
CS 31: Intro to Systems
Binary Representation

Vasanta Chaganti & Kevin Webb

Swarthmore College

September 12, 2023

Reading Quiz

• Note the red border!

• 1 minute per question

• No talking, no laptops, phones during the quiz

Today

• Number systems and conversion

• Data types and storage:
• Sizes

• Representation

• Signedness

Abstraction

User / Programmer
Wants low complexity

Applications
Specific functionality

Software library
Reusable functionality

Complex devices
Compute & I/O

Operating system
Manage resources

Data Storage

• Lots of technologies out there:
• Magnetic (hard drive, floppy disk)
• Optical (CD / DVD / Blu-Ray)
• Electronic (RAM, registers, …)

• Focus on electronic for now
• We’ll see (and build) digital circuits soon

• Relatively easy to differentiate two states
• Voltage present
• Voltage absent

Bits and Bytes

• Bit: a 0 or 1 value (binary)
• HW represents as two different voltages

• 1: the presence of voltage (high voltage)

• 0: the absence of voltage (low voltage)

• Byte: 8 bits, the smallest addressable unit
Memory: 01010101 10101010 00001111 …

(address) [0] [1] [2] …

• Other names:
• 4 bits: Nibble

• “Word”: Depends on system, often 4 bytes

Files

Sequence of bytes… nothing more, nothing less

Binary Digits (BITs)

• One bit: two values (0 or 1)

• Two bits: four values (00, 01, 10, or 11)

• Three bits: eight values (000, 001, …, 110, 111)

A. 18

B. 81

C. 256

D. 512

E. Some other number of values.

Discussion question

• Green border

• Recall the sequence
• Answer individually (room quiet)

• Discuss in your group (room loud)

• Answer as a group

• Class-wide discussion

How many unique values can we represent
with 9 bits? Why?
• One bit: two values (0 or 1)

• Two bits: four values (00, 01, 10, or 11)

• Three bits: eight values (000, 001, …, 110, 111)

A. 18

B. 81

C. 256

D. 512

E. Some other number of values.

How many values?
1 bit: 0 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

How many values?
1 bit: 0 1

2 bits: 0 0 0 1 1 0 1 1

3 bits: 0 0 0 0 0 1 0 1 0 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1

4 bits: 0
0

0
1

0
0

0
0

0
0

0
1

0
0

1
1

0
0

0
1

1
1

0
0

0
0

0
1

1
1

1
1

16 values

1
1

0
1

0
0

0
0

1
1

0
1

0
0

1
1

1
1

0
1

1
1

0
0

1
1

0
1

1
1

1
1

N bits: 2N values

C types and their (typical!) sizes
• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

unsigned long v1;

short s1;

long long ll;

// prints out number of bytes

printf(“%lu %lu %lu\n”, sizeof(v1), sizeof(s1), sizeof(ll));

How do we use this storage space (bits) to represent a value?

WARNING: These sizes are NOT a
guarantee. Don't always assume that

every system will use these values!

Let’s start with what we know…

• Digits 0-9

• Positional numbering

• Digits are composed to make larger numbers

• Known as Base 10 representation

Decimal number system (Base 10)

• Sequence of digits in range [0, 9]

64025

Digit #0: 1’s place, “least significant digit”

Digit #4: “most significant digit”

Digit #1: 10’s place

What is the significance of the Nth digit number in this
number system? What does it contribute to the overall value?

64025

A. dN * 1

B. dN * 10

C. dN * 10N

D. dN * N10

E. dN * 10dN

Digit #0
(d0)

Digit #4
(d4)

Consider the meaning of d3 (the value 4) above.
What is it contributing to the total value?

Decimal: Base 10

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}, represents the value:

[dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

64025 =

6 * 104 + 4 * 103 + 0 * 102 + 2 * 101 + 5 * 100

60000 + 4000 + 0 + 20 + 5

Generalizing: Base b

• The meaning of a digit depends on its position in a number.

A number, written as the sequence of N digits,

 dn-1 … d2 d1 d0

in base b represents the value:

[dn-1 * bn-1] + [dn-2 * bn-2] + ... + [d2 * b2] + [d1 * b1] + [d0 * b0]

Base 10: [dn-1 * 10n-1] + [dn-2 * 10n-2] + ... + [d1 * 101] + [d0 * 100]

Binary: Base 2

• Used by computers to store digital values.

