
A Survey of Mobile Malware in the Wild

Adrienne Porter Felt, Matthew Finifter, Erika Chin, Steven Hanna, and David Wagner
University of California, Berkeley

{apf,finifter,emc,sch,daw}@cs.berkeley.edu

ABSTRACT
Mobile malware is rapidly becoming a serious threat. In
this paper, we survey the current state of mobile malware
in the wild. We analyze the incentives behind 46 pieces
of iOS, Android, and Symbian malware that spread in the
wild from 2009 to 2011. We also use this data set to evalu-
ate the effectiveness of techniques for preventing and iden-
tifying mobile malware. After observing that 4 pieces of
malware use root exploits to mount sophisticated attacks on
Android phones, we also examine the incentives that cause
non-malicious smartphone tinkerers to publish root exploits
and survey the availability of root exploits.

Categories and Subject Descriptors
D.4.6 [Operating Systems]: Security and Protection; K.4.1
[Public Policy Issues]: Abuse and Crime Involving Com-
puters

General Terms
Security

Keywords
Mobile devices, smartphones, malware

1. INTRODUCTION
People use smartphones for many of the same purposes

as desktop computers: web browsing, social networking,
online banking, and more. Smartphones also provide fea-
tures that are unique to mobile phones, like SMS messaging,
constantly-updated location data, and ubiquitous access. As
a result of their popularity and functionality, smartphones
are a burgeoning target for malicious activities.

Researchers have been studying mobile phone security for
several years [32, 36]. At first, mobile malware was proof-
of-concept. Over time, however, mobile malware has be-
come a real threat. We survey the state of modern mobile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPSM’11, October 17, 2011, Chicago, Illinois, USA.
Copyright 2011 ACM 978-1-4503-1000-0/11/10 ...$10.00.

malware in the wild to illuminate the current threat model
and suggest future directions. Our survey encompasses all
known iOS, Symbian, and Android malware that spread be-
tween January 2009 and June 2011. We collected informa-
tion about 46 pieces of malware in this time period: 4 for
iOS, 24 for Symbian, and 18 for Android.

In order to understand the motives of real mobile mal-
ware, we classify the malware in our data set by behavior.
We find that the most common malicious activities are col-
lecting user information (61%) and sending premium-rate
SMS messages (52%), in addition to malware that was writ-
ten for novelty or amusement, credential theft, SMS spam,
search engine optimization fraud, and ransom. We describe
the incentives that promote each type of malicious behavior
and present defenses that disincentivize some of the behav-
iors. In particular, malware that abuses SMS messages could
be prevented with small changes to the Android and Sym-
bian platforms. We also discuss incentives that we believe
will motivate future mobile malware.

iOS, Symbian, and Android use application permissions
or review processes to prevent the spread of malware. We
consider whether these mechanisms are effective defenses
against the malware in our data set. First, we investi-
gate whether a simple classifier could use the permission
requests of Android malware to identify malicious applica-
tions; we find that the permission to send SMS messages
is the most promising feature. Next, we determine that
Apple’s review process has successfully avoided approving
malware, but Symbian’s review-and-sign process failed to
prevent almost a third of the Symbian malware.

Smartphone OS security mechanisms can be circumvented
using root exploits. Unfortunately, smartphone owners are
currently motivated to seek and publish root exploits that
can be leveraged by attackers. 4 pieces of malware in our
data set use root exploits which were originally published for
the purpose of smartphone customization. We discuss the
incentives that encourage the publication of root exploits by
non-malicious smartphone owners. Our survey of root ex-
ploits for 6 Android phones demonstrates that root exploits
are publicly available more than 74% of the time, rendering
phones vulnerable to sophisticated malware.

Contributions. In this paper, we:

• Survey the behavior of current mobile malware, present
defenses, and discuss the future of mobile malware.

• Evaluate whether existing defense mechanisms are ef-
fective at identifying current mobile malware.

• Examine the incentives that encourage the publication
of root exploits and survey the availability of exploits.

2. THREAT MODEL
We present three types of threats posed by third-party

smartphone applications and discuss the security measures
that are intended to detect and prevent them.

