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Abstract 
 
Understanding the energy consumption of a smartphone 

application is a key area of interest for end users, as well 

as application and system software developers. Previous 

work has only been able to provide limited information 

concerning the energy consumption of individual ap-

plications because of limited access to underlying 

hardware and system software. The energy consumption 

of a smartphone application is, therefore, often estimated 

with low accuracy and granularity. In this paper, we 

propose AppScope, an Android-based energy metering 

system. This system monitors application’s hardware 

usage at the kernel level and accurately estimates energy 

consumption. AppScope is implemented as a kernel 

module and uses an event-driven monitoring method 

that generates low overhead and provides high accuracy. 

The evaluation results indicate that AppScope accurately 

estimates the energy consumption of Android applica-

tions expending approximately 35mW and 2.1% in 

power consumption and CPU utilization overhead, re-

spectively. 

1    Introduction 

With the widespread use of smartphone applications, the 

energy consumption of each application is important 

information that is used to manage a device’s power. 

Smartphone users can adaptively select energy-efficient 

applications based on the energy consumption of an 

application. Additionally, understanding the energy 

consumption of each process or hardware component is 

a key area of interest for application and system software 

developers [1-5]. 

Estimating the energy consumption of a smartphone 

application is practically difficult. The estimation sys-

tem should be able to determine the power usage of 

various hardware components in the device. However, 

this information is difficult to acquire because of com-

plicated hardware schematics and compact form factor. 

An accurate power model for hardware components 

should be available to determine the level of energy 

consumption for each component. 

Previous work has addressed various energy metering 

methods for smartphones [6-9]. However, these earlier 

models are lacking in terms of granularity and accuracy. 

An example of a previous system is PowerScope [6], 

which provided the energy consumption of applications 

at a fine-grained level, but required post-processing 

using an external device. The developer also needs to 

import related APIs for energy metering. PowerTutor [7, 

8] proposed an estimation method for hardware com-

ponents, but the system does not provide energy infor-

mation for each application or process. PowerProf [9] 

required information on the API usage for each applica-

tion in order to estimate energy consumption. The limi-

tations of the above mentioned models are the result of 

schemes that focus on the accuracy of the power model 

but do not consider the actual usage of the hardware 

component. Accurate estimation of an application’s 

energy consumption depends on the accuracy of the 

power model and the accuracy of a hardware compo-

nent’s usage statistics. In particular, the hardware usage 

estimation is critical because it is a pre-requisite for 

estimating the energy consumption of smartphone ap-

plications. 

Usage estimation for hardware components has been 

previously completed using hardware performance 

counter (HPC) [5, 10-13], software performance counter 

(SPC) such as the Linux procfs/sysfs [7, 14-16], or Bat-

teryStats, which is provided by Android [8, 17]. How-

ever, depending on the process or underlying hardware 

components, these approaches provide different infor-

mation. Thus, obtaining accurate usage statistics for 

each hardware component is limited by this feature.  

In this paper, we propose a software scheme, called 

AppScope. This scheme automatically estimates the 

energy consumption of applications running on Android 

smartphones. The proposed system accurately estimates 

the usage (or utilization) statistics for each device 

component. We have designed the scheme based on 

monitoring the Android kernel at a microscopic level. In 

order to estimate the usage statistics of each application, 

the system analyzes the traces of a system call, as well as 

the messages for Android binder inter-process commu-

nication (IPC). AppScope collects usage information 

based on an event-driven approach; hence, the energy 

consumption of each application is estimated at a fi-

ne-grained level. Additionally, the proposed approach is 



applicable for any Android-based device, without mod-

ification of system software, because we implemented 

the scheme using a dynamic module in the Linux kernel. 

The contributions of our work are as follows: 

 

 AppScope provides the energy consumption of 

Android applications automatically, being custom-

ized to the underlying system software and the 

hardware components in the device. 

 AppScope accurately estimates, in real-time, the 

usage of hardware components at a microscopic 

level. 

 We implemented AppScope as a loadable kernel 

module to improve portability of the proposed ap-

proach. Thus, AppScope can be used on an An-

droid-based device without modifying the system 

software. 

2    Backgrounds 

The accuracy of application energy metering and gran-

ularity of measurement depend on power and energy 

models. In this section, we discuss the models and 

briefly discuss DevScope, which provides a nonintrusive, 

online power analysis of smartphone hardware compo-

nents. 

2.1    Power and Energy Models 

Depending on the power interdependencies among un-

derlying hardware components, power models are typi-

cally classified into a linear or a non-linear regression 

model. The non-linear models often capture power de-

pendency among hardware components, although their 

performance does not significantly outperform linear 

models [18]. We only consider linear models in this 

paper. 

With a linear model, the power consumption P of a 

device is expressed as follows: 

    (     )                          (1), 

Here,    represents the vector of usage measurement 

for hardware component   and    the power coefficient 

for component   . Also,       is the base power con-

sumption, and    is a noise term that cannot be estimated 

by the model. Then, the total energy consumption   of a 

smartphone is expressed as: 
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. To estimate the energy 

consumption of smartphone applications, it is essential 

to obtain accurate values of  ,  , and   in an effective 

way. Note that AppScope employs a linear model to 

estimate the energy consumption of smartphones. 

2.2    DevScope 

Previous studies on linear power modeling for mobile 

devices [7, 14, 15] used external power measurement to 

profile    for each device type. In practice,    varies, 

even on the same type of device, depending on hardware, 

software configuration, and battery status [16, 19]. 

Typically, these values are directly obtained with 

hardware measurements for target devices; hence, this 

offline method is costly and hardly adaptive to changing 

environments.  