• Indicated by prefixing number with 0b

• A number, written as the sequence of N digits,
dn-1…d2d1d0, where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

What is the value of 0b110101 in decimal?

• A number, written as the sequence of N digits
dn-1…d2d1d0 where d is in {0,1}, represents the value:

[dn-1 * 2n-1] + [dn-2 * 2n-2] + ... + [d2 * 22] + [d1 * 21] + [d0 * 20]

A. 26

B. 53

C. 61

D. 106

E. 128

One more binary example…

Representation: 1 x 27 + 0 x 26 ... + 1 x 23 + 1 x 22 + 1 x 21 + 1 x 20

 128 + + 8 + 4 + 2 + 1

10001111 = 143

10001111Most significant bit Least significant bit
7 6 5 4 3 2 1 0

Other (common) number systems

• Base 10: decimal

• Base 2: binary

• Base 16: hexadecimal

• Base 8: octal

• Base 64

Hexadecimal: Base 16

• Indicated by prefixing number with 0x

A number, written as the sequence of N digits,

 dn-1…d2d1d0,

where d is in {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}, represents:

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

What is the value of 0x1B7 in decimal?

[dn-1 * 16n-1] + [dn-2 * 16n-2] + ... + [d2 * 162] + [d1 * 161] + [d0 * 160]

 (Note: 162 = 256)

A. 397

B. 409

C. 419

D. 437

E. 439 DEC 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

HEX 0 1 2 3 4 5 6 7 8 9 A B C D E F

Important Point…

• You can represent the same value in a variety of number
systems or bases.

• It’s all stored as binary in the computer.
• Presence/absence of voltage.

Other (common) number systems.

• Base 2: How data is stored in hardware.

• Base 8: Used to represent file permissions.

• Base 10: Preferred by people.

• Base 16: Convenient for representing memory addresses.

• Base 64: Commonly used on the Internet, (e.g. email attachments).

It’s all stored as binary in the computer.

Different representations (or visualizations) of the same information!

Hexadecimal: Base 16

• Fewer digits to represent same value
• Same amount of information!

• Like binary, the base is power of 2

• Each digit is a “nibble”, or half a byte.

Each hex digit is a “nibble”

• One hex digit: 16 possible values (0-9, A-F)

• 16 = 24, so each hex digit has exactly four bits worth of information.

• We can map each hex digit to a four-bit binary value.
(helps for converting between bases)

Each hex digit is a “nibble”

Example value: 0x1B7

Four-bit value: 1

Four-bit value: B (decimal 11)

Four-bit value: 7

In binary: 0001 1011 0111

 1 B 7

Hexadecimal ↔ Binary Conversion

• Bit patterns as base-16 numbers

• Convert binary to hexadecimal: by splitting into
groups of 4 bits each.

Example:

Bin 0011 1100 1010 1101 1011 0011

Hex 3 C A D B 3

0b0011 1100 1010 1101 1011 0011 = 0x3CADB3

Converting Decimal -> Binary

• Two methods:
• division by two remainder

• powers of two and subtraction

Method 1: decimal value D, binary result b (bi is ith digit):

 i = 0

 while (D > 0)

 if D is odd

 set bi to 1

 if D is even

 set bi to 0

 i++

 D = D/2

idea: example: D = 105 b0 = 1

 D = b D = 52 a1 = 0

 D/2 = b/2 D = 26 a2 = 0

 D/2 = b/2 D = 13 a3 = 1

 D/2 = b/2 D = 6 a4 = 0

 D/2 = b/2 D = 3 a5 = 1

 0 = 0 D = 1 a6 = 1

 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):

 i = 0

 while (D > 0)

 if D is odd

 set bi to 1

 if D is even

 set bi to 0

 i++

 D = D/2

idea: D example: D = 105 b0 = 1

 D = D/2 D = 52 b1 = 0

 D/2 = b/2 D = 26 a2 = 0

 D/2 = b/2 D = 13 a3 = 1

 D/2 = b/2 D = 6 a4 = 0

 D/2 = b/2 D = 3 a5 = 1

 0 = 0 D = 1 a6 = 1

 D = 0 a7 = 0

 105 = 01101001

Example: Converting 105

Method 1: decimal value D, binary result b (bi is ith digit):

