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Abstract
A sedentary lifestyle is becoming common for many in-

dividuals throughout the United States; however, this comes
with a health cost of various preventable diseases such as car-
diovascular disease, colon cancer, metabolic syndrome, and
diabetes. Many times, individuals are completely unaware
of how his or her health has deteriorated because of the slow
progression or the demands of a job. We seek to bring at-
tention to these problems by identifying specific sedentary
activities and propose that just-in-time interventions could
be used to help individuals overcome some of these prob-
lems. Our solution involves wearable sensors and utilizes
a kinematic-based activity recognition systems to identify
sedentary and light-intensity activities. Our system is evalu-
ated with a series of laboratory experiments that include data
from 34 individuals and a total of over 1400 minutes of ac-
tivity. Results indicate that our system has a classification
accuracy of up to 95.4 percent across all activities.

Categories and Subject Descriptors
C.3 [Special-Purpose and Application-Based Sys-

tems]: Real-time and Embedded Systems; J.3 [Life and
Medical Sciences]: Health

General Terms
Design, Performance, Experimentation

Keywords
Body Sensor Network, Kinematics

1 Introduction
Sedentary lifestyles, such as those involving sitting, com-

puter work, or otherwise being stationary, can contributed to
various preventable diseases such as cardiovascular disease,
colon cancer, metabolic syndrome, and diabetes [22, 16, 2].
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These diseases contribute to a significant portion of annual
medical costs in the United States, and based on some esti-
mations, an additional 77 billion dollars in annual medical
costs [17]. The single largest factor contributing to these dis-
eases is the changing lifestyles of modern life resulting in an
expected set of future health problems for many individuals.

Many researchers focus on identifying and recording
daily activities such as walking, running, jogging, and climb-
ing stairs. A common approach [3] is to attach wearable ac-
celerometers to an individual’s wrist, ankle, waist or other
locations. Often, these systems are bulky and intrusive to the
individual’s daily activities and thus interfere with long-term
wear. Other research utilizes additional sensors such as a
GPS [15] to record location information or a microphone [9]
to detect ambient environmental sounds. Another approach
is based on camera technology [20] but it is constrained to
small indoor environments. Still, most of the research fo-
cuses on basic activities that tend toward moderate or vigor-
ous intensities and are weaker at identifying sedentary activ-
ities.

In this paper, we utilize our existing K-Sense monitoring
system which is based on inertial measurement units (IMUs),
consisting of 3-axis accelerometer, gyroscope, and magne-
tometer which are attached to the waist, wrist, and ankle of
a person. Bluetooth radios transmit these data to a remote
computer or smart phone. It measures motion and angular
position at approximately 50 hertz. This data is utilized to
compute kinematic motion features which are used with a
standard decision tree classifier. We envision K-Sense as a
wearable technology designed for medical practitioners to
evaluate a person’s behavior and daily activities. Ultimately,
our vision of the system involves integrating these techniques
into a smart phone, smart watch, and smart shoe.

The main challenge our solution seeks to address is iden-
tifying activities that are principally associated with minimal
movements such as watching TV or laying on a couch. The
hardware is capable of measuring angular changes of more
than 0.1 degrees thus enabling the measurement of small
changes in body and limb position. In some cases such as
sitting or laying, a person’s legs typically do not move; how-
ever, there angle relative to gravity is a clear distinguishing
feature. A different set of activities, such as standing and sit-
ting, result in similar absolute angular positions but the small
movements associated with the body’s balancing mechanism
result in a measurable change. Similarly, every activity has
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associated small movements that, if measured, may be able
to distinguish it from others. These small motions are the
premise of our kinematic based approach to sedentary activ-
ity detection.