The limitation of the offline method can possibly be 

overcome by using an online approach that employs a 

battery monitoring unit (BMU) [16, 19], which is built in 

to smartphones. The scheme would enable the imple-

mentation of an online power model that automatically 

constructs a power model for each device, adapting to 

changes of external factors, such as aging or software 

updates. However, in order to employ a BMU as an 

online power measurement tool, we must consider two 

factors that are inherent in the properties of BMU. First, 

the information update rate of a BMU is noticeably 

lower than external measurement tools; hence the online 

results may not be accurate. Second, since the user is not 

able to intervene in the process of constructing a model, 

it is difficult to understand the exact relationship be-

tween system activities and power consumption. 

DevScope [19], an Android application, is an auto-

matic and online tool used to generate a power model for 

smartphones. The tool probes operating systems to ob-

tain information about individual component types and 

their configurations. Additionally, by monitoring the 

update activity of BMU, DevScope detects the update 

rate automatically. According to individual component 

types, system configuration, and BMU update rates, 

DevScope dynamically creates a control scenario for 

each hardware component to perform power analysis. 

Hence, even though a device (i.e., smartphone) is iden-

tical, the scenario might be different due to each device’s 

configuration. The scenario assigns a workload to each 

component, which then triggers every possible power 

state of the component; for example, specific operations 

for CPU, display brightness, GPS on/off, and packet 

transmission for cellular and WiFi. Each workload is 



maintained for a time period to collect enough meas-

urement samples (i.e., 5 samples) to overcome the limi-

tation of BMU’s low update rate. DevScope turns off 

every other component, except for the component under 

measurement. However, since the CPU should be alive 

to measure the power consumption of other component, 

CPU power analysis is conducted ahead of other hard-

ware components. The power analysis of other hardware 

components is then conducted by subtracting the power 

consumption of the CPU from the total power con-

sumption of the device that is being measured by the 

BMU. While performing the test scenario, DevScope 

classifies the results into each term of the power model 

and then generates corresponding power coefficients. 

DevScope requires a user’s explicit interaction to initiate 

training and collect power coefficients. Hence, if 

re-training is required due to changes in a system’s 

configuration, the process should be repeated manually, 

yet the power coefficients will be updated automatically. 

Note that the training time depends on the characteristics 

of underlying hardware components, as well as the up-

date rate of BMU. The process typically takes minutes. 

Currently, DevScope uses the device power model, 

illustrated in Table 1, for five core hardware components 

of smartphones, that is CPU, display, cellular (3G), WiFi, 

and GPS, and generates their power coefficients   . To 

analyze the CPU characteristics, DevScope locates the 

frequency-voltage table using /sysfs; thus the number of 

available frequencies is dynamically determined. The 

power consumption is then measured by setting the 

frequency to every value.  

In the case of display, DevScope presently only sup-

ports LCD displays, not more modern display types, 

such as OLED. The tool dynamically generates a table 

that contains coefficients for every possible brightness 

level. This is because the relationship between power 

consumption and brightness level is not completely 

linear [15].  

To determine the coefficient for cellular, DevScope 

considers power consumption of each RRC (radio re-

source control) state; IDLE, FACH, and DCH (see Sec-

tion 4.5 for further details). The power state transition is 

proven via a planned scenario in which data traffic is 

controlled. The power consumption pattern of WiFi 

differs depending on the specific packet rate (i.e., 

threshold workload size) [7]. DevScope gradually in-

creases the packet rate and finds the threshold value at 

which the power consumption pattern is changed. 

DevScope currently uses a fixed-strength signal model 

for both WiFi and 3G; hence, although the model would 

suit the purpose of application and system developers, 

the tool should be supplemented to reflect true mobile 

environments.  

The power states of GPS are defined into three states: 

OFF, SLEEP, and ACTIVE. Since the switch between 

SLEEP and ACTIVE states has a constant pattern, we 

regard SLEEP and ACTIVE states as ON.  

The goal of AppScope is to provide a practical ap-

plication energy metering system that is readily runnable 

on Android smartphone. AppScope estimates energy 

consumption    of each process based on a linear model, 

as shown in Equation (2). AppScope employs 

DevScope’s component power model (see Table 1) and 

the power coefficient     which are obtained for target 

devices. Therefore, in this paper we focus on the 

AppScope features that deal with the automatic acquisi-

tion of   
 

 and   
 

 for each hardware component ac-

cessed by an application. 

3    AppScope: The Application Energy 

Metering System  

AppScope is an application energy metering framework 

for the Android system that uses hardware power models 

and usage statistics for each hardware component. 

AppScope provides accurate and detailed information on 

the energy consumption of applications by monitoring 

kernel activities for hardware component requests.  

Figure 1 shows an overview of AppScope. The system 

conducts application energy metering via three phases:  

 

(1) Detection of process requests that are accessing 

hardware components. 

(2) Analysis of usage statistics and status changes of 

the requested hardware components. 

Component Model 

CPU 

𝑃𝐶𝑃𝑈   𝛽𝑓𝑟𝑒𝑞
𝐶𝑃𝑈   𝑢  𝛽𝑓𝑟𝑒𝑞

𝑖𝑑𝑙𝑒  

u: utilization, 0 ≤ 𝑢 ≤ 100 

freq: frequency index, 𝑓𝑟𝑒𝑞  0 1 2⋯  𝑛 

LCD 
𝑃𝐿𝐶𝐷   𝛽𝑏

𝐿𝐶𝐷 

MIN(𝑙𝑒𝑣𝑒𝑙) ≤ 𝑏 ≤ MAX(𝑙𝑒𝑣𝑒𝑙) 
b: brightness level, 

WiFi 
𝑃𝑊𝐼𝐹𝐼    

𝛽𝑙
𝑊𝐼𝐹𝐼  𝑝  𝛽𝑙

𝑏𝑎𝑠𝑒  𝑖𝑓 𝑝 ≤ 𝑡

𝛽ℎ
𝑊𝐼𝐹𝐼  𝑝  𝛽ℎ

𝑏𝑎𝑠𝑒  𝑖𝑓 𝑝 > 𝑡
 

p: packet rate, t: threshold 

cellular(3G) 𝑃3𝐺    

𝛽𝐼𝐷𝐿𝐸
3𝐺  𝑖𝑓 𝑅𝑅𝐶 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝐼𝐷𝐿𝐸

𝛽𝐹𝐴𝐶𝐻
3𝐺  𝑖𝑓 𝑅𝑅𝐶 state 𝑖𝑠 𝐹𝐴𝐶𝐻

𝛽𝐷𝐶𝐻
3𝐺  𝑖𝑓 𝑅𝑅𝐶 𝑠𝑡𝑎𝑡𝑒 𝑖𝑠 𝐷𝐶𝐻

 

