
AppScope: Application Energy Metering Framework for Android

Smartphones using Kernel Activity Monitoring

Chanmin Yoon, Dongwon Kim, Wonwoo Jung, Chulkoo Kang, Hojung Cha

Dept. of Computer Science,

Yonsei University, Korea

{cmyoon,dkim010,wwjung,ckkang,hjcha}@cs.yonsei.ac.kr

Abstract

Understanding the energy consumption of a smartphone

application is a key area of interest for end users, as well

as application and system software developers. Previous

work has only been able to provide limited information

concerning the energy consumption of individual ap-

plications because of limited access to underlying

hardware and system software. The energy consumption

of a smartphone application is, therefore, often estimated

with low accuracy and granularity. In this paper, we

propose AppScope, an Android-based energy metering

system. This system monitors application’s hardware

usage at the kernel level and accurately estimates energy

consumption. AppScope is implemented as a kernel

module and uses an event-driven monitoring method

that generates low overhead and provides high accuracy.

The evaluation results indicate that AppScope accurately

estimates the energy consumption of Android applica-

tions expending approximately 35mW and 2.1% in

power consumption and CPU utilization overhead, re-

spectively.

1 Introduction

With the widespread use of smartphone applications, the

energy consumption of each application is important

information that is used to manage a device’s power.

Smartphone users can adaptively select energy-efficient

applications based on the energy consumption of an

application. Additionally, understanding the energy

consumption of each process or hardware component is

a key area of interest for application and system software

developers [1-5].

Estimating the energy consumption of a smartphone

application is practically difficult. The estimation sys-

tem should be able to determine the power usage of

various hardware components in the device. However,

this information is difficult to acquire because of com-

plicated hardware schematics and compact form factor.

An accurate power model for hardware components

should be available to determine the level of energy

consumption for each component.

Previous work has addressed various energy metering

methods for smartphones [6-9]. However, these earlier

models are lacking in terms of granularity and accuracy.

An example of a previous system is PowerScope [6],

which provided the energy consumption of applications

at a fine-grained level, but required post-processing

using an external device. The developer also needs to

import related APIs for energy metering. PowerTutor [7,

8] proposed an estimation method for hardware com-

ponents, but the system does not provide energy infor-

mation for each application or process. PowerProf [9]

required information on the API usage for each applica-

tion in order to estimate energy consumption. The limi-

tations of the above mentioned models are the result of

schemes that focus on the accuracy of the power model

but do not consider the actual usage of the hardware

component. Accurate estimation of an application’s

energy consumption depends on the accuracy of the

power model and the accuracy of a hardware compo-

nent’s usage statistics. In particular, the hardware usage

estimation is critical because it is a pre-requisite for

estimating the energy consumption of smartphone ap-

plications.

Usage estimation for hardware components has been

previously completed using hardware performance

counter (HPC) [5, 10-13], software performance counter

(SPC) such as the Linux procfs/sysfs [7, 14-16], or Bat-

teryStats, which is provided by Android [8, 17]. How-

ever, depending on the process or underlying hardware

components, these approaches provide different infor-

mation. Thus, obtaining accurate usage statistics for

each hardware component is limited by this feature.

In this paper, we propose a software scheme, called

AppScope. This scheme automatically estimates the

energy consumption of applications running on Android

smartphones. The proposed system accurately estimates

the usage (or utilization) statistics for each device

component. We have designed the scheme based on

monitoring the Android kernel at a microscopic level. In

order to estimate the usage statistics of each application,

the system analyzes the traces of a system call, as well as

the messages for Android binder inter-process commu-

nication (IPC). AppScope collects usage information

based on an event-driven approach; hence, the energy

consumption of each application is estimated at a fi-

ne-grained level. Additionally, the proposed approach is

applicable for any Android-based device, without mod-

ification of system software, because we implemented

the scheme using a dynamic module in the Linux kernel.

The contributions of our work are as follows:

 AppScope provides the energy consumption of

Android applications automatically, being custom-

ized to the underlying system software and the

hardware components in the device.

 AppScope accurately estimates, in real-time, the

usage of hardware components at a microscopic

level.

 We implemented AppScope as a loadable kernel

module to improve portability of the proposed ap-

proach. Thus, AppScope can be used on an An-

droid-based device without modifying the system

software.

2 Backgrounds

The accuracy of application energy metering and gran-

ularity of measurement depend on power and energy

models. In this section, we discuss the models and

briefly discuss DevScope, which provides a nonintrusive,

online power analysis of smartphone hardware compo-

nents.

2.1 Power and Energy Models

Depending on the power interdependencies among un-

derlying hardware components, power models are typi-

cally classified into a linear or a non-linear regression

model. The non-linear models often capture power de-

pendency among hardware components, although their

performance does not significantly outperform linear

models [18]. We only consider linear models in this

paper.

With a linear model, the power consumption P of a

device is expressed as follows:

 () (1),

Here, represents the vector of usage measurement

for hardware component and the power coefficient

for component . Also, is the base power con-

sumption, and is a noise term that cannot be estimated

by the model. Then, the total energy consumption of a

smartphone is expressed as:

 ∑ () where

 ∑ (

)

 (2)

Here, is the device’s power-up duration. is the

energy consumed by process . is expressed with ,

 and

 , where

and

 represent the usage vector

and active duration of hardware component accessed

by process , respectively. Note that the accuracy of
is influenced by ,

, and

. To estimate the energy

consumption of smartphone applications, it is essential

to obtain accurate values of , , and in an effective

way. Note that AppScope employs a linear model to

estimate the energy consumption of smartphones.

2.2 DevScope

Previous studies on linear power modeling for mobile

devices [7, 14, 15] used external power measurement to

profile for each device type. In practice, varies,

even on the same type of device, depending on hardware,

software configuration, and battery status [16, 19].

Typically, these values are directly obtained with

hardware measurements for target devices; hence, this

offline method is costly and hardly adaptive to changing

environments.

The limitation of the offline method can possibly be

overcome by using an online approach that employs a

battery monitoring unit (BMU) [16, 19], which is built in

to smartphones. The scheme would enable the imple-

mentation of an online power model that automatically

constructs a power model for each device, adapting to

changes of external factors, such as aging or software

updates. However, in order to employ a BMU as an

online power measurement tool, we must consider two

factors that are inherent in the properties of BMU. First,

the information update rate of a BMU is noticeably

lower than external measurement tools; hence the online

results may not be accurate. Second, since the user is not

able to intervene in the process of constructing a model,

it is difficult to understand the exact relationship be-

tween system activities and power consumption.

