CS 31: Intro to Systems C Programming

 L03: Data representationVasanta Chaganti \& Kevin Webb
Swarthmore College
September 12, 2023

Announcements

- HW1 is due Thursday before class
- up to groups of four
- invitations sent from gradescope
- Lab 1 is due Thursday, 11.59 PM
- Clickers will count for credit from this week

Reading Quiz

- Note the red border!
- 1 minute per question
- No talking, no laptops, phones during the quiz

Agenda

Data representation

- number systems + conversion
- data types, storage
- sizes, representation
- signedness

Abstraction

Data Storage

- Lots of technologies out there:
- Magnetic (hard drive, floppy disk)
- Optical (CD / DVD / Blu-Ray)
- Electronic (RAM, registers, ...)
- Focus on electronic for now
- We'll see (and build) digital circuits soon
- Relatively easy to differentiate two states
- Voltage present
- Voltage absent

Bits and Bytes

- Bit: a 0 or 1 value (binary)
- HW represents as two different voltages
- 1: the presence of voltage (high voltage)
- 0 : the absence of voltage (low voltage)
- Byte: 8 bits, the smallest addressable unit

Memory: 010101011010101000001111
(address) [0] [1] [2]

- Other names:
- 4 bits: Nibble
- "Word": Depends on system, often 4 bytes

Files

Sequence of bytes... nothing more, nothing less

Binary Digits (BITs)

- One bit: two values (0 or 1)
- Two bits: four values ($00,01,10$, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01, 10, or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?

1 bit:
0

How many values?

1 bit:
2 bits:

How many values?

How many values?

1 bit:
2 bits:
3 bits:

4 bits: $\quad \begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & & 16 \text { values } \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & & \end{array}$
$\begin{array}{llllllllllllllll}1 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 1 & 1\end{array}$
$1100 \quad 11014110 \quad 1111$
N bits: $\quad 2^{\mathrm{N}}$ values

C types and their (typical!) sizes

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, mnaioned lonc lanc. dnuble
- 4 or 8 bytes: long,
unsigned long v1;
short sl;
long long ll;
// prints out number of bytes
printf("\%lu \%lu \%lu\n", sizeof(v1), sizeof(sl), sizeof(ll));

How do we use this storage space (bits) to represent a value?

Let's start with what we know...

- Digits 0-9
- Positional numbering
- Digits are composed to make larger numbers
- Known as Base 10 representation

Decimal number system (Base 10)

- Sequence of digits in range $[0,9]$

64025

Decimal: Base 10

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

where d is in $\{0,1,2,3,4,5,6,7,8,9\}$, represents the value:

$$
\left[d_{n-1} * 10^{n-1}\right]+\left[d_{n-2} * 10^{n-2}\right]+\ldots+\left[d_{1} * 10^{1}\right]+\left[d_{0} * 10^{0}\right]
$$

$64025=$
$6 * 10^{4}+4 * 10^{3}+0 * 10^{2}+2 * 10^{1}+5 * 10^{0}$ $60000+4000+0+20+5$

Binary: Base 2

- Used by computers to store digital values.
- Indicated by prefixing number with Ob
- A number, written as the sequence of N digits, $d_{n-1} \ldots d_{2} d_{1} d_{0}$, where d is in $\{0,1\}$, represents the value:
$\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]$

Converting Binary to Decimal

$$
\text { Most significant bit } \longrightarrow \frac{10001111}{76543210} \longleftarrow \text { Least significant bit }
$$


```
    128 + + 8 + 4 + 2 + 1
    10001111 = 143
```


Hexadecimal: Base 16

Indicated by prefixing number with $\mathbf{0 x}$

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

where d is in $\{0,1,2,3,4,5,6,7,8,9, \underline{A}, \underline{B}, \underline{C}, \underline{D}, \underline{E}, \underline{F}\}$, represents:
$\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]$

Generalizing: Base b

The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

in base b represents the value:

$$
\left[d_{n-1} * b^{n-1}\right]+\left[d_{n-2} * b^{n-2}\right]+\ldots+\left[d_{2} * b^{2}\right]+\left[d_{1} * b^{1}\right]+\left[d_{0} * b^{0}\right]
$$

Base 10: $\left[\mathrm{d}_{\mathrm{n}-1} * 10^{\mathrm{n}-1}\right]+\left[\mathrm{d}_{\mathrm{n}-2} * 10^{\mathrm{n}-2}\right]+\ldots+\left[\mathrm{d}_{1} * 10^{1}\right]+\left[\mathrm{d}_{0} * 10^{0}\right]$

Other (common) number systems.

- Base 2: How data is stored in hardware.
- Base 8: Used to represent file permissions.
- Base 10: Preferred by people.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

It's all stored as binary in the computer.

Different representations (or visualizations) of the same information!

What is the value of Ob110101 in decimal?