GPS 𝑃𝐺𝑃𝑆   𝛽𝑜𝑛
𝐺𝑃𝑆 𝑖𝑓 𝐺𝑃𝑆 𝑖𝑠 𝑜𝑛  

 

Table 1: Power model for smartphone components 



(3) Linear model-based application energy estima-

tion by adding up energy consumption of each 

hardware components accessed by application.  

3.1    Event Detector 

Event Detector probes system calls that are relevant to 

the hardware component operation, such as CPU fre-

quency switching, process switching, packet transmis-

sion, and binder I/O control. Event Detector monitors 

cpufreq_cpu_put() for CPU frequency switching, and 

sched_switch() for process switching. For packet 

transmission operations, the usage of the 

dev_queue_xmit() and netif_rx() kernel functions are 

monitored. For binder I/O control, Event Detector mon-

itors binder_transaction() which is a part of bind-

er_ioctl() routine. These detections are passed onto the 

Hardware Component Usage Analyzer. 

3.2    Hardware Component Usage Analyzer 

When an event is detected, the Hardware Component 

Usage Analyzer collects usage statistics for each hard-

ware component and data that is required to apply the 

power model to the component. Each hardware com-

ponent is activated by different kernel operations. 

Moreover, the type of information required to apply the 

power model varies depending on the characteristics of 

power consumption. Therefore, the method of collecting 

information is separately defined according to the 

hardware components. Figure 2 illustrates different 

methods for the components. In the case of the CPU, the 

changes in utilization and frequency are collected by 

referring to the governor interface. For WiFi, the rate of 

the transmitted/received packets of a process is collected 

by monitoring the data flow in the Linux networking 

stack. In the case of LCD display and GPS, the duration 

of activation is investigated by analyzing the IPC inter-

facing message of the Android binder. For 3G interface, 

the information on transmitted/received packets and the 

changes in power state are collected through the Linux 

networking interface and the Android IPC binder inter-

face, respectively. The detailed process for each hard-

ware component is presented in Section 4. 

3.3    Application Energy Estimator 

The energy consumption of an Android process is esti-

mated via hardware usage statistics, which are applied to 

the underlying power model for hardware components 

(see Table 1). The application energy consumption is 

then obtained by combining the energy consumption of 

all processes that belong to an application. In the An-

droid platform, each application has a unique user id 

(UID) to prevent other applications from accessing its 

specific resources. AppScope differentiates the energy 

consumption of an application using UID.  

In our work, we assume that the overall energy con-

sumption of a device running an application includes 

both “system energy” and “application energy”. System 

energy is defined as a basic consumption that is required 

to operate a device using the Android framework. It 

includes the energy consumption for various Android 

system processes as well as for the Linux kernel threads. 

Meanwhile, application energy is defined as consump-

tion solely used by the processes belonging to an appli-

cation. In terms of UID in the current Android frame-

work, UID=0 is used by the root-owned processes, the 

UIDs around 1,000 are used by the Android system 

processes, and the UIDs over 10,000 are used by appli-

cations. AppScope estimates both application energy 

and system energy consumption. 

 

Figure 2: Hardware Component Usage Analyzer 

 

Figure 1: AppScope overview on Android platform. 



4    Application’s Hardware Usage Analysis  

In this section, we describe AppScope’s techniques that 

are used to detect and analyze how each hardware 

component is used by an application. 

4.1    Limitation of Previous Approaches  

Conventional methods for estimating hardware compo-

nent usage include HPCs, procfs and sysfs on Linux, and 

BatteryStats on Android. Each of these methods is lim-

ited in terms of their efficiency in application energy 

metering. 

HPCs are a set of special registers that are built into 

microprocessors and are used to count certain processor 

events. These counters can be used for low-level per-

formance evaluations or system tuning. With the use of 

HPCs, power consumption can be accurately analyzed. 

However, HPCs are highly dependent on a processor’s 

architecture, and kernel modification is generally re-

quired to look into the HPC registers. Moreover, the 

counting results are effective only for CPU-and 

memory-related power analysis. 

The Linux procfs/sysfs are special filesystems in 

Linux that provide information about processes, hard-

ware usage, and other types of system information; 

procfs/sysfs are inadequate for monitoring application 

energy. First, the update rate of each hardware compo-

nent is different, as is the data access method. For in-

stance, with the Linux kernel 2.6.35.7 for Android 

Gingerbread, the update rate of CPU utilization is 5Hz 

and the CPU frequency is provided only for the current 

status. It is therefore difficult to decompose the CPU 

utilization of an application into each frequency. Also, 

due to the constraints in procfs/sysfs access, the appli-

cation energy metering system should continuously poll 

both CPU utilization and frequency status to estimate 

CPU energy consumption. Second, the details of the 

information obtained from the filesystem vary depend-

ing on the type of underlying hardware. For example, 

WiFi traffic is not provided for process bases and GPS 

usage information is generally not available. Last, alt-

hough the aforementioned limiting factors can be alle-

viated with kernel modification, the kernel should gen-

erally not be modified to support system portability on 

diverse platforms.  

The Android BatteryStats, which provides battery 

status and hardware usage information, is a widely-used 

functionality for battery-related applications. Bat-

teryStats inherits the fundamental limitations of 

procfs/sysfs and per-process usage information is not 

available for a certain type of hardware component. 