2.1 Threat Types
The mobile threat model includes three types of threats:

malware, grayware, and personal spyware. We distinguish
between the three based on their delivery method, legal-
ity, and notice to the user. This paper focuses specifically
on malware; personal spyware and grayware use different
attack vectors, have different motivations, and require dif-
ferent defense mechanisms.

Malware. Malware gains access to a device for the pur-
pose of stealing data, damaging the device, or annoying the
user, etc. The attacker defrauds the user into installing the
malicious application or gains unauthorized remote access
by taking advantage of a device vulnerability. Malware pro-
vides no legal notice to the affected user. This threat in-
cludes Trojans, worms, botnets, and viruses. Malware is
illegal in many countries, including the United States, and
the distribution of it may be punishable by jail time.

Personal Spyware. Spyware collects personal informa-
tion such as location or text message history over a period
of time. With personal spyware, the attacker has physical
access to the device and installs the software without the
user’s knowledge. Personal spyware sends the victim’s in-
formation to the person who installed the application onto
the victim’s device, rather than to the author of the applica-
tion. For example, a person might install personal spyware
onto a spouse’s phone. It is legal to sell personal spyware in
the U.S. because it does not defraud the purchaser (i.e., the
attacker). Personal spyware is honest about its purpose to
the person who purchases and installs the application. How-
ever, it may be illegal to install personal spyware on another
person’s smartphone without his or her authorization.

Grayware. Some legitimate applications collect user data
for the purpose of marketing or user profiling. Grayware
spies on users, but the companies that distribute grayware
do not aim to harm users. Pieces of grayware provide real
functionality and value to the users. The companies that
distribute grayware may disclose their collection habits in
their privacy policies, with varying degrees of clarity. Gray-
ware sits at the edge of legality; its behavior may be legal
or illegal depending on the jurisdiction of the complaint and
the wording of its privacy policy. Unlike malware or per-
sonal spyware, illegal grayware is punished with corporate
fines rather than personal sentences. Even when the activity
of grayware is legal, users may object to the data collection if
they discover it. Application markets may choose to remove
or allow grayware when detected on a case-by-case basis.

2.2 Security Measures
Smartphone operating system vendors use curated mar-

kets and/or application permissions to protect users. We
focus on iOS, Android, and Symbian 9.x.1

1We limit our consideration of Symbian malware to Symbian
9.x. Earlier versions of the Symbian OS do not have all of
the security measures discussed in this paper.

Markets. Smartphone users are encouraged to download
and purchase applications from centralized application mar-
kets. Apple, Google, and Nokia promote the use of central-
ized markets with decreasing strictness.

Apple iOS devices allow the user to install applications
only from the Apple App Store [4], and applications in the
App Store are reviewed by Apple for security. If iOS users
want to install applications from other sources, then they
must jailbreak their devices, which involves exploiting a vul-
nerability in iOS to gain superuser access. This process car-
ries the risk of rendering the phone inoperable, and it voids
the phone’s warranty. Apple’s review process is intended to
prevent malware from being distributed through the App
Store. Their review standards also disallow personal spy-
ware, but an attacker with physical access to the victim’s
device could jailbreak the phone without the victim’s knowl-
edge to install personal spyware. The App Store is known to
have included grayware [31, 24]; in some cases, the grayware
has been removed from the App Store.

Android also provides users with an official application
store, the Android Market [2]. Most Android phones allow
users to also install applications from unofficial markets, al-
though the user is warned that installing non-Market appli-
cations may expose the user to malware. Google does not
review applications prior to listing them in the Android Mar-
ket, although they may review some applications later. Per-
sonal spyware (e.g., GPS Spy Plus) and grayware are listed
in the Android Market [25]. The Android security team has
removed malware from the Android Market following user
complaints, and they are able to remotely uninstall known
malware from users’ devices [17].

Nokia runs Ovi [5], which is currently the official Symbian
application market. Like the Apple App Store, all applica-
tions are reviewed prior to being listed in Ovi. Symbian does
not prevent or discourage users from installing applications
from other sources. Several popular alternative markets are
available, and they lack review processes. However, Sym-
bian offers an application signing service that incorporates
security reviewing. Only Symbian Signed applications are
allowed to access dangerous privileges. All Symbian Signed
applications must undergo an automated security review.
Applications that use the most dangerous privileges are ad-
ditionally reviewed by humans, and some number of other
Symbian Signed applications are also human-reviewed. As
a consequence of the signing process, many applications in
third-party Symbian markets have undergone review.