DevScope [19], an Android application, is an auto-

matic and online tool used to generate a power model for

smartphones. The tool probes operating systems to ob-

tain information about individual component types and

their configurations. Additionally, by monitoring the

update activity of BMU, DevScope detects the update

rate automatically. According to individual component

types, system configuration, and BMU update rates,

DevScope dynamically creates a control scenario for

each hardware component to perform power analysis.

Hence, even though a device (i.e., smartphone) is iden-

tical, the scenario might be different due to each device’s

configuration. The scenario assigns a workload to each

component, which then triggers every possible power

state of the component; for example, specific operations

for CPU, display brightness, GPS on/off, and packet

transmission for cellular and WiFi. Each workload is

maintained for a time period to collect enough meas-

urement samples (i.e., 5 samples) to overcome the limi-

tation of BMU’s low update rate. DevScope turns off

every other component, except for the component under

measurement. However, since the CPU should be alive

to measure the power consumption of other component,

CPU power analysis is conducted ahead of other hard-

ware components. The power analysis of other hardware

components is then conducted by subtracting the power

consumption of the CPU from the total power con-

sumption of the device that is being measured by the

BMU. While performing the test scenario, DevScope

classifies the results into each term of the power model

and then generates corresponding power coefficients.

DevScope requires a user’s explicit interaction to initiate

training and collect power coefficients. Hence, if

re-training is required due to changes in a system’s

configuration, the process should be repeated manually,

yet the power coefficients will be updated automatically.

Note that the training time depends on the characteristics

of underlying hardware components, as well as the up-

date rate of BMU. The process typically takes minutes.

Currently, DevScope uses the device power model,

illustrated in Table 1, for five core hardware components

of smartphones, that is CPU, display, cellular (3G), WiFi,

and GPS, and generates their power coefficients . To

analyze the CPU characteristics, DevScope locates the

frequency-voltage table using /sysfs; thus the number of

available frequencies is dynamically determined. The

power consumption is then measured by setting the

frequency to every value.

In the case of display, DevScope presently only sup-

ports LCD displays, not more modern display types,

such as OLED. The tool dynamically generates a table

that contains coefficients for every possible brightness

level. This is because the relationship between power

consumption and brightness level is not completely

linear [15].

To determine the coefficient for cellular, DevScope

considers power consumption of each RRC (radio re-

source control) state; IDLE, FACH, and DCH (see Sec-

tion 4.5 for further details). The power state transition is

proven via a planned scenario in which data traffic is

controlled. The power consumption pattern of WiFi

differs depending on the specific packet rate (i.e.,

threshold workload size) [7]. DevScope gradually in-

creases the packet rate and finds the threshold value at

which the power consumption pattern is changed.

DevScope currently uses a fixed-strength signal model

for both WiFi and 3G; hence, although the model would

suit the purpose of application and system developers,

the tool should be supplemented to reflect true mobile

environments.

The power states of GPS are defined into three states:

OFF, SLEEP, and ACTIVE. Since the switch between

SLEEP and ACTIVE states has a constant pattern, we

regard SLEEP and ACTIVE states as ON.

The goal of AppScope is to provide a practical ap-

plication energy metering system that is readily runnable

on Android smartphone. AppScope estimates energy

consumption of each process based on a linear model,

as shown in Equation (2). AppScope employs

DevScope’s component power model (see Table 1) and

the power coefficient which are obtained for target

devices. Therefore, in this paper we focus on the

AppScope features that deal with the automatic acquisi-

tion of

 and

 for each hardware component ac-

cessed by an application.

3 AppScope: The Application Energy

Metering System

AppScope is an application energy metering framework

for the Android system that uses hardware power models

and usage statistics for each hardware component.

AppScope provides accurate and detailed information on

the energy consumption of applications by monitoring

kernel activities for hardware component requests.

Figure 1 shows an overview of AppScope. The system

conducts application energy metering via three phases:

(1) Detection of process requests that are accessing

hardware components.

(2) Analysis of usage statistics and status changes of

the requested hardware components.

Component Model

CPU

𝑃𝐶𝑃𝑈 𝛽𝑓𝑟𝑒𝑞
𝐶𝑃𝑈 𝑢 𝛽𝑓𝑟𝑒𝑞

𝑖𝑑𝑙𝑒

u: utilization, 0 ≤ 𝑢 ≤ 100

freq: frequency index, 𝑓𝑟𝑒𝑞 0 1 2⋯ 𝑛

LCD
𝑃𝐿𝐶𝐷 𝛽𝑏

𝐿𝐶𝐷

MIN(𝑙𝑒𝑣𝑒𝑙) ≤ 𝑏 ≤ MAX(𝑙𝑒𝑣𝑒𝑙)
b: brightness level,

WiFi
𝑃𝑊𝐼𝐹𝐼

𝛽𝑙
𝑊𝐼𝐹𝐼 𝑝 𝛽𝑙

𝑏𝑎𝑠𝑒 𝑖𝑓 𝑝 ≤ 𝑡

𝛽ℎ
𝑊𝐼𝐹𝐼 𝑝 𝛽ℎ

𝑏𝑎𝑠𝑒 𝑖𝑓 𝑝 > 𝑡

p: packet rate, t: threshold

cellular(3G) 𝑃3𝐺

𝛽𝐼𝐷𝐿𝐸
3𝐺 𝑖𝑓 𝑅𝑅𝐶 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝐼𝐷𝐿𝐸

𝛽𝐹𝐴𝐶𝐻
3𝐺 𝑖𝑓 𝑅𝑅𝐶 state 𝑖𝑠 𝐹𝐴𝐶𝐻

𝛽𝐷𝐶𝐻
3𝐺 𝑖𝑓 𝑅𝑅𝐶 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝐷𝐶𝐻

GPS 𝑃𝐺𝑃𝑆 𝛽𝑜𝑛
𝐺𝑃𝑆 𝑖𝑓 𝐺𝑃𝑆 𝑖𝑠 𝑜𝑛

Table 1: Power model for smartphone components

(3) Linear model-based application energy estima-

tion by adding up energy consumption of each

hardware components accessed by application.