In this paper, we present K-Senses design, feature gener-
ation, and classification system used for activity detection.
K-Sense is evaluated with controlled experiments in a labo-
ratory setting across eleven activities. Fifteen subjects fol-
lowed a twenty minute action sequence consisting of stand-
ing, lying down, computer work, walking (3 mph), and run-
ning (6 mph) in the first phase. Nineteen subjects performed
a thirty minute activity sequence consisting of watching TV,
floor cleaning and washing dishes followed by a forty minute
activity sequence consisting of computer work, reading a
book, put away groceries, and walking (1.5 mph). We col-
lected approximately 1400 minutes of data for analysis and
our results indicate that activity detection is 95.4 percent ac-
curate. In comparison, Lin’s solution achieved a 83.3 percent
accuracy on the same data set [19].

2 Related Work
There are several categories of systems designed to detect

and identify human activities: accelerometer-based, multi-
sensor solutions, and vision-based. Accelerometer-based
techniques are among the most common approaches in use
today. In general, accelerometers are placed in various quan-
tities at different locations on a body [4, 11, 12, 8]. One so-
lution provided a 97 percent classification accuracy based on
a worn accelerometer; however, it was only tested with four
activities [6]. Another study utilized 21 people with five ac-
celerometers and a heart monitor and resulted in 94 percent
accurate activity detection [21]. A solution most similar to
ours utilized five IMUs and achieved a detection accuracy of
95 percent [1]; however, our solution is based on kinematics
and achieves slightly better accuracy with fewer sensors.

Some systems include body-worn sensors that provide
both accelerometer and physiological data along with de-
vices in the environment for additional information [18]. Our
solution does not rely on any external devices thus is able to
operate anywhere a person travels. There are a large vari-
ety of methods utilized to detect and classify activities and
they utilize a variety of sensors including: altitude, audio,
body position, chest acceleration, chest compass, electrocar-
diogram, humidity, light intensity, heart rate, location, skin
temp, and wrist accelerations [14]. We have focused on a
simple set of sensors that can easily be worn as part of daily
life and do not need addition physiological measurements.

A third category of solutions is based on video cameras,
which have become popular in recent years. There is typi-
cally a lot of computational overhead associated with vision-
based solutions. A common approach utilizes the Microsoft
Kinect platform and achieved a classification accuracy of 84
percent [20]. Other solutions utilized a basic camera; how-
ever, the accuracy is worse [5, 13]. People tend to view
vision-based solutions as intrusive and potential privacy con-
cerns resulting in poor acceptance in private environments
such as homes. Since our system is not based on a camera,
we believe that a person is more likely to allow it when com-
pared to a camera-based solution.

Figure 1. System architecture overview.

Figure 2. K-Sense’s test hardware which includes an in-
ertial measurement unit, Bluetooth radio, and battery.
They can be placed on the wrist, ankle and waist.

3 Approach
One of the goals of the K-Sense hardware platform is to

detect various classes of activities from sedentary to vigor-
ous. Figure 1 provides an overview of the hardware, sig-
nal processing, and classification system. K-Sense utilizes
IMUs, consisting of accelerometers, gyroscopes, and mag-
netometers and produces 27 dimensions of data which is split
into windows where features are computed. The windowed
features are then utilized to construct a decision tree for clas-
sification.

3.1 Hardware
Figure 2 illustrates the hardware used and can be placed at

wrist, ankle and waist where a modified version of the Spark-
fun Razor 9DoF IMU is used to capture human movement.
The system provides three axes of acceleration data, three
axes of gyroscopic data, and three axes of magnetic data with
three sensors: a freescale ADXL345 triple-axis accelerome-
ter, an IDG3200 3200/s gyroscope and a HMC5883L mag-
netic sensor. An on-board ATmega328 processes the out-
puts of all sensors and sends over a serial interface. Cus-
tom firmware was used on the controller board to stream
sensor data continuously. Data was sampled at 50 Hz per
sensor. Bluetooth was used to transmit data to a nearby PC
at 115200 bps. Maximum range of the transmitter was found
to be 15 m in indoor conditions. The entire system received
was powered from a 3.7 V rechargeable lithium-polymer bat-
tery power supply. For more details see our previous work
[23].