Permissions. Smartphone operating systems may also pro-
tect users by requiring user consent before an application
can access sensitive information or dangerous capabilities.
User-approved permissions can alert users to the activities
of grayware or malware, although malware may seek to cir-
cumvent permission systems. Permissions do not prevent
the installation of personal spyware because the attacker
can grant all necessary permissions during installation.

Android informs users of an application’s desired permis-
sions during installation. The Android permission system
is extensive; user-approved install-time permissions control
access to the phone’s number, list of contacts, camera, Blue-
tooth, etc. The iOS permission system is much less compre-
hensive than the Android permission system, likely because
Apple primarily relies on the App Store review process for
security. iOS requires user approval only to access location
and send notifications, and permission is requested at run-

time rather than during installation. Symbian prompts users
to grant permissions during the installation of applications
that have not been Symbian Signed. Symbian’s user-granted
permissions permit access to only a few privileges, like con-
necting to the network or a Bluetooth device; the remainder
are off-limits. Symbian Signed applications automatically
receive all requested privileges without user approval.

3. MOBILE MALWARE DATA SET
This paper surveys known iOS, Symbian, and Android

malware, using information collected from public anti-virus
databases. We identified 46 pieces of mobile malware from
January 2009 to June 2011. In this section, we describe our
survey methodology and the data set’s characteristics.

3.1 Collection Methodology
To find information about known mobile malware, we

combed the public databases of anti-virus companies (e.g.,
Symantec, F-Secure, Fortiguard, Lookout, and Panda Secu-
rity) and news releases to find mentions of malware. The
existence of each piece of malware is confirmed by at least
two anti-virus vendors, and we compared malware reports
to identify cases where researchers had used different names
for the same piece of malware. We also coalesced variants of
the same family of malware into one listing for the family.

Our goal was to collect statistics about malware in the
wild so that we could (1) understand their underlying moti-
vations and (2) evaluate how well current malware defense
mechanisms protect users. To this end, we omitted personal
spyware and grayware from consideration. We also omitted
researchers’ proofs of concept because they do not represent
the current state of real malware.

3.2 Data Set
We identified 46 pieces of iOS, Symbian 9.x, and An-

droid malware that were detected in the wild between Jan-
uary 2009 and June 2011. This data is available at http:

//www.cs.berkeley.edu/~daw/malware.html (summary in
Appendix A). In this data set, 4 target iOS, 24 target Sym-
bian 9.x, and 18 target Android. Notably, almost all of the
Android malware is from 2011, and all of the iOS malware
appeared within a single month in 2009. Figure 1 shows a
timeline of when each piece of malware became known.

4. INCENTIVES
We discuss current and future incentives for writing mo-

bile malware. To understand current incentives, we present
the motivations that we believe are behind the malware in
our data set. Our predictions for future mobile malware
are based on trends in desktop malware [15], combined with
characteristics of mobile platforms.

4.1 Current Incentives
We categorize known iOS, Symbian, and Android malware

by the motivations indicated by their behavior. Table 1
shows an overview of the behavioral classification. These
counts represent a lower bound because many pieces of mal-
ware support the ability to load additional code from the
Internet, and it is possible that anti-virus reports were in-
complete. Also, not all malware performs all of its sup-
ported operations on every infection; 15 of the 46 pieces of
malware change their behavior based on commands received
from command-and-control servers.

Exfiltrates user information 28
Premium calls or SMS 24
Sends SMS advertisement spam 8
Novelty and amusement 6
Exfiltrates user credentials 4
Search engine optimization 1
Ransom 1

Table 1: We classify 46 pieces of malware by behav-
ior. Some samples exhibit more than one behavior,
and every piece of malware exhibits at least one.