3.1 Event Detector

Event Detector probes system calls that are relevant to

the hardware component operation, such as CPU fre-

quency switching, process switching, packet transmis-

sion, and binder I/O control. Event Detector monitors

cpufreq_cpu_put() for CPU frequency switching, and

sched_switch() for process switching. For packet

transmission operations, the usage of the

dev_queue_xmit() and netif_rx() kernel functions are

monitored. For binder I/O control, Event Detector mon-

itors binder_transaction() which is a part of bind-

er_ioctl() routine. These detections are passed onto the

Hardware Component Usage Analyzer.

3.2 Hardware Component Usage Analyzer

When an event is detected, the Hardware Component

Usage Analyzer collects usage statistics for each hard-

ware component and data that is required to apply the

power model to the component. Each hardware com-

ponent is activated by different kernel operations.

Moreover, the type of information required to apply the

power model varies depending on the characteristics of

power consumption. Therefore, the method of collecting

information is separately defined according to the

hardware components. Figure 2 illustrates different

methods for the components. In the case of the CPU, the

changes in utilization and frequency are collected by

referring to the governor interface. For WiFi, the rate of

the transmitted/received packets of a process is collected

by monitoring the data flow in the Linux networking

stack. In the case of LCD display and GPS, the duration

of activation is investigated by analyzing the IPC inter-

facing message of the Android binder. For 3G interface,

the information on transmitted/received packets and the

changes in power state are collected through the Linux

networking interface and the Android IPC binder inter-

face, respectively. The detailed process for each hard-

ware component is presented in Section 4.

3.3 Application Energy Estimator

The energy consumption of an Android process is esti-

mated via hardware usage statistics, which are applied to

the underlying power model for hardware components

(see Table 1). The application energy consumption is

then obtained by combining the energy consumption of

all processes that belong to an application. In the An-

droid platform, each application has a unique user id

(UID) to prevent other applications from accessing its

specific resources. AppScope differentiates the energy

consumption of an application using UID.

In our work, we assume that the overall energy con-

sumption of a device running an application includes

both “system energy” and “application energy”. System

energy is defined as a basic consumption that is required

to operate a device using the Android framework. It

includes the energy consumption for various Android

system processes as well as for the Linux kernel threads.

Meanwhile, application energy is defined as consump-

tion solely used by the processes belonging to an appli-

cation. In terms of UID in the current Android frame-

work, UID=0 is used by the root-owned processes, the

UIDs around 1,000 are used by the Android system

processes, and the UIDs over 10,000 are used by appli-

cations. AppScope estimates both application energy

and system energy consumption.

Figure 2: Hardware Component Usage Analyzer

Figure 1: AppScope overview on Android platform.

4 Application’s Hardware Usage Analysis

In this section, we describe AppScope’s techniques that

are used to detect and analyze how each hardware

component is used by an application.

4.1 Limitation of Previous Approaches

Conventional methods for estimating hardware compo-

nent usage include HPCs, procfs and sysfs on Linux, and

BatteryStats on Android. Each of these methods is lim-

ited in terms of their efficiency in application energy

metering.

HPCs are a set of special registers that are built into

microprocessors and are used to count certain processor

events. These counters can be used for low-level per-

formance evaluations or system tuning. With the use of

HPCs, power consumption can be accurately analyzed.

However, HPCs are highly dependent on a processor’s

architecture, and kernel modification is generally re-

quired to look into the HPC registers. Moreover, the

counting results are effective only for CPU-and

memory-related power analysis.

The Linux procfs/sysfs are special filesystems in

Linux that provide information about processes, hard-

ware usage, and other types of system information;

procfs/sysfs are inadequate for monitoring application

energy. First, the update rate of each hardware compo-

nent is different, as is the data access method. For in-

stance, with the Linux kernel 2.6.35.7 for Android

Gingerbread, the update rate of CPU utilization is 5Hz

and the CPU frequency is provided only for the current

status. It is therefore difficult to decompose the CPU

utilization of an application into each frequency. Also,

due to the constraints in procfs/sysfs access, the appli-

cation energy metering system should continuously poll

both CPU utilization and frequency status to estimate

CPU energy consumption. Second, the details of the

information obtained from the filesystem vary depend-

ing on the type of underlying hardware. For example,

WiFi traffic is not provided for process bases and GPS

usage information is generally not available. Last, alt-

hough the aforementioned limiting factors can be alle-

viated with kernel modification, the kernel should gen-

erally not be modified to support system portability on

diverse platforms.

The Android BatteryStats, which provides battery

status and hardware usage information, is a widely-used

functionality for battery-related applications. Bat-

teryStats inherits the fundamental limitations of

procfs/sysfs and per-process usage information is not

available for a certain type of hardware component.

Furthermore, the granularity of information varies with

hardware components. For example, BatteryStats pro-

duces component usage statistics on CPU and WNI

traffic by reading procfs/sysfs, whereas display utiliza-

tion is only available for the entire system.

4.2 Kernel Activity Monitoring

Android applications typically access hardware com-

ponents in two different ways. When an application uses

hardware components supported by the Linux kernel, the

application requests related system calls. Otherwise,

application requests RPC via the Android binder [20, 21].

This section explains how AppScope uses the Android

binder RPC mechanism to analyze component usage,

and also how usage data are collected upon system calls.

4.2.1 Android Binder RPC

Android RPC is executed using binder RPC protocol,

which is processed in the binder driver of the kernel.

Figure 3 shows the data format of the Android IPC that is

used for processing the BC_TRANSACTION command

of the binder RPC procedure. To execute the stub inter-

face of many service applications, the

BC_TRANSACTION command is sent to the binder

driver. At this moment, IPC data is sent to the binder

driver with binder_ioctl(), and binder_transaction()

executes the BC_TRANSACTION command within the

binder driver. Thus, AppScope analyzes IPC data pro-

cessed in binder_transaction() and collects data about

the system usage. BC_TRANSACTION differentiates

the requested functions using the RPC code of bind-

er_transaction_data, as shown in Figure 3. The details

of the requested command are known as “System Ser-

vice Name” and “Function Input Parameter” within the

RPC data.

4.2.2 Kprobes

Kprobes [22] is used to monitor the behavior of system

calls. Kprobes is one of Linux’s debugging mechanisms.