A number, written as the sequence of N digits $d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of Ob110101 in decimal?

A number, written as the sequence of N digits $d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

What is the value of $0 \times 1 B 7$ in decimal?

$$
\begin{gathered}
{\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]} \\
\left(\text { Note: } 16^{2}=256\right)
\end{gathered}
$$

A. 397
B. 409
C. 419
D. 437
E. 439

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

What is the value of $0 \times 1 \mathrm{~B} 7$ in decimal?

$$
\begin{gathered}
{\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]} \\
\left(\text { Note: } 16^{2}=256\right)
\end{gathered}
$$

A. 397
B. 409
C. 419

$$
\begin{aligned}
& 1 * 16^{2}+11 * 16^{1}+7 * 16^{0}= \\
& 256+176+7=\underline{439}
\end{aligned}
$$

D. 437
E. 439

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Important Point...

- You can represent the same value in a variety of number systems or bases.
- It's all stored as binary in the computer.
- Presence/absence of voltage.

Hexadecimal: Base 16

- Fewer digits to represent same value
- Same amount of information!
- Like binary, the base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- $16=2^{4}$, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value. (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7
$\begin{array}{cllll}\text { In binary: } & 0001 & 1011 & 0111 \\ 1 & B & 7 & & \end{array}$

Converting Decimal -> Binary

- Two methods:
- division by two remainder
- powers of two and subtraction

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \text { set } b_{i} \text { to } 0 \\
& \quad \text { i++ } D=D / 2
\end{aligned}
$$

$$
\text { Example: Converting } 105
$$

```
idea:
    example: D = 105
b
```

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D=D / 2
\end{array}
\end{aligned}
$$

$$
\text { Example: Converting } 105
$$

```
idea: }\quad\begin{array}{l}{D}\\{}\\{}\\{D=D/2}
```

$$
\text { example: } \begin{aligned}
D & =105 \\
& D=52
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{b}_{0}=1 \\
& \mathrm{~b}_{1}=0
\end{aligned}
$$

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { if } D \text { is even } b_{i} \text { to } 1 \\
& \quad \text { set } b_{i} \text { to } 0 \\
& \quad \text { i++ } \\
& D=D / 2
\end{aligned}
$$

$$
\text { Example: Converting } 105
$$

```
idea: D
D = 0 (done)
```

 \(D=D / 2 \quad D=52\)
 \(\mathrm{b}_{0}=1\)
 \(\mathrm{b}_{1}=0\)
 $\mathrm{D}=\mathrm{D} / 2 \quad \mathrm{D}=26 \quad \mathrm{~b}_{2}=0$
$\mathrm{D}=\mathrm{D} / 2 \quad \mathrm{D}=13 \quad \mathrm{~b}_{3}=1$
$\begin{gathered}\mathrm{D}=\mathrm{D} / 2 \\ \mathrm{D}=6\end{gathered} \mathrm{~b}_{4}=0$
$\mathrm{D}=\mathrm{D} / 2 \quad \mathrm{D}=3 \quad \mathrm{~b}_{5}=1$
$\begin{array}{ll}\mathrm{D}=\mathrm{D} / 2 & \mathrm{D}=1\end{array}$
$\begin{array}{ll}D=1 \\ D & =0\end{array}$
$\mathrm{b}_{6}=1$
$\mathrm{b}_{7}=0$
$105=01101001$

Method 2

- $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=64,2^{7}=128$

To convert 105:

- Find largest power of two that's less than 105 (64)
- Subtract $64(105-64=\underline{41})$, put a 1 in d_{6}
- Subtract $32(41-32=9)$, put a 1 in d_{5}
- Skip 16, it's larger than 9, put a 0 in d_{4}
- Subtract $8(9-8=\underline{1})$, put a 1 in d_{3}
- Skip 4 and 2 , put a 0 in d_{2} and d_{1}
- Subtract $1(1-1=\underline{0})$, put a 1 in d_{0} (Done)

$$
\begin{array}{lllllll}
\frac{1}{d_{6}} & \frac{1}{d_{5}} & \frac{\theta}{d_{4}} & \frac{1}{d_{3}} & \frac{\theta}{d_{2}} & \frac{0}{d_{1}} & \frac{1}{d_{0}}
\end{array}
$$

What is the value of 357 in binary?

876543210
 A. 101100011
 B. 101100101
 C. 101101001
 D. 101110101
 E. 110100101

$$
\begin{aligned}
& 2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16, \\
& 2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128, \quad 2^{8}=256
\end{aligned}
$$

What is the value of 357 in binary?