4.1.1 Novelty and Amusement
Some malware causes mischief or damage in a way that

appears to be intended to amuse the author. For exam-
ple, Ikee.A [48] changed the wallpaper of infected iPhone
devices, and Smspacem [58] sent anti-religion text messages
from Android phones. 6 of the 46 pieces of malware fall into
this category and no other. Early desktop malware was sim-
ilarly motivated by humor, bragging rights, or purposeless
destruction. As mobile platforms mature, we expect that
amusement-driven mobile malware will decrease in number
and become overshadowed by profit-driven malware.

4.1.2 Selling User Information
Mobile operating system APIs provide applications with

large amounts of information about users. Applications can
query mobile APIs for the user’s location, list of contacts,
browser and download history, list of installed applications,
and IMEI (the unique device identifier). 28 pieces of recent
mobile malware have collected and exfiltrated one or more of
these items. Although we cannot know for sure why malware
collects this information, we hypothesize that this data is
being sold by malware distributors for financial gain.

Advertising or marketing companies might be willing to
purchase users’ locations, browsing histories, and lists of
installed applications to improve behavioral profiling and
product targeting. However, advertising libraries in legit-
imate applications already routinely collect user location,
and web-based advertisements already track browsing habits.
Legitimate applications with advertising libraries can ex-
pect to earn between $1.90 and $9.50 per user per month,
which includes both the value of collecting user location data
and displaying advertisements [44]. This provides an upper
bound on one measure of the value of user profiling data.

Consumer IMEIs have value to black market phone ven-
dors. When a phone is reported stolen, its IMEI is black-
listed, which prevents it from connecting to cellular net-
works. This is supposed to render stolen phones useless.
In practice, thieves can alter phone IMEIs to replace black-
listed IMEIs with valid IMEIs [35]. This motivates a market
for valid consumer IMEIs. However, many legitimate appli-
cations and advertising libraries already collect IMEIs [25].
This large supply of IMEIs likely means that the IMEI-
driven revenue per user infection is quite low.

Malware distributors also might sell users’ contact lists. A
user’s contact list includes contacts’ names, phone numbers,
and e-mail addresses. This contact information could be
sold to scammers, spammers, or phishers. As of 2008, e-
mail addresses were worth between $0.33/MB and $40/MB
on the black market [41].

!"!"#$% &"!'"#$% ("&!"#$%)"!*"#$% !#"+)"#$% !"!!"!#% &"+'"!#% ,"!#"!#%)"+*"!#% !!"'"!#% !"+!"!!% *","!!% ,"+#"!!%

-./012/% 234% 456728.%$9:%

Figure 1: A timeline of when the 46 pieces of malware in our data set were detected by malware researchers.

In addition to the platform API, mobile phones also store
application-specific data. Malware could search through
available documents to glean more facts about users. This
is difficult on iOS, where application data is tightly seg-
regated. However, Android and Symbian applications can
read some of each others’ data if given the correct permis-
sions. We have not yet observed inter-application data theft
in the wild, likely because it is difficult to find information
of interest in other applications’ data stores.

Defense. To address IMEI theft, mobile operating systems
could provide applications with an alternate, globally-unique
device ID. As far as we are aware, the only legitimate reason
for an application to request an IMEI is to uniquely identify
a user in a database, which can be accomplished with a sub-
stitute ID. Unfortunately, the same tactic cannot be applied
to other types of data; non-malicious applications often re-
quire direct access to location, contact lists, etc. However,
inter-application data theft in Android and Symbian could
be prevented by further restricting the rights of Android and
Symbian applications to read other applications’ data.

4.1.3 Stealing User Credentials
People use smartphones for shopping, banking, e-mail,

and other activities that require passwords and payment in-
formation. Banks rely on cell phones for two-factor authen-
tication. Users may also save authentication and payment
credentials in text documents on their phones (for example,
to use the phone as a mobile password manager). This makes
cell phones a target for credential theft. As of 2008, bank ac-
count credentials, credit card numbers, and e-mail account
passwords were worth $10 to $1, 000, $.10 to $25, and $4
to $30, respectively, on the black market [41]. Credentials
could be used directly by malware authors for greater finan-
cial gain, but financial fraud can be difficult to perpetrate
and requires specialization [41].

