CS 31: Intro to Systems Binary Representation

Vasanta Chaganti \& Kevin Webb
Swarthmore College
September 12, 2023

Reading Quiz

- Note the red border!
- 1 minute per question
- No talking, no laptops, phones during the quiz

Today

- Number systems and conversion
- Data types and storage:
- Sizes
- Representation
- Signedness

Abstraction

Data Storage

- Lots of technologies out there:
- Magnetic (hard drive, floppy disk)
- Optical (CD / DVD / Blu-Ray)
- Electronic (RAM, registers, ...)
- Focus on electronic for now
- We'll see (and build) digital circuits soon
- Relatively easy to differentiate two states
- Voltage present
- Voltage absent

Bits and Bytes

- Bit: a 0 or 1 value (binary)
- HW represents as two different voltages
- 1: the presence of voltage (high voltage)
- 0 : the absence of voltage (low voltage)
- Byte: 8 bits, the smallest addressable unit

Memory: 010101011010101000001111
(address) [0] [1] [2]

- Other names:
- 4 bits: Nibble
- "Word": Depends on system, often 4 bytes

Files

Sequence of bytes... nothing more, nothing less

Binary Digits (BITs)

- One bit: two values (0 or 1)
- Two bits: four values (00, 01,10 , or 11)
- Three bits: eight values (000, 001, ..., 110, 111)

Discussion question

- Green border
- Recall the sequence
- Answer individually (room quiet)
- Discuss in your group (room loud)
- Answer as a group
- Class-wide discussion

How many unique values can we represent with 9 bits? Why?

- One bit: two values (0 or 1)
- Two bits: four values (00, 01,10 , or 11)
- Three bits: eight values (000, 001, ..., 110, 111)
A. 18
B. 81
C. 256
D. 512
E. Some other number of values.

How many values?
1 bit:

How many values?
1 bit:
2 bits:

How many values?
1 bit:
2 bits:

How many values?

1 bit:
2 bits:
3 bits:

4 bits: $\quad \begin{array}{llllllllllllllllll}0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 16 \text { values } \\ 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 1 & & \end{array}$

$$
100001001
$$

$$
\begin{array}{lllllllllllllll}
1 & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & 1 & 1
\end{array}
$$

N bits: $\quad 2^{\mathrm{N}}$ values

C types and their (typical!) sizes

- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, uncionod lnne 7 nner dnuhlo
- 4 or 8 bytes: long,
unsigned long v1;
short s1;
long long ll;

WARNING: These sizes are NOT a

 guarantee. Don't always assume that every system will use these values!// prints out number of bytes
printf("\%lu \%lu \%lu\n", sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

Let's start with what we know...

- Digits 0-9
- Positional numbering
- Digits are composed to make larger numbers
- Known as Base 10 representation

Decimal number system (Base 10)

- Sequence of digits in range [0, 9]

What is the significance of the $\mathrm{N}^{\text {th }}$ digit number in this number system? What does it contribute to the overall value?

64025

A. $\mathrm{d}_{\mathrm{N}}{ }^{*} 1$
B. $\mathrm{d}_{\mathrm{N}} * 10$
C. $d_{N} * 10^{N}$
D. $d_{N} * N^{10}$

Consider the meaning of d_{3} (the value 4) above. What is it contributing to the total value?
E. $d_{N} * 10^{d N}$

Decimal: Base 10

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

where d is in $\{0,1,2,3,4,5,6,7,8,9\}$, represents the value:

$$
\left[d_{n-1} * 10^{n-1}\right]+\left[d_{n-2} * 10^{n-2}\right]+\ldots+\left[d_{1} * 10^{1}\right]+\left[d_{0} * 10^{0}\right]
$$

$64025=$

$6 * 10^{4}+$	$4 * 10^{3}+$	$0 * 10^{2}+$	$2 * 10^{1}+$	$5 * 10^{0}$
$60000+$	$4000+$	0	+	$20+$

Generalizing: Base b

- The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

in base b represents the value:

$$
\left[d_{n-1} * b^{n-1}\right]+\left[d_{n-2} * b^{n-2}\right]+\ldots+\left[d_{2} * b^{2}\right]+\left[d_{1} * b^{1}\right]+\left[d_{0} * b^{0}\right]
$$

Base 10: $\left[d_{n-1} * 10^{n-1}\right]+\left[d_{n-2} * 10^{n-2}\right]+\ldots+\left[d_{1} * 10^{1}\right]+\left[d_{0} * 10^{0}\right]$

Binary: Base 2

- Used by computers to store digital values.
- Indicated by prefixing number with Ob
- A number, written as the sequence of N digits, $d_{n-1} \ldots d_{2} d_{1} d_{0}$, where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

What is the value of Ob110101 in decimal?