3.2 Signal Processing
Activities can be differentiated according to the move-

ments of various body parts by measuring their kinematic
motions, specifically angular position and angular velocity.
Because arms and legs are connected to the torso at a shoul-
der or hip, most of their motion can be modeled as rotations
about the joint. Translations can also be modeled; however,
one needs to be careful regarding sensor noise and drift. This
processing first converts raw data into a quaternion represen-
tation then windows the data for feature computation. These
windowed features are fed into the classification system to
train a decision tree.
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Figure 3. A sample data trace of four activities, working
on a computer, reading a book, putting groceries away,
and walking, is represented by quaternions (w,x,y,z).

3.2.1 Quaternion
After getting data from the IMUs, our system transforms

the raw data streams into quaternions [10]: a representation
for the sum of a scalar and a three dimensional vector. It
is a convenient notation to represent orientation in three di-
mensional space. We do not use Euler angle which suffers
gimbal lock, loss of one degree of freedom in three dimen-
sional space. Quaternions provide a fourth axis in an arbi-
trary orientation to always have a least three axes on which
to rotate. Figure 3 illustrates sample data trace of raw quater-
nion value of three sensors where there are visually distinct
attributes for each activity.
3.2.2 Feature Computation

Quaternion data, Qn = (wn,xn,yn,zn) where w,x,y,z rep-
resent each of the four axes of the quaternion representa-
tion, is grouped into non-overlapping five second windows
for the purposes of activity recognition. We evaluated sev-
eral window sizes between 0.5 and 20 seconds and found
that accuracy is almost the same in each case. We used
a five second window which is sufficiently long enough to
capture an activity but not long enough to capture multiple
activities. The first class of features consists of basic meth-
ods: mean, max, min, variance, and amplitude. For each
set of w,x,y,z the functions are computed over the window
(w1,w2, ....,wn) where n is the number of elements. The way
this class of features is utilized is based on the difference,
∆w = (w1 −w2,w2 −w3, ...wn−1 −wn), of all consecutive
values of w,x,y,z in each window. The same features, mean,
max, min, variance, and amplitude are computed for each
window.

The second class of features is based on angular change
denoted as ∆θ and is computed from two consecutive quater-
nion values

∆θi = cos−1(2(Qi ·Qi+1)
2−1)

where i varies from 1 to n−1 and n is the number of elements
in the window. Angular velocity, ωi, is computed by taking
the amount of angular change for each pair of elements and
dividing by the time interval for each pair of values.

ωi =
cos−1(2(Qi ·Qi+1)

2−1)
ti+1− ti

where i varies from 1 to n− 1 and n is the number of ele-
ments in the window. t designates the recorded time stamp
on each sample. The same features, mean, max, min, vari-

Figure 4. A part of decision tree. Each activity can cor-
respond to more than one leaf.

ance, and amplitude are computed for each of ∆θ and ω for
all windows.

A third class of features is based on frequency of the mea-
sured motions. We calculate frequency of change by com-
puting a fast Fourier transform (fft) of each window of data.
We extract the dominate frequency

f reqw = max(| f f t(w1...wn)|)
of each window by computing the maximum peak of each
window for each of the four axes, w,x,y,z. Additionally, the
maximum frequency from all w,x,y,z axes is recorded.