Three pieces of malware in our data set target user cre-
dentials by intercepting SMS messages to capture bank ac-
count credentials. Notably, Spitmo [59] and ZeusMitmo [11]
work in conjunction with desktop malware to mount so-
phisticated attacks against two-factor authentication. The
desktop component phishes the user and tricks the user into
also installing the smartphone malware. This indicates that
criminals are beginning to use mobile malware to circumvent
the added security of two-factor authentication. A fourth
piece of malware launches a phishing attack on the phone.
Phishing attacks can be more convincing on phones than in
a desktop browser [46, 13, 29], and we expect to see more
phishing attacks from mobile malware in the future. User
credentials could also be captured by keylogging or scanning
documents, although we have not yet seen evidence of these
attack vectors in the wild.

Defense. Phishing is a difficult, unsolved problem, and
two-factor authentication is proving insufficient to defend
against the most sophisticated attacks. However, credential
theft via document searching in Android or Symbian could
be prevented by strengthening application isolation mecha-
nisms. We believe that mobile credential theft will increase
in the future and is a promising area of security research.

4.1.4 Premium-Rate Calls And SMS
Legitimate premium-rate phone calls and SMS messages

deliver valuable content, such as stock quotes, technical sup-
port, or adult services. The cost of a premium-rate call
or SMS is charged to the sender’s phone bill. Premium-
rate calls can cost several dollars per minute, and premium-
rate SMS messages can cost several dollars per message.
Premium-rate calls were abused by desktop malware for fi-
nancial gain in the 1990s and early 2000s, when computers
were connected to dial-up modems. Premium-rate SMS mes-
sages are stealthier than premium-rate calls because calls tie
up the phone line. In Android and Symbian, malware can
completely hide premium-rate SMS messages from the user.
Premium-rate SMS attacks could feasibly go unnoticed until
the user’s next phone bill.

24 of the 46 pieces of recent mobile malware send premium-
rate SMS messages. For example, an application purporting
to be a Russian adult video player sent premium-rate SMS
to an adult service [39]. Another piece of malware, Gein-
imi, was set up to send premium SMS messages to numbers
specified by remote commands [57]. 2 of the 46 malicious
applications place premium-rate phone calls. Each of these
pieces of malware targets either Android or Symbian devices.

Defense. This popular and lucrative incentive for mobile
malware could be completely removed by requiring user con-
firmation for premium-rate SMS messages. iOS already re-
quires user confirmation for all SMS messages, but Android
and Symbian do not; this difference could be partially re-
sponsible for the comparative lack of iOS malware. Phones
can identify outgoing premium-rate SMS messages using the
prefix or length of the number. We propose that the OS
prompt the user to approve each premium-rate message.

We expect the impact on Android and Symbian applica-
tions would be low, as this is already a requirement in iOS.
To evaluate the impact of requiring user approval for sending
premium-rate SMS messages, we consider 956 non-malicious
Android 2.2 applications.2 39 of the 956 applications re-
quest the ability to send SMS messages. We determined
through manual review of the applications that 6 are de-

2Our data set consists of the 756 most popular free appli-
cations, 100 most popular paid applications, and 100 most
recently uploaded applications from the Android Market.

signed to send premium-rate SMS messages, and only if the
user manually enters a premium-rate number into the ap-
plication. Only 0.6% of applications would ever generate
premium-rate prompts, and each would do so infrequently.
None of the applications would break if the user were re-
quired to approve premium-rate SMS messages.

4.1.5 SMS Spam
SMS spam is used for commercial advertising and spread-

ing phishing links. Commercial spammers are incentivized
to use malware to send SMS spam because sending SMS
spam is illegal in most countries. Sending spam from a com-
promised machine reduces the risk to the spammer because
it obscures the provenance of the spam. As we observed in
Section 4.1.4, it is possible to stealthily send SMS spam on
Android and Symbian devices. Users might not notice the
outgoing SMS messages until their monthly phone bills ar-
rive. Even then, users with unlimited SMS messaging plans
may never notice the extra SMS messages. Furthermore,
the use of SMS may lend more authenticity to spam than
e-mail because phone contacts are often more intimately ac-
quainted than e-mail contacts. 8 of the malicious Symbian
and Android applications send SMS spam.