Furthermore, the granularity of information varies with 

hardware components. For example, BatteryStats pro-

duces component usage statistics on CPU and WNI 

traffic by reading procfs/sysfs, whereas display utiliza-

tion is only available for the entire system. 

4.2    Kernel Activity Monitoring 

Android applications typically access hardware com-

ponents in two different ways. When an application uses 

hardware components supported by the Linux kernel, the 

application requests related system calls. Otherwise, 

application requests RPC via the Android binder [20, 21]. 

This section explains how AppScope uses the Android 

binder RPC mechanism to analyze component usage, 

and also how usage data are collected upon system calls. 

4.2.1 Android Binder RPC 

Android RPC is executed using binder RPC protocol, 

which is processed in the binder driver of the kernel. 

Figure 3 shows the data format of the Android IPC that is 

used for processing the BC_TRANSACTION command 

of the binder RPC procedure. To execute the stub inter-

face of many service applications, the 

BC_TRANSACTION command is sent to the binder 

driver. At this moment, IPC data is sent to the binder 

driver with binder_ioctl(), and binder_transaction() 

executes the BC_TRANSACTION command within the 

binder driver. Thus, AppScope analyzes IPC data pro-

cessed in binder_transaction() and collects data about 

the system usage. BC_TRANSACTION differentiates 

the requested functions using the RPC code of bind-

er_transaction_data, as shown in Figure 3. The details 

of the requested command are known as “System Ser-

vice Name” and “Function Input Parameter” within the 

RPC data. 

4.2.2 Kprobes 

Kprobes [22] is used to monitor the behavior of system 

calls. Kprobes is one of Linux’s debugging mechanisms. 

It can dynamically insert break points during a kernel’s 

runtime. It can be inserted into any kernel routine and 

 Figure 3: The Android IPC Data format for RPC 

procedure. 



collect information non-destructively and without in-

truding into original kernel behavior. With this mecha-

nism, the kernel function call can be monitored with low 

overhead because only a single instruction is substituted 

to detect the kernel operation. AppScope uses Kprobes 

to detect events on hardware component operations and 

to analyze a component’s usage statistics. AppScope is 

compiled as a kernel module and controlled dynamically. 

Hence, apart from installing and removing the module, 

no additional user activity is required. 

4.3    CPU Usage 

In order to measure the consumed energy of process   , 

we need utilization   , as well as the CPU frequency 

relevant to   for a given time unit. In the Linux kernel, 

the utilization of   is computed using    ’s utime() 

/stime(). The utime()/stime() is estimated by detecting 

the switch from the TASK_RUNNING state to another 

one. Here, checking the states of all processes and up-

dating their utilization for each scheduler call would 

generate a significant overhead. To reduce the overhead, 

AppScope detects the process switch by monitoring a 

wake-up event via sched_switch(). When a wake-up 

event occurs, AppScope updates the utilization of the 

previous process to calculate the utilization. 

The CPU frequency changes according to the dy-

namic voltage and frequency scaling (DVFS) governor 

in the kernel. The cpufreq_cpu_put() function invokes a 

change in the frequency of the DVFS governor. Thus, 

the function is monitored and the frequency information 

is obtained at the call time. Frequency information, as 

well as information regarding system time, is then stored. 

Figure 4 illustrates the concept of the mechanism. Here, 

both the frequency change and the utilization value are 

computed based on the system time (jiffies), and each 

color indicates a separate process. 

4.4    WiFi Usage 

The energy consumption of WiFi varies according to the 

packet rate (i.e., transmitted packets per second). Thus, 

the amount of transmitted WiFi packets per given unit 

should be estimated to compute the energy consumption 

of process   . The data packet rate of process    de-

pends not only on data size but also on protocol and 

maximum transmission unit (MTU). In our system, we 

have referred to the device agnostic network interface 

(DAI) layer of the Linux networking stack to estimate 

the packet rate. The DAI layer is an abstract layer lo-

cated directly above the device driver layer (DDL), and 

it prepares (independently from the protocols) data for 

eventual transmission. In DAI, there are two main func-

tions: dev_queue_xmit() for transmitted data and 

netif_rx() for received data. Figure 4 shows the WiFi 

usage analysis of a process based on the detection of 

dev_queue_xmit() and netif_rx() calls. The packet rate is 

computed using the transmission/reception time of the 

packet. The power state is then identified based on the 

packet rate, and energy consumption is computed using 

activated time duration. 

4.5    3G Usage 

The energy consumption of a 3G interface depends on 

the RRC state. To efficiently utilize a radio resource in a 

3G network, the RRC protocol typically defines three 

states: IDLE, FACH (forward access channel), and DCH 

(dedicated channel). Although the RRC state change 

depends on a carrier’s policy, the RRC, in general, re-

mains in the IDLE state when there is no data to send or 

receive. The state switches to the low power state, 

FACH, when data communication starts, and remains in 

the high power state, DCH, while data is being sent or 

received [23]. Our work is conducted in the Korea’s 

SK-Telecom WCDMA network. In this network, mobile 

phones remain in the IDLE state if there is no data 

transmission. When data communication occurs, the 

mobile phone connects to the UMTS network for a short 

period of time, and then accesses the HSDPA network 

for a high-speed data transmission accompanying the 

RRC state transition. Thus, we identify the state transi-

tion of RRC based on the connection type of network. 

The radio interface layer (RIL) daemon and vendor 

RIL of the Android telephony service are both located in 

the Linux user space. That is, voice calls and control 

commands are not processed using the Linux network-

ing stack. Hence, 3G usage and the RRC state transition, 

 Figure 4: Analysis of CPU utilization/frequency, and 

the WiFi interface. 