It can dynamically insert break points during a kernel’s

runtime. It can be inserted into any kernel routine and

 Figure 3: The Android IPC Data format for RPC

procedure.

collect information non-destructively and without in-

truding into original kernel behavior. With this mecha-

nism, the kernel function call can be monitored with low

overhead because only a single instruction is substituted

to detect the kernel operation. AppScope uses Kprobes

to detect events on hardware component operations and

to analyze a component’s usage statistics. AppScope is

compiled as a kernel module and controlled dynamically.

Hence, apart from installing and removing the module,

no additional user activity is required.

4.3 CPU Usage

In order to measure the consumed energy of process ,

we need utilization , as well as the CPU frequency

relevant to for a given time unit. In the Linux kernel,

the utilization of is computed using ’s utime()

/stime(). The utime()/stime() is estimated by detecting

the switch from the TASK_RUNNING state to another

one. Here, checking the states of all processes and up-

dating their utilization for each scheduler call would

generate a significant overhead. To reduce the overhead,

AppScope detects the process switch by monitoring a

wake-up event via sched_switch(). When a wake-up

event occurs, AppScope updates the utilization of the

previous process to calculate the utilization.

The CPU frequency changes according to the dy-

namic voltage and frequency scaling (DVFS) governor

in the kernel. The cpufreq_cpu_put() function invokes a

change in the frequency of the DVFS governor. Thus,

the function is monitored and the frequency information

is obtained at the call time. Frequency information, as

well as information regarding system time, is then stored.

Figure 4 illustrates the concept of the mechanism. Here,

both the frequency change and the utilization value are

computed based on the system time (jiffies), and each

color indicates a separate process.

4.4 WiFi Usage

The energy consumption of WiFi varies according to the

packet rate (i.e., transmitted packets per second). Thus,

the amount of transmitted WiFi packets per given unit

should be estimated to compute the energy consumption

of process . The data packet rate of process de-

pends not only on data size but also on protocol and

maximum transmission unit (MTU). In our system, we

have referred to the device agnostic network interface

(DAI) layer of the Linux networking stack to estimate

the packet rate. The DAI layer is an abstract layer lo-

cated directly above the device driver layer (DDL), and

it prepares (independently from the protocols) data for

eventual transmission. In DAI, there are two main func-

tions: dev_queue_xmit() for transmitted data and

netif_rx() for received data. Figure 4 shows the WiFi

usage analysis of a process based on the detection of

dev_queue_xmit() and netif_rx() calls. The packet rate is

computed using the transmission/reception time of the

packet. The power state is then identified based on the

packet rate, and energy consumption is computed using

activated time duration.

4.5 3G Usage

The energy consumption of a 3G interface depends on

the RRC state. To efficiently utilize a radio resource in a

3G network, the RRC protocol typically defines three

states: IDLE, FACH (forward access channel), and DCH

(dedicated channel). Although the RRC state change

depends on a carrier’s policy, the RRC, in general, re-

mains in the IDLE state when there is no data to send or

receive. The state switches to the low power state,

FACH, when data communication starts, and remains in

the high power state, DCH, while data is being sent or

received [23]. Our work is conducted in the Korea’s

SK-Telecom WCDMA network. In this network, mobile

phones remain in the IDLE state if there is no data

transmission. When data communication occurs, the

mobile phone connects to the UMTS network for a short

period of time, and then accesses the HSDPA network

for a high-speed data transmission accompanying the

RRC state transition. Thus, we identify the state transi-

tion of RRC based on the connection type of network.

The radio interface layer (RIL) daemon and vendor

RIL of the Android telephony service are both located in

the Linux user space. That is, voice calls and control

commands are not processed using the Linux network-

ing stack. Hence, 3G usage and the RRC state transition,

 Figure 4: Analysis of CPU utilization/frequency, and

the WiFi interface.

Time

(sec)

Test

App.
Operation Description

0 Master Run

Execution as a fore-

ground activity and

prevent screen off

20 Slave1

Transmit 2,000

packets via WiFi

interface for 20

seconds

Approximate packet

rates is 100pps

80 Slave2

Change the fore-

ground activity for

20 seconds

After 20 seconds,

Master app’s activity

return to foreground

120 Slave3
Start CPU job for 20

seconds

CPU frequency is

changed by DVFS

160 Slave4

Transmit data via

3G interface for 20

seconds

RRC transition in the

beginning of trans-

mitting

200 Slave5
Turn on GPS inter-

face for 20 seconds

Periodic updates of

location information

GPS

Table 2: Operation sequence of test applications

with the exception of data communication, cannot be

analyzed within the Linux kernel. We therefore analyze

the hardware component operation using the Android

binder RPC. Figure 5 illustrates the concept of

AppScope regarding 3G usage statistics. The change in

network connection type is detected by checking the IPC

data in Android RIL.

4.6 LCD Usage

The energy consumption of an LCD display is propor-

tional to display brightness and display duration.

Brightness can easily be identified from the current

display settings of the Android framework. However,

display usage, per application, cannot be directly ob-

tained using the device routine within the kernel because

the display operation is controlled by the Android

framework. Therefore, AppScope recognizes fore-

ground applications using the Android ActivityManager

service, and its display usage is estimated by monitoring

it. AppScope catches an event on foreground activity by

checking the IPC data in the binder driver. When the

process ’s activity is in the foreground, display usage

data is updated until another activity is brought into the

foreground or the screen is turned off.

4.7 GPS Usage

The energy consumption of GPS is directly related to the

power-on time of the interface. However, on/off time of

a GPS system does not depend on the location request of

the application. Also, several applications may simul-

taneously request location information from a GPS in-

terface. Since the device interface for GPS is not ex-

posed in the kernel, the estimation of process ’s GPS

usage is not trivial. In our work, we estimated

cess ’s usage statistics by monitoring loc_api() and

LocationManager in the binder driver. The GPS inter-

face is turned on/off with the loc_api(), and Location-

Manager provides location updates when GPS is turned

on. Figure 5 illustrates how the AppScope estimates

GPS usage of process through monitoring the Loca-

tionManager of the Android framework. AppScope

monitors LocationManager calls and calculates the GPS

activation duration. During GPS activation, AppScope

counts the location requests to LocationManager. The

count is then used to estimate the energy consumption

for each application process. Thus, when multiple pro-

cesses request location information, AppScope distrib-

utes the energy consumption proportionally to the cor-

responding processes based on the usage count.