Defense. In iOS, an application that wants to send SMS
messages has two options: (1) provide the built-in SMS mes-
saging application with the appropriate parameters, or (2)
embed an OS-provided UI element that displays the contents
of the SMS message. Either way, the operating system en-
sures that the user has seen and approved the SMS message
before it is sent. All SMS spam in Android and Symbian
could be prevented by similarly not allowing applications to
directly send SMS messages. Instead, applications should
leverage the built-in SMS messaging application when pos-
sible. Applications that truly need to send SMS messages
without an OS intermediary could be accommodated with a
special platform setting that gives the application this right,
after displaying a warning to the user (similar to how alter-
nate input methods are approved in Android). The prompts
for premium-rate SMS messages proposed in Section 4.1.4
should still be shown when the aforementioned special set-
ting is toggled, although they would not be necessary for
messages sent through the built-in SMS messenger.

We consider how this change would affect Android appli-
cations that request the ability to directly send SMS mes-
sages. 39 of the 956 applications in our set of non-malicious
applications request this permission. Our manual review
found that 23 of those applications could easily be rewritten
to use the existing built-in Android SMS messaging appli-
cation, without loss of functionality. Furthermore, 8 more
applications already use the built-in SMS messenger despite
requesting the SEND_SMS permission; the permission could be
removed from the applications without any negative effect.
The remaining 8 applications legitimately need to send SMS
messages without going through an intermediary. 7 of these
8 applications are meant to be alternatives to the built-in
SMS messenger, and 1 silently sends SMS messages with lo-
cation coordinates when a phone is missing. It would be
reasonable for a user to be expected to toggle a special set-
ting to enable this behavior. Since only 0.8% of the 956
applications would ask the user to toggle the setting, users
would not be bombarded by the requirement.

4.1.6 Search Engine Optimization
Many web sites rely on search engines for traffic, which

makes web site owners desire high visibility in search engine
results. Search engines rank web sites according to how
relevant each web site is to a given search term. An engine’s
perception of relevance is influenced by the rate at which
users click on the web sites returned for a search term. A
web site will rise in the results for a search term if many
people search for that term and then click on that web site.

Malware can be employed to improve a web site’s ranking
in search engine results. This type of malware sends web re-
quests to the search engine for the target search term. The
malware then fraudulently “clicks” on the search result that
corresponds to the target web site. As a result, the web
site’s rank for that search term will increase. The value of
fraudulent search engine optimization depends on how well
the target site can capitalize on its increased visibility, but
search engine optimization is a large and lucrative market.
One recent Android Trojan, ADRD/HongTouTou, performs
search engine optimization. ADRD was built to boost the
Baidu search result ranking of a Chinese web site [54]. Desk-
top malware has also been known to fraudulently perform
search engine optimization.

Defense. A potential solution is for mobile operating sys-
tems to add metadata to each web request that identifies the
application that initiated the request. This would help web
sites blacklist requests from applications that are known to
perform click fraud. The identifying information could be
added, for example, as a header. It would be similar to a
user-agent string that applications could not change. How-
ever, this might have privacy implications for users.

4.1.7 Ransom
Malware can be a tool for blackmail. For example, the

desktop Trojan Kenzero stole the user’s browser history,
published it publicly on the Internet alongside the person’s
name, and then demanded 1500 yen to take down the per-
son’s browser history [38]. There has not yet been any
mobile malware that seriously threatens or publicly embar-
rasses the user for profit, but one piece of mobile malware
has sought a ransom. A Dutch worm locked iPhone screens
and demanded 5 euros to unlock the screens of infected
phones [18]. At least two other pieces of mobile malware
read the user’s browser history and bookmarks, but they
have not attempted to use that information for blackmail.
Mobile phones do not offer any technical advantages over
desktop computers to criminals seeking to ransom users.
However, users’ behavior might differ between mobile phones
and desktops in a way that makes one platform a more valu-
able ransom target than the other.

4.2 Future Incentives
In this section, we discuss incentives that we predict will

motivate future mobile malware. Mobile malware has not
yet exhibited evidence of these motivations in the wild.