By combining the features for all axes and sensors, we
end up computing a total of 165 feature values for each of the
five second windows. These kinematic features are passed to
the decision tree classifier for activity recognition and can
differentiate different activities because angular position and
movement are activity and person dependent. Additional
features can be added as the types of activities monitored
are increased.
3.2.3 Classification

We utilize machine learning to train our system for de-
tecting specific activities. There are several choices for al-
gorithms including: naive Bayes, support vector machines
(SVM), C4.5 decision trees, and k-nearest neighbors (KNN).
We have chosen to utilize the C4.5 decision tree algorithm
as implemented by the Weka machine learning tool as J48
tree [7]. This algorithm takes labeled windows of features
as training data and builds a decision tree based on the values
where each leaf corresponds to a specific activity. Figure 4
shows a subset of our decision tree. To detect an activity, the
algorithm starts at the root of the tree and navigates through
the nodes until it reaches a leaf and thus an activity.
4 Experimental Setup

We utilized three K-Sense IMU monitors for two separate
trials where each person performed a series of activities. The
monitors were attached to the right side of each individual on
his/her wrist, ankle, and waist. The right side of the body was
chosen because the majority of people are right-handed. In
the case of the waist, location is not relevant because the hips
can not move independent of each other. Utilizing the right
ankle allowed our trials to be consistent and legs either move
in a counteracting manner such as walking or a symmetric
manner when sitting or laying. Asymmetric movements are
rare and do not appear in our experiments. We did not test
all permutations of sensor placement due to time and space
constraints. Subject demographics were collected; however,
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Activities Intensity
standing sedentary

reading a book sedentary
laying sedentary

watching tv sedentary
computer work sedentary
floor cleaning light

washing dishes light
put away groceries light
walking (1.5 mph) moderate
walking (3 mph) moderate
running (6 mph) vigorous

Table 1. Activities can be categorized with different in-
tensities including: sedentary where a person is either
sitting or standing, light where a person is standing and
moving around, moderate where a person is walking, or
vigorous while running.

Figure 5. An example testing scenario where an individ-
ual is working on a computer while being monitored by
several systems.

the results presented here do not depend on this knowledge.
The first trial consisted of 15 people did 5 activities, stand-
ing, laying, computer work, walking (3 mph) and running (6
mph) over a test duration of 20 minutes and each activity was
performed for 4 minutes. The walking and running activities
were done on a treadmill. The second trial consisted of two
phases where the same 19 people participated in each. The
first phase consisted of three 10 minute activities and the sec-
ond phase consisted of four 10 minute activities for a total of
70 minutes. The first phase included watching tv, sweeping
the floor, and washing dishes and the second phase included
computer work, reading a book, putting groceries away, and
walking (1.5 mph). A summary of test activities is located
in Table 1 which also indicates the intensity. All activities
were performed in a simulated home environment located in
a metabolic laboratory as illustrated in Figure 5.

Ground truth information was determined by a post-test
analysis of the data which was aided by the rigid timing
structure of the experimental procedure. Starting and ending
times of activities were manually determined and recorded

by this process. The data set contains over 1,400 minutes
of motion data. Our evaluation of the classification system
is based on the J48 decision tree which is the implementa-
tion of C4.5 algorithm provided by Weka [7] and we uti-
lized a 10-fold cross validation strategy on all the reported
results. Additionally, we compare against an accelerometer-
based classification system [19] by applying their technique
to our data.

5 Evaluation
We evaluate our system in four ways. First, we show how

effective our chosen classification system is through a 10-
fold cross validation of the classifier. Second, we show the
true positive values for each activity of classifying by utiliz-
ing each individual sensor, the combination of all three sen-
sor, and finally a comparison with an accelerometer-based
solution. An evaluation of the information gain for the de-
cision tree classifier is shown to illustrate how features can
be mapped back into real-world semantics. Finally, we show
the accuracy of various other machine learning classifiers.

Table 2 shows a comparison of correctly hand-labeled
events and the results of the decision tree classifier presented
in the form of a confusion matrix. This analysis illustrates
that the majority of events are correctly classified as indi-
cated by the high-value main diagonal. Several activities
such as floor cleaning or putting away groceries can be incor-
rectly identified approximately 10 percent of the time. These
results indicate that our solution correctly identifies activities
and furthermore, when misidentified, the classifications are
usually within the same intensity class.