Time 

(sec) 

Test 

App. 
Operation Description 

0 Master Run 

Execution as a fore-

ground activity and 

prevent screen off 

20 Slave1 

Transmit 2,000 

packets via WiFi 

interface for 20 

seconds 

Approximate packet 

rates is 100pps 

80 Slave2 

Change the fore-

ground activity for 

20 seconds 

After 20 seconds, 

Master app’s activity 

return to foreground 

120 Slave3 
Start CPU job for 20 

seconds 

CPU frequency  is 

changed by DVFS 

160 Slave4 

Transmit data via 

3G interface for 20 

seconds 

RRC transition in the 

beginning of trans-

mitting 

200 Slave5 
Turn on GPS inter-

face for 20 seconds 

Periodic updates of 

location information 

GPS 

 

Table 2: Operation sequence of test applications 

with the exception of data communication, cannot be 

analyzed within the Linux kernel. We therefore analyze 

the hardware component operation using the Android 

binder RPC. Figure 5 illustrates the concept of 

AppScope regarding 3G usage statistics. The change in 

network connection type is detected by checking the IPC 

data in Android RIL. 

4.6    LCD Usage 

The energy consumption of an LCD display is propor-

tional to display brightness and display duration. 

Brightness can easily be identified from the current 

display settings of the Android framework. However, 

display usage, per application, cannot be directly ob-

tained using the device routine within the kernel because 

the display operation is controlled by the Android 

framework. Therefore, AppScope recognizes fore-

ground applications using the Android ActivityManager 

service, and its display usage is estimated by monitoring 

it. AppScope catches an event on foreground activity by 

checking the IPC data in the binder driver. When the 

process   ’s activity is in the foreground, display usage 

data is updated until another activity is brought into the 

foreground or the screen is turned off. 

4.7    GPS Usage 

The energy consumption of GPS is directly related to the 

power-on time of the interface. However, on/off time of 

a GPS system does not depend on the location request of 

the application. Also, several applications may simul-

taneously request location information from a GPS in-

terface. Since the device interface for GPS is not ex-

posed in the kernel, the estimation of process   ’s GPS 

usage is not trivial. In our work, we estimated 

cess   ’s usage statistics by monitoring loc_api() and 

LocationManager in the binder driver. The GPS inter-

face is turned on/off with the loc_api(), and Location-

Manager provides location updates when GPS is turned 

on. Figure 5 illustrates how the AppScope estimates 

GPS usage of process    through monitoring the Loca-

tionManager of the Android framework. AppScope 

monitors LocationManager calls and calculates the GPS 

activation duration. During GPS activation, AppScope 

counts the location requests to LocationManager. The 

count is then used to estimate the energy consumption 

for each application process. Thus, when multiple pro-

cesses request location information, AppScope distrib-

utes the energy consumption proportionally to the cor-

responding processes based on the usage count.  

5    Evaluation 

AppScope was developed in Linux kernel 2.6.35.7. The 

SystemTap version 1.3 [24] also uses Kprobes and data 

collection for the purpose of evaluation. All evaluations 

are carried out on HTC Google Nexus One (N1; Qual-

comm QSD 8250 Snapdragon 1GHz, 3.7-inch Super 

LCD display) [25] with Android platform version 2.3. 

Note that N1 is equipped with a current sensor (MAXIM 

DS2784) upon which DevScope can build its power 

model. The Monsoon Power Monitor [26] is used as an 

external power meter.  

In order to evaluate the AppScope framework, we 

 Figure 5: Analysis methods for 3G, GPS interface and 

LCD display usage information.  



benchmarked a set of Android applications and esti-

mated their energy consumption with AppScope. We 

also measured the overhead of AppScope in terms of 

power consumption and CPU utilization.  

5.1    Component Usage Monitoring 

To evaluate the accuracy of hardware event detection 

and collection of usage statistics, we designed and ex-

perimented on one “Master” and five “Slave” applica-

tions. The Master sets a pre-defined workload, executes 

the schedule of each hardware component workload, and 

controls the Slaves according to this schedule. We ran 

the Master and Slaves for 240 seconds in the order 

shown in Table 2.  

Figure 6 shows the results of the tests on hardware 

component usage while running the test scenario in 

Table 3, where data was collected for every second. 

Each row in Figure 6(a) is differentiated by CPU fre-

quency and i is the index in the frequency table for N1. 

The bar height represents utilization of relevant fre-

quency. Due to space limitations in Figure 6(a), we have 

omitted some plots in which the utilization is too low or 

absent altogether. In the cases of GPS, LCD, and 3G, the 

power model requires activated time duration as usage 

information. The bar height in Figure 6 (c), (d), and (e) 

represents occupancy time (ms) in a unit time. The 

“system” stands for the system energy component, de-

scribed in Section 3.3. The applications were started up 

at booting time and are differentiated by color.  

 
(a) CPU: Utilization and frequency 

 
(b) WiFi: Transferred packet rate  (c) GPS:  Activated duration 

 
(d) 3G: RRC state transition and retention time of the state 

 
(e) LCD: Foreground duration 

 Figure 6: Hardware component usage trace of AppScope for test applications. 



Comp. Index Coefficient Comp. Index Coefficient 

CPU 

 𝑓𝑟𝑒𝑞 

(Mhz) 
𝛽𝑖
𝑓𝑟𝑒𝑞

 𝛽𝑖
𝑖𝑑𝑙𝑒  

LCD 

𝑏 𝛽𝑏
𝑏𝑟𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠

 

245.0 201.0 35.1 5 367.8 

384.0 257.2 39.5 55 451.5 

460.8 286.0 35.2 105 631.1 

499.2 303.7 36.5 155 697.9 

576.0 332.7 39.5 205 775.4 

614.4 356.3 38.5 255 854.0 

652.8 378.4 36.7 

3G 

𝑟𝑟𝑐 𝛽𝑟𝑟𝑐 

691.2 400.3 39.6 IDLE 63.9 

768.0 443.4 40.2 FACH 267.9 

806.4 470.7 38.4 DCH 519.3 

844.8 493.1 43.5 

WiFi 

 𝛽𝑙  𝛽ℎ 

998.4 559.5 45.6 Transmit 1.2 0.8 

GPS 
 𝛽𝑔𝑝𝑠 Base 238.7 247.0 

ON 354.7 Threshold 25pps 

 

Table 3: Power coefficient values of N1 

In Figure 6(a), from time t=121 for 20 seconds, Slave 

3 actively utilizes the CPU. As a result, the CPU fre-

quency increases, and the applications, which have been 

running in low frequency with low CPU utilization, 

started to operate in high frequency. Moreover, Slave 3 

shows low CPU utilization in the same region with me-

dium frequency due to the OnDemand policy.  