5 Evaluation

AppScope was developed in Linux kernel 2.6.35.7. The

SystemTap version 1.3 [24] also uses Kprobes and data

collection for the purpose of evaluation. All evaluations

are carried out on HTC Google Nexus One (N1; Qual-

comm QSD 8250 Snapdragon 1GHz, 3.7-inch Super

LCD display) [25] with Android platform version 2.3.

Note that N1 is equipped with a current sensor (MAXIM

DS2784) upon which DevScope can build its power

model. The Monsoon Power Monitor [26] is used as an

external power meter.

In order to evaluate the AppScope framework, we

 Figure 5: Analysis methods for 3G, GPS interface and

LCD display usage information.

benchmarked a set of Android applications and esti-

mated their energy consumption with AppScope. We

also measured the overhead of AppScope in terms of

power consumption and CPU utilization.

5.1 Component Usage Monitoring

To evaluate the accuracy of hardware event detection

and collection of usage statistics, we designed and ex-

perimented on one “Master” and five “Slave” applica-

tions. The Master sets a pre-defined workload, executes

the schedule of each hardware component workload, and

controls the Slaves according to this schedule. We ran

the Master and Slaves for 240 seconds in the order

shown in Table 2.

Figure 6 shows the results of the tests on hardware

component usage while running the test scenario in

Table 3, where data was collected for every second.

Each row in Figure 6(a) is differentiated by CPU fre-

quency and i is the index in the frequency table for N1.

The bar height represents utilization of relevant fre-

quency. Due to space limitations in Figure 6(a), we have

omitted some plots in which the utilization is too low or

absent altogether. In the cases of GPS, LCD, and 3G, the

power model requires activated time duration as usage

information. The bar height in Figure 6 (c), (d), and (e)

represents occupancy time (ms) in a unit time. The

“system” stands for the system energy component, de-

scribed in Section 3.3. The applications were started up

at booting time and are differentiated by color.

(a) CPU: Utilization and frequency

(b) WiFi: Transferred packet rate (c) GPS: Activated duration

(d) 3G: RRC state transition and retention time of the state

(e) LCD: Foreground duration

 Figure 6: Hardware component usage trace of AppScope for test applications.

Comp. Index Coefficient Comp. Index Coefficient

CPU

 𝑓𝑟𝑒𝑞

(Mhz)
𝛽𝑖
𝑓𝑟𝑒𝑞

 𝛽𝑖
𝑖𝑑𝑙𝑒

LCD

𝑏 𝛽𝑏
𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠

245.0 201.0 35.1 5 367.8

384.0 257.2 39.5 55 451.5

460.8 286.0 35.2 105 631.1

499.2 303.7 36.5 155 697.9

576.0 332.7 39.5 205 775.4

614.4 356.3 38.5 255 854.0

652.8 378.4 36.7

3G

𝑟𝑟𝑐 𝛽𝑟𝑟𝑐

691.2 400.3 39.6 IDLE 63.9

768.0 443.4 40.2 FACH 267.9

806.4 470.7 38.4 DCH 519.3

844.8 493.1 43.5

WiFi

 𝛽𝑙 𝛽ℎ

998.4 559.5 45.6 Transmit 1.2 0.8

GPS
 𝛽𝑔𝑝𝑠 Base 238.7 247.0

ON 354.7 Threshold 25pps

Table 3: Power coefficient values of N1

In Figure 6(a), from time t=121 for 20 seconds, Slave

3 actively utilizes the CPU. As a result, the CPU fre-

quency increases, and the applications, which have been

running in low frequency with low CPU utilization,

started to operate in high frequency. Moreover, Slave 3

shows low CPU utilization in the same region with me-

dium frequency due to the OnDemand policy.

In Figure 6(b), from time t=21 for 20 seconds, Slave 4

transmits data over WiFi. As shown in Table 2, Slave 1

sent 2,000 packets, i.e., its packet rate is 100pps. In

Figure 6(c), Slave 5 uses GPS from t=201 for about 20

seconds. Note that after Slave 3 terminates the use of the

GPS, the GPS is still used for about 4.5 seconds by the

“system”. With further experiments, we found that after

an application terminates GPS usage, the “system” uses

the GPS for a duration of about 2–4.5 seconds. After this

timeframe, usage of the GPS interface is completely

stopped.

Figure 6(d) shows that the “system” transmits some

data before Slave 4 transmits data at time t=161. After

that, the RRC state remains in FACH for a short duration

and changes to DCH. Also, as the packet transmission is

terminated, the RRC state changes to FACH. This result

is consistent with the RRC protocol between carrier and

mobile devices on UMTS networks. Figure 6(e) shows

the switching point for display between the two fore-

ground activities. When Slave 2 activity is brought to the

foreground, the display is not used by any of the appli-

cations for a duration of about 60–100ms. This is a blank

duration when the activity change occurs in the Activi-

tyManager.
In summary, AppScope detects hardware operation

time as indicated in Table 2. The experimental results

show that AppScope observes accurate usage of hard-

ware components and correctly observes their power

characteristics.

(a) CPU power consumption (b) WiFi power consumption (c) GPS power consumption

(d) 3G interface power consumption (e) LCD display power consumption

Figure 7: AppScope power traces for test applications.

App. CPU(J)
WiFi

(J)

GPS

(J)
3G(J) LCD(J) Total(J)

System 11.3 0.2 2.0 14.7 0 28.2

Master 0.5 0 0 0 186.8 187.3

Slave 1 0.04 6.80 0 0 0 6.84

Slave 2 0.1 0 0 0 17.9 18.0

Slave 3 9.3 0 0 0 0 9.3

Slave 4 0.01 0 0 11.41 0 11.42

Slave 5 0.01 0 7.00 0 0 7.01

Table 4: Energy estimation of test applications

5.2 Energy Metering Validation

We estimate energy consumption for each application

based on hardware component usage, as shown in Figure

6. In order to attain an accurate estimation, we used

DevScope [19] to extract power coefficients (Table 3),

based on the power model explained in Table 1 of Sec-

tion 2.2. Note that all the experiments for communica-

tion interfaces, such as WiFi, 3G, and GPS, were con-

ducted at a stationary place, i.e., fixed-strength radio

signals; hence, we did not consider energy effects on

varying signal strength for these components. We

compared the estimation results with the results obtained

from the Monsoon power meter.