- A number, written as the sequence of N digits $d_{n-1} \ldots d_{2} d_{1} d_{0}$ where d is in $\{0,1\}$, represents the value:

$$
\left[d_{n-1} * 2^{n-1}\right]+\left[d_{n-2} * 2^{n-2}\right]+\ldots+\left[d_{2} * 2^{2}\right]+\left[d_{1} * 2^{1}\right]+\left[d_{0} * 2^{0}\right]
$$

A. 26
B. 53
C. 61
D. 106
E. 128

One more binary example...

Most significant bit $\longrightarrow \underline{10001111} \longleftarrow$ Least significant bit

Representation: $1 \times 2^{7}+0 \times 2^{6} \ldots+1 \times 2^{3}+1 \times 2^{2}+1 \times 2^{1}+1 \times 2^{\theta}$
$128+2+8+2+1$
$10001111=143$

Other (common) number systems

- Base 10: decimal
- Base 2: binary
- Base 16: hexadecimal
- Base 8: octal
- Base 64

Hexadecimal: Base 16

- Indicated by prefixing number with $\mathbf{0 x}$

A number, written as the sequence of N digits,

$$
d_{n-1} \ldots d_{2} d_{1} d_{0}
$$

where d is in $\{0,1,2,3,4,5,6,7,8,9, \underline{A}, \underline{B}, \underline{C}, \underline{D}, \underline{E}, \underline{F}\}$, represents:
$\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]$

What is the value of $0 \times 1 B 7$ in decimal?

$$
\left[d_{n-1} * 16^{n-1}\right]+\left[d_{n-2} * 16^{n-2}\right]+\ldots+\left[d_{2} * 16^{2}\right]+\left[d_{1} * 16^{1}\right]+\left[d_{0} * 16^{0}\right]
$$

(Note: $16^{2}=256$)
A. 397
B. 409
C. 419
D. 437
E. 439

DEC	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
HEX	0	1	2	3	4	5	6	7	8	9	A	B	C	D	E	F

Important Point...

- You can represent the same value in a variety of number systems or bases.
- It's all stored as binary in the computer.
- Presence/absence of voltage.

Other (common) number systems.

- Base 2: How data is stored in hardware.
- Base 8: Used to represent file permissions.
- Base 10: Preferred by people.
- Base 16: Convenient for representing memory addresses.
- Base 64: Commonly used on the Internet, (e.g. email attachments).

It's all stored as binary in the computer.
Different representations (or visualizations) of the same information!

Hexadecimal: Base 16

- Fewer digits to represent same value
- Same amount of information!
- Like binary, the base is power of 2
- Each digit is a "nibble", or half a byte.

Each hex digit is a "nibble"

- One hex digit: 16 possible values (0-9, A-F)
- $16=2^{4}$, so each hex digit has exactly four bits worth of information.
- We can map each hex digit to a four-bit binary value. (helps for converting between bases)

Each hex digit is a "nibble"

Example value: 0x1B7

Four-bit value: 1
Four-bit value: B (decimal 11)
Four-bit value: 7

In binary:	0001	1011	0111
	1	B	7

Hexadecimal \leftrightarrow Binary Conversion

- Bit patterns as base-16 numbers
- Convert binary to hexadecimal: by splitting into groups of 4 bits each.