In Figure 6(b), from time t=21 for 20 seconds, Slave 4 

transmits data over WiFi. As shown in Table 2, Slave 1 

sent 2,000 packets, i.e., its packet rate is 100pps. In 

Figure 6(c), Slave 5 uses GPS from t=201 for about 20 

seconds. Note that after Slave 3 terminates the use of the 

GPS, the GPS is still used for about 4.5 seconds by the 

“system”. With further experiments, we found that after 

an application terminates GPS usage, the “system” uses 

the GPS for a duration of about 2–4.5 seconds. After this 

timeframe, usage of the GPS interface is completely 

stopped.  

Figure 6(d) shows that the “system” transmits some 

data before Slave 4 transmits data at time t=161. After 

that, the RRC state remains in FACH for a short duration 

and changes to DCH. Also, as the packet transmission is 

terminated, the RRC state changes to FACH. This result 

is consistent with the RRC protocol between carrier and 

mobile devices on UMTS networks. Figure 6(e) shows 

the switching point for display between the two fore-

ground activities. When Slave 2 activity is brought to the 

foreground, the display is not used by any of the appli-

cations for a duration of about 60–100ms. This is a blank 

duration when the activity change occurs in the Activi-

tyManager.  
In summary, AppScope detects hardware operation 

time as indicated in Table 2. The experimental results 

show that AppScope observes accurate usage of hard-

ware components and correctly observes their power 

characteristics. 

 

   

(a) CPU power consumption (b) WiFi power consumption (c) GPS power consumption 

  

(d) 3G interface power consumption (e) LCD display power consumption 

 
Figure 7: AppScope power traces for test applications.   



App. CPU(J) 
WiFi 

(J) 

GPS 

(J) 
3G(J) LCD(J) Total(J) 

System 11.3 0.2 2.0 14.7 0 28.2 

Master 0.5 0 0 0 186.8 187.3 

Slave 1 0.04 6.80 0 0 0 6.84 

Slave 2 0.1 0 0 0 17.9 18.0 

Slave 3 9.3 0 0 0 0 9.3 

Slave 4 0.01 0 0 11.41 0 11.42 

Slave 5 0.01 0 7.00 0 0 7.01 
 

Table 4: Energy estimation of test applications 

5.2    Energy Metering Validation 

We estimate energy consumption for each application 

based on hardware component usage, as shown in Figure 

6. In order to attain an accurate estimation, we used 

DevScope [19] to extract power coefficients (Table 3), 

based on the power model explained in Table 1 of Sec-

tion 2.2. Note that all the experiments for communica-

tion interfaces, such as WiFi, 3G, and GPS, were con-

ducted at a stationary place, i.e., fixed-strength radio 

signals; hence, we did not consider energy effects on 

varying signal strength for these components. We 

compared the estimation results with the results obtained 

from the Monsoon power meter. 

5.2.1 Granularity 

Figure 7 shows the power consumption of hardware 

components per application. Figure 7(a) shows the CPU 

power consumption for the entire duration – 240 seconds.  

Overall, the “system” uniformly consumed approxi-

mately 100mW. The power consumption of Slave 3 is 

about 480 mW in the increased frequency region. As 

shown in Figure 7(b), (c), and (d), when communication 

components, such as WiFi, 3G, and GPS are used, we 

observed that the “system” consumes a certain amount 

of power. In Figure 7(e), when the application uses an 

LCD display, the power consumption of the LCD is 

relatively higher than other components. Master con-

sumed the highest energy due to long display occupancy. 

However, it did not operate other hardware components. 

Table 4 shows the estimated energy results by aggre-

gating the results shown in Figure 7. As shown in Table 

4, AppScope provides application-specific energy con-

sumption data for each hardware component, even when 

multiple applications run in parallel.  

5.2.2 Accuracy 

To analyze the correctness of energy consumption re-

sults obtained in Section 5.2.1, we compared our results 

with those obtained using the Monsoon power meter. 

Figure 8 shows the comparative results between 

AppScope estimation and external measurement. The 

aggregated power consumption of all applications using 

AppScope is similar to the entire power consumption 

measured using the external power meter. However, a 

power difference of about 100–400mW has been ob-

served in some regions. At time t=60 for 10 seconds, the 

external measurement showed that power consumption 

temporally increased for a short period of time. This is 

because Slave 4 turned off the WiFi interface and the 

“system” automatically activated the 3G interface. In 

this process, AppScope noticed that the “system” sent 

packets over the 3G interface, but the 3G interface’s 

power consumption was not detected due to the WiFi’s 

turn off delay and 3G interface activation. When the 

CPU frequency rises, a large difference exists between 

the external measurement result and the power con-

sumption estimated by AppScope. At time t=120 for 20 

seconds, power consumption increases due to the CPU 

frequency and increased utilization. At this moment, the 

power consumption was estimated as 1400mW, which is 

7% less than the external measurement result. This 

demonstrates the limitations of our simple CPU power 

model, which ignores the effects of cache, bus, memory 

and other SoC components. More accurate models can 

be built by using performance counters to account for 

these effects [5, 10-13]. Figure 8 summarizes that the 

overall energy consumption estimated by Monsoon is 

282.8J, and 268.0J by AppScope, which is a 14.8J (5.2%) 

difference. 