876543210

digit position

A. 101100011

$$
\begin{array}{r}
357-256=101 \\
101-64=37 \\
37-32=5 \\
5-4=1
\end{array}
$$

B. 101100101
D. 101110101
E. 110100101

$$
\frac{1}{d_{8}} \frac{0}{d_{7}} \quad \frac{1}{d_{6}} \quad \frac{1}{d_{5}} \quad \frac{0}{d_{4}} \quad \frac{0}{d_{3}} \quad \frac{1}{d_{2}} \quad \frac{0}{d_{1}} \quad \frac{1}{d_{0}}
$$

$$
\begin{aligned}
& 2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16, \\
& 2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128, \quad 2^{8}=256
\end{aligned}
$$

So far: Unsigned Integers

With N bits, can represent values: 0 to $2^{\mathrm{n}}-1$

We can always add 0's to the front of a number without changing it:
$10110=\underline{0} 10110=\underline{00010110}=\underline{0000010110}$

So far: Unsigned Integers

With N bits, can represent values: 0 to $2^{\mathrm{n}}-1$

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Unsigned Integers

- Suppose we had one byte
- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$

Unsigned Integers

Suppose we had one byte

- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative): 0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$
What if we add one more?

Car odometer "rolls over".

Any time we are dealing with a finite storage space we cannot represent an infinite number of values!

Unsigned Integers

Suppose we had one byte

- Can represent 2^{8} (256) values
- If unsigned (strictly non-negative):

255 (11111111)
0-255
$252=11111100$
$253=11111101$
$254=11111110$
$255=11111111$
What if we add one more?

Modular arithmetic: Here, all values are modulo 256.

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{array}{r}
1 \\
0110 \\
+\quad 0100 \\
\hline 1010 \\
+\quad 4 \\
\hline 10
\end{array}
$$

Four bits give us range: 0-15

Unsigned Addition (4-bit)

- Addition works like grade school addition:

$$
\begin{aligned}
& 1 \\
& \begin{array}{l}
0110 \\
+0100 \\
\hline 1010
\end{array} \frac{6}{10}
\end{aligned} \begin{array}{r}
1100 \\
\hline \text { ^no carry out } \begin{array}{l}
\text { ^carry out }
\end{array}
\end{array}
$$

Four bits give us range: 0-15

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Suppose we want to support signed values (positive and negative) in 8 bits, where should we put -1 and -127 on the circle? Why?

C: Put them somewhere else.

Signed Magnitude Representation (for 4 bit values)

- One bit (usually left-most) signals:
- 0 for positive
- 1 for negative

For one byte:
$1=00000001,-1=10000001$

Pros: Negation (negative value of a number) is very simple!

For one byte:
$0=00000000$
What about 10000000?

Major con: Two ways to represent zero!

Two's Complement Representation (for four bit values)

Figure 2. A logical layout of two's complement values for bit sequences of length four.

- Borrow nice property from number line:

Only one instance of zero! Implies: -1 and 1 on either side of it.

For an 8 bit range we can express 256 unique values:

- 128 non-negative values (0 to 127)
- 128 negative values (-1 to -128)

Additional Info: Fractional binary numbers

How do we represent fractions in binary?

Additional Info: Representing Signed Float Values

- One option (used for floats, NOT integers)
- Let the first bit represent the sign
- 0 means positive
- 1 means negative
- For example:
- 0101 -> 5
- 1101 -> -5
- Problem with this scheme?

Additional Info: Floating Point Representation

1 bit for sign sign | exponent | fraction |
8 bits for exponent
23 bits for precision

$$
\text { value }=(-1)^{\text {sign }} * 1 \text {.fraction } * 2^{(\text {exponent-127) }}
$$

let's just plug in some values and try it out

```
0x40ac49ba: 0 10000001 01011000100100110111010
    sign = 0 exp = 129 fraction = 2902458
        =1*1.2902458*22 = 5.16098
```


Idon't expect you to memorize this

Summary

- Images, Word Documents, Code, and Video can represented in bits.
- Byte or 8 bits is the smallest addressable unit
- N bits can represent 2^{N} unique values
- A number is written as a sequence of digits: in the decimal base system
$-\left[\mathrm{dn} * 10^{\wedge} \mathrm{n}\right]+\left[\mathrm{dn}-1^{*} 10^{\wedge} \mathrm{n}-1\right]+\ldots+\left[\mathrm{d} 2 * 10^{\wedge} 2\right]+\left[\mathrm{d} 1 * 10^{\wedge} 1\right]+\left[\mathrm{d} 0 * 10^{\wedge} 0\right]$
- For any base system:

- Hexadecimal values (represent 16 values): $\{0,1,2,3,4,5,6,7,8,9, A, B, C, D, E, F\}$
- Each hexadecimal value can be represented by 4 bits. (2^4=16)
- A finite storage space we cannot represent an infinite number of values. For e.g., the max unsigned 8 bit value is 255 .
- Trying to represent a value >255 will result in an overflow.
- Two's Complement Representation: 128 non-negative values (0 to 127), and 128 negative values (-1 to -128).