Example:

0b0011 11001010110110110011 = 0x3CADB3

Bin	0011	1100	1010	1101	1011	0011
Hex	3	C	A	D	B	3

Converting Decimal -> Binary

- Two methods:
- division by two remainder
- powers of two and subtraction

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \quad \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D=D / 2
\end{array}
\end{aligned}
$$

$$
\text { example: } D=105 \quad \mathrm{~b}_{0}=1
$$

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \quad \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D=D / 2
\end{array}
\end{aligned}
$$

```
idea: D example: D = 105 b b = 1
    D = D/2
    D = 52
\[
\begin{aligned}
& \mathrm{b}_{0}=1 \\
& \mathrm{~b}_{1}=0
\end{aligned}
\]
```

Method 1: decimal value D, binary result b (b_{i} is ith digit):

$$
\begin{aligned}
& \text { i }=0 \\
& \text { while }(D>0) \\
& \quad \text { if } D \text { is odd } \\
& \text { set } b_{i} \text { to } 1 \\
& \text { if } D \text { is even } \\
& \quad \text { set } b_{i} \text { to } 0 \\
& \quad \begin{array}{l}
\text { i++ } \\
D=D / 2
\end{array}
\end{aligned}
$$

```
idea: D
    example: D = 105
b
D = D/2 D = 52
b}\mp@subsup{\textrm{b}}{1}{}=
D = D/2
    D = 26
b
D = D/2 D = 13
b
D = D/2
    D = 6
b
D = D/2
    D=3
b
D = D/2
    D = 1
b
D = 0 (done)
\(D=105\)
\(D=52\)
\(D=26\)
\(D=13\)
\(D=6\)
\(D=3\)
\(D=1\)
\(D=0\)
idea:
    D = 0
b}\mp@subsup{\textrm{F}}{7}{}=
```

 Example: Converting 105

Method 2

- $2^{0}=1,2^{1}=2,2^{2}=4,2^{3}=8,2^{4}=16,2^{5}=32,2^{6}=64,2^{7}=128$

To convert 105:

- Find largest power of two that's less than 105 (64)
- Subtract $64(105-64=41)$, put a 1 in d ${ }_{6}$
- Subtract 32 ($41-32=\underline{9}$), put a 1 in d_{5}
- Skip 16, it's larger than 9 , put a 0 in d_{4}
- Subtract $8(9-8=1)$, put a 1 in d_{3}
- Skip 4 and 2 , put a 0 in d_{2} and d_{1}
- Subtract $1(1-1=\underline{0})$, put a 1 in d_{0} (Done)

$$
\frac{1}{\mathrm{~d}_{6}} \quad \frac{1}{\mathrm{~d}_{5}} \quad \frac{0}{\mathrm{~d}_{4}} \quad \frac{1}{\mathrm{~d}_{3}} \quad \frac{0}{\mathrm{~d}_{2}} \quad \frac{0}{\mathrm{~d}_{1}} \quad \frac{1}{\mathrm{~d}_{0}}
$$

What is the value of 357 in binary?
A. 101100011
B. 101100101
C. 101101001
D. 101110101
E. 110100101

$$
\begin{aligned}
& 2^{0}=1, \quad 2^{1}=2, \quad 2^{2}=4, \quad 2^{3}=8, \quad 2^{4}=16, \\
& 2^{5}=32, \quad 2^{6}=64, \quad 2^{7}=128, \quad 2^{8}=256
\end{aligned}
$$

So far: Unsigned Integers

- With N bits, we can represent values: 0 to $2^{\mathrm{n}}-1$
- We can always add 0's to the front of a number without changing it:
$10110=\underline{010110}=\underline{00010110}=\underline{0000010110}$
- 1 byte: char, unsigned char
- 2 bytes: short, unsigned short
- 4 bytes: int, unsigned int, float
- 8 bytes: long long, unsigned long long, double
- 4 or 8 bytes: long, unsigned long

Coming up next...

- How do we store signed integers?
- How do we perform arithmetic on binary values?
-What are the limits on what we can store in a certain number of bits?

Aside: Floating Point Representation

```
1 \text { bit for sign}
sign | exponent | fraction |
8 bits for exponent
2 3 \text { bits for precision}
value =(-1) sign * 1.fraction* 2(exponent-127)
```

Let's plug in a value and try it out:

```
0x40ac49ba: 0 10000001 01011000100100110111010
    sign = 0 exp = 129 fraction = 2902458
        = 1*1.2902458*22 = 5.16098
    I don't expect you to memorize this!
```