5.3    Overhead Analysis 

To estimate the overhead of AppScope, we have per-

formed the experiment described in Section 5.1 by 

loading and unloading AppScope onto the system. In 

both scenarios, power consumption is estimated using 

the Monsoon power meter. Figure 9 shows the results. 

During the experiments, test applications occupied the 

display activity. Therefore, the information regarding 

 

Figure 8: AppScope results vs. Monsoon measurement 

results for test applications. 



the power consumption of displays (Figure 9) was col-

lected during the entire duration of the experiment. 

During CPU testing, the power consumption does not 

increase between 120-second to 140-second (see Table 

2). While WiFi and 3G tests are carried out, the energy 

consumption slightly increases in comparison to the 

energy consumption experienced with the display only 

function. Within 240 seconds, AppScope generated 8.4J 

energy overhead, which is a 34.9mW increase on aver-

age. Moreover, the five tests showed that AppScope 

generated 2.1% CPU overhead on average, with a 

standard deviation of 1.9 and the worst case being 5.9%. 

AppScope is a Linux kernel module and can be dy-

namically loaded/unloaded at runtime. Thus, users may 

install AppScope when analysis is required and remove 

it if unnecessary. Consequently, when AppScope is not 

activated, the overhead is not generated at all.  

6    Real Application Energy Metering 

We have evaluated AppScope’s energy metering per-

formance using applications distributed via Google 

Android Market. For this analysis, we have selected four 

applications that adequately utilize each component. 

 

Figure 9: Overhead analysis of AppScope.  

 

  
(a) Angry Birds (b) Skype-WiFi 

  
(c) Browser-WiFi (d) Browser-3G 

  
 (e) Google Maps  (f) StabilityTest Benchmark 

 Figure 10: AppScope power traces for real applications. 



App. 
CPU 

(J) 

WiFi 

(J) 

GPS 

(J) 

3G 

(J) 

LCD 

(J) 

Sys- 

tem 

(J) 

Total 

(J) 

Mon- 

soon 

(J) 

Err. 

(%) 

Angry 

Birds 
27.4 7.1 0 0 80.3 24.0 138.8 162.7 14.7 

Browser 

(WiFi) 
28.6 14.3 0 0 82.8 25.1 150.8 144.3 4.5 

Browser 

(3G) 
25.7 0 0 36.2 85.9 13.3 161.1 174.1 7.5 

Skype  

(WiFi) 
14.8 24.6 0 0 85.0 25.7 150.1 148.8 0.9 

Google 

 Map 
3.9 2.5 33.6 0 81.2 18.0 139.2 137.8 1.0 

 

Table 5: Energy estimation for real applications Figure 10 shows the estimated energy consumption of 

Angry Birds (game), Skype (VoIP), web browser, and 

Google Maps (location provider). Energy consumption 

of a web browser is divided into two cases, i.e., browsing 

with WiFi or 3G. To compare the estimated results using 

the Monsoon power meter, we also show the energy 

consumption of the system and applications, per com-

ponent energy consumption.  

AppScope showed accurate estimation results in 

comparison to the external measurement results. As 

shown in Figure 10(a), the power consumption of Angry 

Birds showed the highest error among the five test cases. 

Specifically, the uniform amount of 300mW error was 

shown (except for the WiFi period) after the game is 

completely loaded, i.e. 20 seconds. CPU and LCD were 

continuously used in the region where high error is 

shown. Compared to the other four cases, we understand 

that the game activates N1’s GPU (Integrated Graphics 

Processing Unit Adreno 200 on Qualcomm QSD8250 

Snapdragon) and error is caused by this hardware 

component. To find out the exact cause of the error, we 

have conducted additional experiments with Android’s 

CPU/GPU benchmark tool, StablilityTest [27]. As il-

lustrated in Figure 10(f), while StablilityTest is prepar-

ing 3D objects to display on the screen (initial 37 se-

conds), the AppScope results and the results of the ex-

ternal power meter were nearly identical. Between 40 to 

100-seconds where a 3D object was periodically rotated, 

there was a 300mW difference. The difference is as large 

as the error shown in Figure 10(a). In this region, CPU 

utilization was 100%. Hence, the error is assumed to be 

caused by the GPU operation.  

In Figure 10(b) and (c), the power consumption of the 

WiFi interface was reflected in total energy consumption 

with approximately 4% error. Note that the Monsoon 

results in Figure 10(b) are higher than AppScope, 

whereas the results are opposite in Figure 10(c). We 

consider this to be a limitation of the linear regres-

sion-based power model that is produced by DevScope. 

Although the WiFi interface always operates with CPU, 

our power model does not consider inter-dependency of 

WiFi interface and CPU. This limitation may be over-

come using a model that includes cross-terms, which 

represent the inter-dependency among components [5].  

As shown in figures 10(a), (b), and (d), after 70 se-

conds of operation, there was a temporary increase in the 

energy consumption of LCD and 3G interface. These 

increases are generated due to an error in the data col-

lecting program, which was implemented using Sys-

temTap [24]. In these points, the collected workload for 

2 seconds is accumulated in 1 second by a timer bug in 

SystemTap. In reality, there should not be a temporary 

increase in power consumption of LCD unless its 

brightness is changed. After the increase in power con-

sumption, there was a time difference in the estimation 

of AppScope and Monsoon measurement.  

Table 5 shows each application’s total and compo-

nent-wise energy consumption. The total energy con-

sumption is computed by aggregating the energy con-

sumption of the hardware components and the system. 

The error is calculated using total estimated energy 

consumption and the results from the external power 

meter. All applications, with the exception of Angry 

Birds, showed an error rate below 7.5% during a 

100-second experiment. Angry Birds showed a 14.7% 

error due to the aforementioned GPU operation. 