4.2.1 Advertising Click Fraud
Advertisers pay advertising networks when users view or

click on advertisements. In turn, advertising networks pay
the web sites that host advertisements. Networks may also
be chained in a series, with each network relaying the adver-
tisement and paying the next one in the series. Unscrupulous
web sites and advertising networks defraud advertisers and

non-malicious networks by using desktop malware to load
and click on advertisements [43, 22]. If undetected, click
fraud generates a few cents (or even dollars) per instance of
fraud. The attacker will directly benefit from the fraud by
receiving some portion of the fraudulent payment. An at-
tacker might also launch a click fraud attack on advertising
competitors. This depletes the competitors’ advertisement
budgets, resulting in more legitimate traffic to the attacker’s
ads. Furthermore, competitors may lower their advertising
bids after seeing a lower return on investment, causing the
cost of advertisements to go down [21].

Advertising click fraud is very similar to search engine op-
timization fraud (Section 4.1.6). Although we are not aware
of any mobile malware in the wild that performs advertising
click fraud, we expect to see it soon.

Defense. Like search engine optimization fraud, advertising
click fraud could be mitigated by attaching information to
HTTP(S) requests that identifies the requesting application.

4.2.2 Invasive Advertising
Many legitimate applications use advertisements to earn

money while providing the application to users for free. How-
ever, malicious applications can take advertising a step fur-
ther with invasive advertising practices. Rather than placing
advertisements alongside legitimate application content, ma-
licious adware will display advertisements when the user is
interacting with other applications. This could significantly
interfere with a user’s experience with other applications.

There are two main reasons for an attacker to display ad-
vertisements with malware. First, the attacker may want
to advertise goods or services that are illegal or of a na-
ture that legitimate advertising companies prohibit (e.g.,
pornography, gambling, endangered species products [1, 3]).
An attacker might do this to advertise his own products or
to create a black market advertising network for affiliates’
products. Second, the attacker may simply want to collect
revenue from displaying legitimate advertisements. The at-
tacker may be able to generate more revenue with invasive
advertising practices by displaying advertisements to users
more often or in such a way that users accidentally click on
them. This is not considered click fraud because it capital-
izes on users’ legitimate (albeit accidental) clicks instead of
automated clicks. However, these invasive advertising prac-
tices are against legitimate networks’ terms of service.

We were unable to determine whether any pieces of mal-
ware in our data set display invasive advertisements. Nearly
all of the malware in our data set makes HTTP requests,
but anti-virus reports did not include enough information
to determine the nature of those web requests. However,
adware exists for desktop machines, and we expect to see it
in mobile applications as well.

4.2.3 In-Application Billing Fraud
Android and iOS support in-application billing, which al-

lows a user to purchase a virtual item from an application us-
ing the payment account associated with the Android Mar-
ket or Apple App Store. Users can therefore buy items such
as game credits and music from applications without directly
providing the application with payment information.

We predict that in-application billing may become a tar-
get of fraud in the future. First, the implementations of
in-application billing protocols could include bugs that al-
low malware to charge users for items without their ap-

proval. Second, malicious applications could use social engi-
neering, clickjacking, or phishing attacks to trick users into
accidentally or unknowingly approving in-application pur-
chases. For example, iOS sometimes prompts users to enter
their App Store passwords into windows that hover over ap-
plications, as part of the in-application billing process; these
windows are a potential target for phishing attacks.

4.2.4 Governments
Governments may use mobile phones to monitor citizens

and their activities. Unlike the majority of other incentives
discussed in this paper, government spying is not motivated
directly by financial gain. This type of monitoring could be
performed on a large scale (e.g., China’s Internet monitor-
ing) or targeted at known dissidents or suspected criminals.
It could incorporate GPS tracking, audio and video record-
ing, monitoring of e-mail and SMS messages, and extracting
lists of contacts. For example, in 2009 an ISP in the United
Arab Emirates pushed an “update” to 145, 000 Blackberry
users that drained phone batteries and forwarded copies of
e-mails to a government server [60]. Similarly, China part-
nered with eBay to produce and distribute a customized ver-
sion of Skype that censors and tracks users; standard Skype
is not available for download in China [42].