 i = 0

 while (D > 0)

 if D is odd

 set bi to 1

 if D is even

 set bi to 0

 i++

 D = D/2

idea: D example: D = 105 b0 = 1

 D = D/2 D = 52 b1 = 0

 D = D/2 D = 26 b2 = 0

 D = D/2 D = 13 b3 = 1

 D = D/2 D = 6 b4 = 0

 D = D/2 D = 3 b5 = 1

 D = D/2 D = 1 b6 = 1

 D = 0 (done) D = 0 b7 = 0

 105 = 01101001

Example: Converting 105

Method 2
• 20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16, 25 = 32, 26 = 64, 27 = 128

•
To convert 105:
• Find largest power of two that’s less than 105 (64)

• Subtract 64 (105 – 64 = 41), put a 1 in d6

• Subtract 32 (41 – 32 = 9), put a 1 in d5

• Skip 16, it’s larger than 9, put a 0 in d4

• Subtract 8 (9 – 8 = 1), put a 1 in d3

• Skip 4 and 2, put a 0 in d2 and d1

• Subtract 1 (1 – 1 = 0), put a 1 in d0 (Done)

__ __ __ __ __ __ __
d6 d5 d4 d3 d2 d1 d0

1 01 1 0 0 1

What is the value of 357 in binary?

A. 101100011

B. 101100101

C. 101101001

D. 101110101

E. 110100101

20 = 1, 21 = 2, 22 = 4, 23 = 8, 24 = 16,

25 = 32, 26 = 64, 27 = 128, 28 = 256

So far: Unsigned Integers

• With N bits, we can represent values: 0 to 2n-1

• We can always add 0’s to the front of a number without changing it:

10110 = 010110 = 00010110 = 0000010110

• 1 byte: char, unsigned char

• 2 bytes: short, unsigned short

• 4 bytes: int, unsigned int, float

• 8 bytes: long long, unsigned long long, double

• 4 or 8 bytes: long, unsigned long

Coming up next…

• How do we store signed integers?

• How do we perform arithmetic on binary values?

• What are the limits on what we can store in a certain number of bits?

Aside: Floating Point Representation

 1 bit for sign sign | exponent | fraction |

 8 bits for exponent

 23 bits for precision

 value = (-1)sign * 1.fraction * 2(exponent-127)

Let's plug in a value and try it out:

0x40ac49ba: 0 10000001 01011000100100110111010

 sign = 0 exp = 129 fraction = 2902458

 = 1*1.2902458*22 = 5.16098

I don’t expect you to memorize this!

	Slide 1: CS 31: Intro to Systems Binary Representation
	Slide 3: Reading Quiz
	Slide 9: Today
	Slide 10: Abstraction
	Slide 11: Data Storage
	Slide 12: Bits and Bytes
	Slide 13: Files
	Slide 14: Binary Digits (BITs)
	Slide 15: Discussion question
	Slide 16: How many unique values can we represent with 9 bits? Why?
	Slide 18: How many values?
	Slide 19: How many values?
	Slide 20: How many values?
	Slide 21: How many values?
	Slide 22: C types and their (typical!) sizes
	Slide 23: Let’s start with what we know…
	Slide 24: Decimal number system (Base 10)
	Slide 25: What is the significance of the Nth digit number in this number system? What does it contribute to the overall value?
	Slide 27: Decimal: Base 10
	Slide 28: Generalizing: Base b
	Slide 29: Binary: Base 2
	Slide 30: What is the value of 0b110101 in decimal?
	Slide 32: One more binary example…
	Slide 33: Other (common) number systems
	Slide 34: Hexadecimal: Base 16
	Slide 35: What is the value of 0x1B7 in decimal?
	Slide 37: Important Point…
	Slide 38: Other (common) number systems.
	Slide 39: Hexadecimal: Base 16
	Slide 40: Each hex digit is a “nibble”
	Slide 41: Each hex digit is a “nibble”
	Slide 42: Hexadecimal ↔ Binary Conversion
	Slide 43: Converting Decimal -> Binary
	Slide 44
	Slide 45
	Slide 46
	Slide 47: Method 2
	Slide 48: What is the value of 357 in binary?
	Slide 49: So far: Unsigned Integers
	Slide 50: Coming up next…
	Slide 51: Aside: Floating Point Representation