An analysis of the true positive, the number of correctly
identified events versus the total number of actual events,
rates is shown in Table 3 for each sensor running indepen-
dently, all sensors combined, and an accelerometer-based
comparison from Lin et. al [19]. Precision and recall are not
reported due to their nearly identical values as the true pos-
itive values. For example, precision (0.954), recall (0.954)
and true positives (0.954) for all our sensors are identical.
Lin’s solution uses one mobile phone sensor which is equiv-
alent to our waist sensor in type and location. In all cases,
our solution outperforms Lin’s on average over all tested ac-
tivities. This is because that solution was not designed with
light-intensity activities in mind. Instead, it performs well on
laying, walking, and running and easily distinguish the var-
ious speeds of walking and running we tested. Their solu-
tion performs worse in the light-intensity scenarios K-Sense
is designed to identify. Our solution provides more than 89
percent true positive value on all activities and the major-
ity of activities are greater than 96 percent, an improvement
of 12 percent over our comparison. True positive value of
wrist-ankle, wrist-waist and ankle-waist fall in between 93.3
to 94.8 percent which is lower than using all three sensors to-
gether. The false positive rate is lower for all sensors, 0.6 per-
cent, than for each pair of sensors which varied between 0.7
and 0.9 percent. Lin’s solution shows higher false positive
rate at 2.2 percent. These results are promising and indicate
that more activities can be added to get a better sense of how
people move and behave throughout their day and potentially
offer suggestions of exercises while they are doing specific
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Activity a b c d e f g h i j k
standing a 632 0 0 1 0 2 0 4 0 1 0
laying b 0 625 0 0 0 1 0 0 1 1 0

computer work c 4 0 2467 5 34 11 15 5 0 0 0
watching tv d 0 0 6 1828 2 7 14 15 0 0 0

reading a book e 0 1 31 4 1795 4 10 2 0 0 0
washing dishes f 1 0 13 7 5 1725 39 143 2 0 0

put away groceries g 3 0 21 12 4 48 1878 38 0 0 0
floor cleaning h 6 0 6 6 0 132 45 1822 0 1 1

walking (1.5 mph) i 0 0 0 0 0 0 0 0 1948 12 0
walking (3 mph) j 3 0 0 0 0 0 0 0 12 696 9
running (6 mph) k 0 0 0 0 0 1 0 2 2 10 639

Table 2. Classification results are presented as a confusion matrix where the left column designates the ground truth
labeled activity and each row indicates how many times our decision tree labeled the activity as itself or something else.
Standing and walking are examples where nearly all events were correctly labeled; however, other activities such as
floor cleaning are not as accurate.

Activity Wr An Wa All Lin
standing 94.5 97.0 95.3 98.8 67.2
laying 93.5 99.5 99.7 99.5 99.8

computer work 90.5 94.0 92.6 97.1 84.3
watching tv 93.9 94.2 96.8 97.6 86.5

reading a book 81.9 92.4 93.3 97.2 77.7
washing dishes 77.1 83.4 79.8 89.1 73.3

put away groceries 85.2 89.5 82.8 93.7 78.5
floor cleaning 80.3 83.9 81.5 90.2 73.1

walking (1.5 mph) 88.5 99.3 98.8 99.4 99.6
walking (3 mph) 81.4 96.3 96.7 96.7 99.2
running (6 mph) 96.5 97.3 97.1 97.6 96.9
Weighted Avg 86.4 92.0 90.6 95.4 83.4

Table 3. Activities are individually evaluated in five ways:
wrist (Wr) only, ankle (An) only, waist (Wa) only, all
three sensors combined, and Lin’s method. The best re-
sults are obtained when combining all three sensors with
an average true positive value of 95.4 percent. Lin’s ap-
proach is worse at 83.4 percent on average except in mod-
erate or vigorous activities and laying down.

activities such as sitting and watching tv instead of a generic
message during any light-intensity activities. This targeted
notification is valuable because one does not want to inter-
rupt a person while they are doing chores around the house
but only when they engaged in sedentary activities such as
watching tv.