7    Related Work 

Recent research [7, 9, 14, 16] on smartphone power 

management has developed diverse power models to 

estimate a device’s power consumption. Dong and 

Zhong proposed Sesame [16], which is an automatic 

smartphone power modeling scheme using a built-in 

current sensor. Their work focused on overall system 

power rather than power analysis on individual hardware 

components. This feature is hardly applicable for esti-

mating the energy consumption of each application. 

Pathak et al. [14] proposed an FSM (finite state ma-

chine)-based power model using an external power 

measurement tool in conjunction with system call trac-

ing. This approach may be applicable for application 

energy metering, but in-depth study and measurements 

on target devices should be required to obtain detailed 

power states.  

Among recent works, PowerTutor [7, 8], PowerProf 

[9], and Eprof [29] support the estimation of application 

energy consumption. PowerTutor [8] is an application 

power estimation system that uses PowerBooter [7], 

which is a power model generation tool using fuel gauge 

sensors and knowledge of battery discharge behavior. 

PowerTutor [8] uses different methods to access usage 

statistics from procfs and BatteryStat for each hardware 

component. This method cannot guarantee the accuracy 



of application energy consumption, due to the limita-

tions that are discussed in Section 4.1. PowerTutor pro-

vides UID-specific energy information, but not pro-

cess-specific information. Furthermore, it requires 

modification of the Android system software and kernel 

for components such as GPS and Audio. With AppScope, 

we use standard kernel functionalities to collect hard-

ware usage information through an event-driven mech-

anism; this avoids monitoring overhead and perfor-

mance degradation. In addition, AppScope provides 

process-specific power estimation in real-time. 

Kjærgaard and Blunck proposed PowerProf [9], 

which is an unsupervised power profiling scheme for the 

smartphone using the Nokia Energy Profiler [28]. Pow-

erProf generates component power models based on a 

genetic algorithm in order to automatically identify the 

power states of underlying hardware components. 

PowerProf enables online energy estimation, but the 

scheme is focused on power modeling rather than ap-

plication energy metering. PowerProf measures power 

consumption for API calls issued in programming lan-

guage. This method is limited in terms of application 

energy metering because the technique strongly depends 

on the programmer’s intention.  

Eprof [29] is a fine-grained energy profiler for 

smartphone applications. Based on the FSM power 

model [14], Eprof has the ability to analyze the asyn-

chronous energy state of an application, modeling the 

tail-state energy characteristics of hardware components 

with routine-level granularity. Energy metering is 

achieved via a post-processing mechanism using an 

explicit accounting policy. Eprof requires modifications 

in the Android framework to trace the API calls; the 

application code, if using the Android NDK, should also 

be modified.  

PowerScope [6] and Quanto [30] are developed to-

wards energy estimation with hardware usage monitor-

ing. PowerScope [6] provides detailed process-specific 

energy estimation for mobile devices. The scheme re-

quires an additional computing resource, and program-

mers should use a set of specialized APIs to estimate 

power consumption. Quanto [30] is developed as a 

network-wide energy profiler for fast energy metering 

based on event-driven methods in TinyOS. The ap-

proach is similar to AppScope, which detects hardware 

operations in kernel, and breaks down the energy usage 

of a system by hardware component. 

The information obtained with AppScope is closely 

related to energy efficient operating system research 

[1-5]. These works, in fact, proposed abstract OS 

mechanisms to limit energy that can be used by pro-

cesses. The mechanism requires usage and energy con-

sumption information regarding an application’s hard-

ware. In this context, AppScope would be useful for 

developing energy-aware operating systems. 

8    Discussion 

The accuracy of application energy metering depends on 

the power model of underlying hardware components. 

The present work used the power model of DevScope, 

which currently does not cope with GPU, multi-core, 

and memory components. Indeed, the experimental 

results in Figure 9(a) showed that a relatively large error 

is exhibited in applications using the integrated GPU. In 

addition to the GPU, recent smartphones are beginning 

to employ multi-core CPU, which necessitates the de-

velopment of more advanced tools covering new hard-

ware features. Also, the current AppScope/DevScope is 

limited in modeling the memory hardware component. 

In fact, previous work [15] showed that energy charac-

teristics of smartphone applications differ with the na-

ture of application; that is, CPU-bound or 

memory-bound jobs. We are aware that in order to 

model diverse hardware and obtain applications’ energy 

consumption more accurately, both AppScope and 

DevScope should be supplemented with further empha-

sis on memory, GPU, and multi-core CPU architecture. 

This is, in fact, part of our future work. 

Meanwhile, the tail-state energy consumption of cel-

lular, WiFi, and GPS hardware components should be 

considered for fine-grained energy modeling. The Finite 

States Machine (FSM)-based model [14], for instance, 

uses power state transitions, instead of component uti-

lization for power modeling, which enables the accurate 

modeling of tail-state. AppScope, however, does not 

detect the tail-state; hence the energy consumption on 

this state is not reflected in the application’s energy. This 

limitation is fundamentally caused by the use of a linear 

power model in AppScope, which primarily obtains 

usage statistics, rather than state changes, of individual 

hardware components.  

Although the AppScope energy metering framework 

includes DevScope as its core component to obtain de-

vice power models automatically and online, the core 

part of the AppScope framework is still the automatic 

acquisition of   
 
 and   

 
 for each hardware component 

accessed by an application. This means that the core of 

AppScope can practically run on any smartphone whose 

component power models are known a priori - either by 

DevScope or by direct measurement of individual 

hardware components. 

9    Conclusion 

In this paper, we proposed AppScope to automatically 

meter energy consumption of Android applications us-

ing kernel activity monitoring. AppScope traces system 



calls and also analyzes Android binder IPC data. De-

signed as a kernel module, AppScope runs efficiently to 

collect fine-grained process-specific energy information. 

Compared to previous research on smartphone energy 

estimation, AppScope provides a more accurate and 

detailed application-specific energy estimation solution. 

This result will be used as an important basis in estab-

lishing a foundation to support power-related research 

on Android mobile devices. 
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