5.2.1 Granularity

Figure 7 shows the power consumption of hardware

components per application. Figure 7(a) shows the CPU

power consumption for the entire duration – 240 seconds.

Overall, the “system” uniformly consumed approxi-

mately 100mW. The power consumption of Slave 3 is

about 480 mW in the increased frequency region. As

shown in Figure 7(b), (c), and (d), when communication

components, such as WiFi, 3G, and GPS are used, we

observed that the “system” consumes a certain amount

of power. In Figure 7(e), when the application uses an

LCD display, the power consumption of the LCD is

relatively higher than other components. Master con-

sumed the highest energy due to long display occupancy.

However, it did not operate other hardware components.

Table 4 shows the estimated energy results by aggre-

gating the results shown in Figure 7. As shown in Table

4, AppScope provides application-specific energy con-

sumption data for each hardware component, even when

multiple applications run in parallel.

5.2.2 Accuracy

To analyze the correctness of energy consumption re-

sults obtained in Section 5.2.1, we compared our results

with those obtained using the Monsoon power meter.

Figure 8 shows the comparative results between

AppScope estimation and external measurement. The

aggregated power consumption of all applications using

AppScope is similar to the entire power consumption

measured using the external power meter. However, a

power difference of about 100–400mW has been ob-

served in some regions. At time t=60 for 10 seconds, the

external measurement showed that power consumption

temporally increased for a short period of time. This is

because Slave 4 turned off the WiFi interface and the

“system” automatically activated the 3G interface. In

this process, AppScope noticed that the “system” sent

packets over the 3G interface, but the 3G interface’s

power consumption was not detected due to the WiFi’s

turn off delay and 3G interface activation. When the

CPU frequency rises, a large difference exists between

the external measurement result and the power con-

sumption estimated by AppScope. At time t=120 for 20

seconds, power consumption increases due to the CPU

frequency and increased utilization. At this moment, the

power consumption was estimated as 1400mW, which is

7% less than the external measurement result. This

demonstrates the limitations of our simple CPU power

model, which ignores the effects of cache, bus, memory

and other SoC components. More accurate models can

be built by using performance counters to account for

these effects [5, 10-13]. Figure 8 summarizes that the

overall energy consumption estimated by Monsoon is

282.8J, and 268.0J by AppScope, which is a 14.8J (5.2%)

difference.

5.3 Overhead Analysis

To estimate the overhead of AppScope, we have per-

formed the experiment described in Section 5.1 by

loading and unloading AppScope onto the system. In

both scenarios, power consumption is estimated using

the Monsoon power meter. Figure 9 shows the results.

During the experiments, test applications occupied the

display activity. Therefore, the information regarding

Figure 8: AppScope results vs. Monsoon measurement

results for test applications.

the power consumption of displays (Figure 9) was col-

lected during the entire duration of the experiment.

During CPU testing, the power consumption does not

increase between 120-second to 140-second (see Table

2). While WiFi and 3G tests are carried out, the energy

consumption slightly increases in comparison to the

energy consumption experienced with the display only

function. Within 240 seconds, AppScope generated 8.4J

energy overhead, which is a 34.9mW increase on aver-

age. Moreover, the five tests showed that AppScope

generated 2.1% CPU overhead on average, with a

standard deviation of 1.9 and the worst case being 5.9%.

AppScope is a Linux kernel module and can be dy-

namically loaded/unloaded at runtime. Thus, users may

install AppScope when analysis is required and remove

it if unnecessary. Consequently, when AppScope is not

activated, the overhead is not generated at all.

6 Real Application Energy Metering

We have evaluated AppScope’s energy metering per-

formance using applications distributed via Google

Android Market. For this analysis, we have selected four

applications that adequately utilize each component.

Figure 9: Overhead analysis of AppScope.

(a) Angry Birds (b) Skype-WiFi

(c) Browser-WiFi (d) Browser-3G

 (e) Google Maps (f) StabilityTest Benchmark

 Figure 10: AppScope power traces for real applications.

App.
CPU

(J)

WiFi

(J)

GPS

(J)

3G

(J)

LCD

(J)

Sys-

tem

(J)

Total

(J)

Mon-

soon

(J)

Err.

(%)

Angry

Birds
27.4 7.1 0 0 80.3 24.0 138.8 162.7 14.7

Browser

(WiFi)
28.6 14.3 0 0 82.8 25.1 150.8 144.3 4.5

Browser

(3G)
25.7 0 0 36.2 85.9 13.3 161.1 174.1 7.5

Skype

(WiFi)
14.8 24.6 0 0 85.0 25.7 150.1 148.8 0.9

Google

 Map
3.9 2.5 33.6 0 81.2 18.0 139.2 137.8 1.0

Table 5: Energy estimation for real applications Figure 10 shows the estimated energy consumption of

Angry Birds (game), Skype (VoIP), web browser, and

Google Maps (location provider). Energy consumption

of a web browser is divided into two cases, i.e., browsing

with WiFi or 3G. To compare the estimated results using

the Monsoon power meter, we also show the energy

consumption of the system and applications, per com-

ponent energy consumption.

AppScope showed accurate estimation results in

comparison to the external measurement results. As

shown in Figure 10(a), the power consumption of Angry

Birds showed the highest error among the five test cases.

Specifically, the uniform amount of 300mW error was

shown (except for the WiFi period) after the game is

completely loaded, i.e. 20 seconds. CPU and LCD were

continuously used in the region where high error is

shown. Compared to the other four cases, we understand

that the game activates N1’s GPU (Integrated Graphics

Processing Unit Adreno 200 on Qualcomm QSD8250

Snapdragon) and error is caused by this hardware

component. To find out the exact cause of the error, we

have conducted additional experiments with Android’s

CPU/GPU benchmark tool, StablilityTest [27]. As il-

lustrated in Figure 10(f), while StablilityTest is prepar-

ing 3D objects to display on the screen (initial 37 se-

conds), the AppScope results and the results of the ex-

ternal power meter were nearly identical. Between 40 to

100-seconds where a 3D object was periodically rotated,

there was a 300mW difference. The difference is as large

as the error shown in Figure 10(a). In this region, CPU

utilization was 100%. Hence, the error is assumed to be

caused by the GPU operation.

