success

Agenda

Data representation
• number systems + conversion
• data types, storage
• sizes, representation
• signedness

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Data Storage

• Lots of technologies out there:
– Magnetic (hard drive, floppy disk)
– Optical (CD / DVD / Blu-Ray)
– Electronic (RAM, registers, …)

• Focus on electronic for now
– We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
– Voltage present
– Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
– HW represents as two different voltages

• 1: the presence of voltage (high voltage)
• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …
(address) [0] [1] [2] …

• Other names:
– 4 bits: Nibble
– “Word”: Depends on system, often 4 bytes

Files

Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

• One bit: two values (0 or 1)
• Two bits: four values (00, 01, 10, or 11)
• Three bits: eight values (000, 001, …, 110, 111)

A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit: 0 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?

1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double
• 4 or 8 bytes: long, unsigned long

unsigned long v1;
short s1;
long long ll;

// prints out number of bytes

printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that

every system will use these values!

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =
6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

Converting Binary to Decimal

Representation: 1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Hexadecimal: Base 16

Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Other (common) number systems.

• Base 2: How data is stored in hardware.
• Base 8: Used to represent file permissions.
• Base 10: Preferred by people.
• Base 16: Convenient for representing memory addresses.
• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in {0,1},
represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0b110101 in decimal?

A number, written as the sequence of N digits dn-1…d2d1d0 where d is in {0,1},
represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]
 (Note: 162 = 256)

A. 397
B. 409
C. 419
D. 437
E. 439

1*162 + 11*161 + 7*160 =

256 + 176 + 7 = 439

DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
– Presence/absence of voltage.

Hexadecimal: Base 16

• Fewer digits to represent same value
– Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary: 0001 1011 0111
 1 B 7

Converting Decimal -> Binary

• Two methods:
– division by two remainder
– powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: example: D = 105 b0 = 1
 D = b D = 52 a1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D/2 = b/2 D = 26 a2 = 0
 D/2 = b/2 D = 13 a3 = 1
 D/2 = b/2 D = 6 a4 = 0
 D/2 = b/2 D = 3 a5 = 1
 0 = 0 D = 1 a6 = 1
 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):
 i = 0
 while (D > 0)
 if D is odd
 set bi to 1
 if D is even
 set bi to 0
 i++
 D = D/2

idea: D example: D = 105 b0 = 1
 D = D/2 D = 52 b1 = 0
 D = D/2 D = 26 b2 = 0
 D = D/2 D = 13 b3 = 1
 D = D/2 D = 6 b4 = 0
 D = D/2 D = 3 b5 = 1
 D = D/2 D = 1 b6 = 1
 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105

Method 2

• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128
•

To convert 105:
– Find largest power of two that’s less than 105 (64)
– Subtract 64 (105 – 64 = 41), put a 1 in d6

– Subtract 32 (41 – 32 = 9), put a 1 in d5

– Skip 16, it’s larger than 9, put a 0 in d4

– Subtract 8 (9 – 8 = 1), put a 1 in d3

– Skip 4 and 2, put a 0 in d2 and d1

– Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

What is the value of 357 in binary?

A. 1 0110 0011
B. 1 0110 0101
C. 1 0110 1001
D. 1 0111 0101
E. 1 1010 0101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

8 7654 3210
digit position

1 0 1 1 0 0 1 0 1
 d8 d7 d6 d5 d4 d3 d2 d1 d0

357 – 256 = 101
101 – 64 = 37

37 – 32 = 5
5 – 4 = 1

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

We can always add 0’s to the front of a number without changing it:

10110= 010110 = 00010110 = 0000010110

So far: Unsigned Integers

With N bits, can represent values: 0 to 2n-1

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short
• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Unsigned Integers

• Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

0 255 Larger
Values

Traditional number line:

Addition

Unsigned Integers

Suppose we had one byte
– Can represent 28 (256) values
– If unsigned (strictly non-negative): 0 – 255

252 = 11111100
253 = 11111101
254 = 11111110
255 = 11111111
What if we add one more?

Car odometer “rolls over”.

Any time we are dealing with a
finite storage space we cannot
represent an infinite number of
values!

Unsigned Integers

Suppose we had one byte
• Can represent 28 (256) values
• If unsigned (strictly non-negative):
 0 – 255

252 = 11111100

253 = 11111101
254 = 11111110
255 = 11111111

What if we add one more?

0

128
(10000000)

64192

255 (11111111)

Addition

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^carry out

Four bits give us range: 0 - 15

Unsigned Addition (4-bit)

• Addition works like grade school addition:

 1
 0110 6 1100 12
 + 0100 + 4 + 1010 +10
 1010 10 1 0110 6
 ^no carry out ^carry out

Four bits give us range: 0 - 15 Overflow!

Carry out is indicative of something having gone wrong when adding unsigned values

-1

-127 (11111111)

-127

-1 (11111111)

A B

C: Put them somewhere else.

0 0

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

Suppose we want to support signed values (positive and negative) in
8 bits, where should we put -1 and -127 on the circle? Why?

0

-1

-127 (11111111)
0

-127

-1 (11111111)

A: signed
magnitude

B: Two’s
complement

C: Put them somewhere else.

Signed Magnitude Representation (for 4 bit values)

• One bit (usually left-most) signals:
– 0 for positive
– 1 for negative

For one byte:
1 = 00000001, -1 = 10000001

Pros: Negation (negative value of a number) is very simple!

For one byte:
 0 = 00000000
 What about 10000000?

Major con: Two ways to represent zero!

Two’s Complement Representation (for four bit values)

• Borrow nice property
from number line:

0

-1 1

Only one instance of zero!
Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256
unique values:
• 128 non-negative values (0 to 127)
• 128 negative values (-1 to -128)

Additional Info: Fractional binary numbers

0 1-1….-11982 15 999…99

−1
2

1
8

1
2

How do we represent fractions in binary?

Slide 58

Additional Info: Representing Signed Float Values

• One option (used for floats, NOT integers)
– Let the first bit represent the sign
– 0 means positive
– 1 means negative

• For example:
– 0101 -> 5
– 1101 -> -5

• Problem with this scheme?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
 8 bits for exponent
 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

let's just plug in some values and try it out

0x40ac49ba: 0 10000001 01011000100100110111010
 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this

Summary

• Images, Word Documents, Code, and Video can represented in bits.

• Byte or 8 bits is the smallest addressable unit

• N bits can represent 2N unique values

• A number is written as a sequence of digits: in the decimal base system

– [dn * 10 ^ n] + [dn-1 * 10 ^ n-1] + ... + [d2 * 10 ^ 2] + [d1 * 10 ^ 1] + [d0 * 10 ^ 0]

– For any base system:

– [dn * b ^ n] + [dn-1 * b ^ n-1] + ... + [d2 * b ^ 2] + [d1 * b ^ 1] + [d0 * b ^ 0]

• Hexadecimal values (represent 16 values): {0,1,2,3,4,5,6,7,8,9,A,B,C,D,E,F}

– Each hexadecimal value can be represented by 4 bits. (2^4=16)

• A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit
value is 255.

– Trying to represent a value >255 will result in an overflow.

• Two’s Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