Information gain, the expected reduction in entropy
caused by the partitioning of the samples according to par-
ticular attributes, is a way to quantify the importance of our
various features. Table 4 shows the top 5 features for each
sensor where the ankle sensor provides the most valuable in-
formation. The features that identify the extremes (max, min)
also serve to designate the degree of movement and thus the
types of walking and running activity. For the waist sen-
sor, features such as Angle-Change-Mean indicate that there
is a body rotation occurring and can be useful in detecting
activities such as cleaning the floor where a person moves

Classifier Accuracy
Naive Bayes 73.0%

Support Vector Machine (SVM) 92.8%
C4.5 Decision Tree 95.4%

K-Nearest Neighbor (KNN) 98.5%

Table 5. The accuracy of different classifiers varies be-
tween 73 and 99 percent on the same feature set. While
k-nearest neighbors yields the highest classification accu-
racy, we choose to use the C4.5 decision tree because of
its intuitive rules based on features.

around and rotates his/her body. Finally, the wrist sensor has
features that generally indicate extremes of movement; how-
ever, this body part has more degrees of rotational freedom
and thus these features are not as powerful as the other two.
Ultimately, a combination of all the sensors yields the most
accurate results.

Table 5 shows a comparison of different machine learn-
ing classifiers. The naive Bayes classifier yields the worst
accuracy in determining which activity is associated with a
given window of data. All other classifiers are better than
90 percent with the KNN algorithm yielding the most accu-
rate results; however, we choose to evaluate with a slightly
weaker result, a C4.5 decision tree. This algorithm has a
more intuitive mechanism for mapping specific features to
outcomes than the KNN algorithm which is a black box
method. We will write specific features targeting different
light-intensity activities during the next phase of this work
and having the ability to identify where and what types of
features are useful is advantageous.

6 Conclusions and Future Work
In this paper, we present our K-Sense based activity detec-

tion system that is designed to identify various light-intensity
activities. Currently, it is based on a set of custom IMU plat-
forms; however, we envision a future where a smart phone
carried in a pocket, a smart watch, and a smart shoe can pro-
vide the same information. Currently, most modern smart
phones contain the necessary sensors to replace our waist
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Ankle Waist Wrist
Feature Information Gain Feature Information Gain Feature Information Gain
Y-Mean 1.7024 Y-Diff-Mean 1.4535 Z-Mean 1.3299
Y-Min 1.6369 Z-Max 1.4484 Z-Max 1.3224
X-Min 1.5758 Angle-Change-Mean 1.4388 Z-Min 1.2754
Y-Max 1.5181 Velocity-Mean 1.4386 Y-Diff-Mean 1.2689
Z-Max 1.5134 Z-Mean 1.4217 W-Mean 1.2219

Table 4. The top five features for wrist, ankle and waist sensors and corresponding information gain. We find that the
ankle provide the best features but the combination of all the sensors provides the highest activity detection accuracy.

worn device. We have evaluated our system in a laboratory
and collected over 1400 minutes of activity data for 34 peo-
ple. Our results indicate that the system can achieve a 95.4
percent accuracy when using a simple set of features. Our
system is tested with controlled environment and subjects are
instructed to perform activities in controlled manner. In the
future, the system will be tested in free living environments
and for concurrent activities. We believe the applications of
a low-cost, wearable activity classifier will provide informa-
tion to enable a variety of mobile health applications such as
exercise motivation.

Our future plan is to develop a smart phone activity de-
tection system based on our existing kinematic analysis. We
foresee future applications of just-in-time interventions for
a variety of diseases and other medical conditions. For ex-
ample, if someone is motivated to lose weight and change
his/her lifestyle, we would anticipate a system to detect when
specific sedentary activities are occurring and encourage the
user to do something different. Additionally, our ability to
accurately monitor small movements of a leg or arm may
allow for early detection of Parkinson’s or other serious dis-
eases based on muscle control.
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