In Figure 10(b) and (c), the power consumption of the

WiFi interface was reflected in total energy consumption

with approximately 4% error. Note that the Monsoon

results in Figure 10(b) are higher than AppScope,

whereas the results are opposite in Figure 10(c). We

consider this to be a limitation of the linear regres-

sion-based power model that is produced by DevScope.

Although the WiFi interface always operates with CPU,

our power model does not consider inter-dependency of

WiFi interface and CPU. This limitation may be over-

come using a model that includes cross-terms, which

represent the inter-dependency among components [5].

As shown in figures 10(a), (b), and (d), after 70 se-

conds of operation, there was a temporary increase in the

energy consumption of LCD and 3G interface. These

increases are generated due to an error in the data col-

lecting program, which was implemented using Sys-

temTap [24]. In these points, the collected workload for

2 seconds is accumulated in 1 second by a timer bug in

SystemTap. In reality, there should not be a temporary

increase in power consumption of LCD unless its

brightness is changed. After the increase in power con-

sumption, there was a time difference in the estimation

of AppScope and Monsoon measurement.

Table 5 shows each application’s total and compo-

nent-wise energy consumption. The total energy con-

sumption is computed by aggregating the energy con-

sumption of the hardware components and the system.

The error is calculated using total estimated energy

consumption and the results from the external power

meter. All applications, with the exception of Angry

Birds, showed an error rate below 7.5% during a

100-second experiment. Angry Birds showed a 14.7%

error due to the aforementioned GPU operation.

7 Related Work

Recent research [7, 9, 14, 16] on smartphone power

management has developed diverse power models to

estimate a device’s power consumption. Dong and

Zhong proposed Sesame [16], which is an automatic

smartphone power modeling scheme using a built-in

current sensor. Their work focused on overall system

power rather than power analysis on individual hardware

components. This feature is hardly applicable for esti-

mating the energy consumption of each application.

Pathak et al. [14] proposed an FSM (finite state ma-

chine)-based power model using an external power

measurement tool in conjunction with system call trac-

ing. This approach may be applicable for application

energy metering, but in-depth study and measurements

on target devices should be required to obtain detailed

power states.

Among recent works, PowerTutor [7, 8], PowerProf

[9], and Eprof [29] support the estimation of application

energy consumption. PowerTutor [8] is an application

power estimation system that uses PowerBooter [7],

which is a power model generation tool using fuel gauge

sensors and knowledge of battery discharge behavior.

PowerTutor [8] uses different methods to access usage

statistics from procfs and BatteryStat for each hardware

component. This method cannot guarantee the accuracy

of application energy consumption, due to the limita-

tions that are discussed in Section 4.1. PowerTutor pro-

vides UID-specific energy information, but not pro-

cess-specific information. Furthermore, it requires

modification of the Android system software and kernel

for components such as GPS and Audio. With AppScope,

we use standard kernel functionalities to collect hard-

ware usage information through an event-driven mech-

anism; this avoids monitoring overhead and perfor-

mance degradation. In addition, AppScope provides

process-specific power estimation in real-time.

Kjærgaard and Blunck proposed PowerProf [9],

which is an unsupervised power profiling scheme for the

smartphone using the Nokia Energy Profiler [28]. Pow-

erProf generates component power models based on a

genetic algorithm in order to automatically identify the

power states of underlying hardware components.

PowerProf enables online energy estimation, but the

scheme is focused on power modeling rather than ap-

plication energy metering. PowerProf measures power

consumption for API calls issued in programming lan-

guage. This method is limited in terms of application

energy metering because the technique strongly depends

on the programmer’s intention.

Eprof [29] is a fine-grained energy profiler for

smartphone applications. Based on the FSM power

model [14], Eprof has the ability to analyze the asyn-

chronous energy state of an application, modeling the

tail-state energy characteristics of hardware components

with routine-level granularity. Energy metering is

achieved via a post-processing mechanism using an

explicit accounting policy. Eprof requires modifications

in the Android framework to trace the API calls; the

application code, if using the Android NDK, should also

be modified.

PowerScope [6] and Quanto [30] are developed to-

wards energy estimation with hardware usage monitor-

ing. PowerScope [6] provides detailed process-specific

energy estimation for mobile devices. The scheme re-

quires an additional computing resource, and program-

mers should use a set of specialized APIs to estimate

power consumption. Quanto [30] is developed as a

network-wide energy profiler for fast energy metering

based on event-driven methods in TinyOS. The ap-

proach is similar to AppScope, which detects hardware

operations in kernel, and breaks down the energy usage

of a system by hardware component.

The information obtained with AppScope is closely

related to energy efficient operating system research

[1-5]. These works, in fact, proposed abstract OS

mechanisms to limit energy that can be used by pro-

cesses. The mechanism requires usage and energy con-

sumption information regarding an application’s hard-

ware. In this context, AppScope would be useful for

developing energy-aware operating systems.

8 Discussion

The accuracy of application energy metering depends on

the power model of underlying hardware components.

The present work used the power model of DevScope,

which currently does not cope with GPU, multi-core,

and memory components. Indeed, the experimental

results in Figure 9(a) showed that a relatively large error

is exhibited in applications using the integrated GPU. In

addition to the GPU, recent smartphones are beginning

to employ multi-core CPU, which necessitates the de-

velopment of more advanced tools covering new hard-

ware features. Also, the current AppScope/DevScope is

limited in modeling the memory hardware component.

In fact, previous work [15] showed that energy charac-

teristics of smartphone applications differ with the na-

ture of application; that is, CPU-bound or

memory-bound jobs. We are aware that in order to

model diverse hardware and obtain applications’ energy

consumption more accurately, both AppScope and

DevScope should be supplemented with further empha-

sis on memory, GPU, and multi-core CPU architecture.

This is, in fact, part of our future work.

Meanwhile, the tail-state energy consumption of cel-

lular, WiFi, and GPS hardware components should be

considered for fine-grained energy modeling. The Finite

States Machine (FSM)-based model [14], for instance,

uses power state transitions, instead of component uti-

lization for power modeling, which enables the accurate

modeling of tail-state. AppScope, however, does not

detect the tail-state; hence the energy consumption on

this state is not reflected in the application’s energy. This

limitation is fundamentally caused by the use of a linear

power model in AppScope, which primarily obtains

usage statistics, rather than state changes, of individual

hardware components.

Although the AppScope energy metering framework

includes DevScope as its core component to obtain de-

vice power models automatically and online, the core

part of the AppScope framework is still the automatic

acquisition of

 and

 for each hardware component

accessed by an application. This means that the core of

AppScope can practically run on any smartphone whose

component power models are known a priori - either by

DevScope or by direct measurement of individual

hardware components.

9 Conclusion

In this paper, we proposed AppScope to automatically

meter energy consumption of Android applications us-

ing kernel activity monitoring. AppScope traces system

calls and also analyzes Android binder IPC data. De-

signed as a kernel module, AppScope runs efficiently to

collect fine-grained process-specific energy information.

Compared to previous research on smartphone energy

estimation, AppScope provides a more accurate and

detailed application-specific energy estimation solution.

This result will be used as an important basis in estab-

lishing a foundation to support power-related research

on Android mobile devices.

Acknowledgements

We would like to thank the anonymous reviewers for

their comments. A special thank you should go to our

shepherd, Gernot Heiser, who has greatly helped us

enhance the quality of this paper. We also appreciate the

comments from Rodrigo Fonseca. This work was sup-

ported by a grant from the National Research Foundation

of Korea (NRF), funded by the Korean government,

Ministry of Education, Science and Technology under

Grant (No.2011-0015332).

References

[1] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Ecosystem:

Managing Energy as a First Class Operating System Re-

source, ACM SIGPLAN Notices, volume 37, pages 123–

132, 2002.

[2] H. Zeng, C. Ellis, A. Lebeck, and A. Vahdat. Currentcy: A

Unifying Abstraction for Expressing Energy Manage-

ment Policies. In USENIX ATC, 2003.

[3] H. Zeng, C. Ellis, and A. Lebeck. Experiences in Man-

aging Energy with Ecosystem. IEEE Pervasive Compu-

ting, 4(1):62–68, 2005.

[4] A. Roy, S. Rumble, R. Stutsman, P. Levis, D. Mazières,

and N. Zeldovich. Energy Management in Mobile De-

vices with the Cinder Operating Systemg. In EuroSys,

2011.

[5] D. Snowdon, E. Le Sueur, S. Petters, and G. Heiser. Koala:

A Platform for OS-level Power Management. In EuroSys,

2009.

[6] J. Flinn and M. Satyanarayanan. Powerscope: A Tool for

Profiling the Energy Usage of Mobile Applications. In

IEEE WMCSA, 1999.

[7] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. Dick, Z. Mao,

and L. Yang. Accurate Online Power Estimation and

Automatic Battery Behavior based Power Model Gener-

ation for Smartphones. In CODES+ISSS, 2010.

[8] Powertutor, http://powertutor.org.

[9] M. B. Kjærgaard and H. Blunck. Unsupervised Power

Profiling for Mobile Devices. In Mobiquitous, 2011

[10] Y. Xiao, R. Bhaumik, Z. Yang, M. Siekkinen, P. Savo-

lainen, and A. Yla-Jaaski. A System-level Model for

Runtime Power Estimation on Mobile Devices. In

GreenCom-CPSCom, 2010.

[11] T. Li and L. John. Run-time Modeling and Estimation of

Operating System Power Consumption. ACM SIGMET-

RICS Performance Evaluation Review, volume 31, pages

160–171, 2003.

[12] S. Gurun and C. Krintz. A Run-time, Feedback-based

Energy Estimation Model for Embedded Devices. In

CODES+ISSS, 2006.

[13] K. Singh, M. Bhadauria, and S. McKee. Real Time Power

Estimation and Thread Scheduling via Performance

Counters. ACM SIGARCH Computer Architecture News,

37(2):46–55, 2009.

[14] A. Pathak, Y. Hu, M. Zhang, P. Bahl, and Y. Wang. Fi-

ne-grained Power Modeling for Smartphones Using

System Call Tracing. In EuroSys, 2011.

[15] A. Carroll and G. Heiser. An Analysis of Power Con-

sumption in a Smartphone. In USENIX ATC, 2010.

[16] M. Dong and L. Zhong. Self-constructive High-rate Sys-

tem Energy Modeling for Battery-powered Mobile Sys-

tems. In MobiSys, 2011.

[17] Batterydiviner,

https://play.google.com/store/search?q=batterydiviner.

[18] J. McCullough, Y. Agarwal, J. Chandrashekar, S. Kup-

puswamy, A. Snoeren, and R. Gupta. Evaluating the Ef-

fectiveness of Model-based Power Characterization. In

USENIX ATC, 2011.

[19] W. Jung, C. Kang, C. Yoon, D. Kim, and H. Cha. Non-

intrusive and online power analysis for smartphone

hardware components. Technical Report,

MOBED-TR-2012-1, Yonsei University, 2012.

[20] Openbinder,

http://www.angryredplanet.com/~hackbod/openbinder/d

ocs/html/BinderOverview.html.

[21] Android Binder,

https://www.nds.rub.de/media/attachments/files/2011/10/

main.pdf.

[22] Kprobes,

http://www.kernel.org/doc/Documentation/kprobes.txt.

[23] F. Qian, Z. Wang, A. Gerber, Z. Mao, S. Sen, and O.

Spatscheck. Profiling Resource Usage for Mobile Ap-

plications: A Cross-layer Approach. In Mobisys, 2011.

[24] SystemTap,

http://sourceware.org/systemtap.

[25] HTC Google Nexus One,

http://en.wikipedia.org/wiki/Nexus_One.

[26] Monsoon,

http://www.msoon.com/LabEquipment/PowerMonitor.

[27] StabilityTest,

https://play.google.com/store/apps/details?id=com.into.st

ability.

[28] Nokia Energy Profiler,

http://www.developer.nokia.com/Resources/Tools_and_

downloads/Other/Nokia_Energy_Profiler/Quick_start.xh

tml.

[29] A. Pathak, Y. C. Hu, and Ming Zhang. Fine Grained En-

ergy Accounting on smartphones with Eprof. In EuroSys,

2012.

[30] R. Fonseca, P. Dutta, P. Levis, and I. Stoica. Quanto:

Tracking Energy in Networked Embedded Systems. In

USENIX OSDI, 2008.