The government threat model is significantly more pow-
erful than the criminal threat model. Governments have
the ability to gain the cooperation of network carriers and
device manufacturers to manipulate firmware updates, con-
trol official markets, and distribute rootkits on all devices.
Permissions, signing, and anti-virus software can be circum-
vented by a government that can corrupt the integrity of
the operating system. Markets and review processes cannot
be trusted to filter out government-sponsored spyware be-
cause governments can compel the responsible agencies to
publish it. Government agents also can gain physical access
to targets’ phones to install monitoring software.

Unlike criminals, there is little motivation for a govern-
ment to use arbitrary third-party applications to spread mal-
ware, unless the government were unable to gain the cooper-
ation of the necessary corporate parties to launch a stronger
attack. Governments are more likely to subvert smartphone
operating systems or modify specific popular applications
(with the original application no longer available).

4.2.5 E-Mail Spam
Desktop malware uses compromised hosts to send e-mail

spam for advertising and phishing. There are three ways for
malware to send spam from infected hosts:

1. Malware can send spam from the user’s e-mail account,
for example by abusing a logged-in browser session.
However, it is hard for mobile malware to manipulate
a user’s e-mail account; mobile applications are iso-
lated from each other, and most mobile browsers do
not currently support plug-ins or extensions.

2. Malware can make SMTP connections to spam recipi-
ents’ Mail eXchange (MX) servers if the network per-
mits outgoing traffic on port 25 [8]. Some ISPs, in-
cluding all cellular networks, block port 25.

3. Malware can launder spam through open proxies [8].
In many cases, this only requires an outgoing HTTP
request. Mobile malware can do this, although mobile
phones typically have less bandwidth than desktops.

Desktop machines are more attractive as spam clients, so
we do not expect to see e-mail spam as a major motivat-
ing factor for mobile malware. However, it may occur if a
mobile e-mail or social networking client is found to have a
vulnerability that enables abuse of the user’s account.

4.2.6 Distributed Denial of Service
To perpetrate distributed Denial of Service (DDoS) at-

tacks, botnet owners command large groups of compromised
machines to simultaneously send requests to servers. DDoS
attacks can be launched for ransom, amusement, cyberwar-
fare, or as a paid service to others. Traditional DDoS attacks
are difficult to stop because of their distributed nature, but
one approach is for the server to block the IP addresses of
visitors that behave anomalously. Consequently, each at-
tacking machine is limited to a small number of fraudulent
requests. This would not be an effective defense mecha-
nism against mobile-based DDoS attacks because cellular
networks assign new IP addresses as often as every few min-
utes [10]. If that rate of IP assignment is not fast enough,
mobile malware can force the assignment of a new IP ad-
dress from the cellular network by resetting the data con-
nection [10]. In comparison, many desktop machines have
static or infrequently-changing public IP addresses that can-
not be forcibly reassigned.

Despite this advantage, mobile phones also present chal-
lenges for DDoS attackers. Mobile phones on cellular net-
works have significantly less bandwidth than non-mobile de-
vices. Furthermore, an attacker would need to avoid drain-
ing the phone’s battery too much, limiting a mobile device
to a few HTTP requests every few minutes. We expect to
eventually see some DDoS malware for mobile phones, but
not until phones’ bandwidth and batteries improve.

4.2.7 NFC and Credit Cards
Mobile phones are beginning to incorporate Near Field

Communication (NFC), which allows short, paired trans-
actions with other NFC-enabled devices in close proximity.
NFC can be used for commerce (i.e., accepting credit card
transactions), social networking (e.g., sharing contact infor-
mation), device configuration (e.g., automatically configur-
ing WiFi), and more. It is predicted that mobile payments
using NFC will reach $670 billion by 2015 [16].

Previous research has studied NFC and its potential im-
pact on device security [34, 45]. Already, bugs have been
found in an Android implementation of NFC [50], resulting
in denial of service and battery degradation. We predict
that NFC will become a popular target for malware due to
the ease with which financial transactions can occur using
NFC. Malware that is capable of using NFC has the poten-
tial ability to surreptitiously read and interact with NFC-
enabled devices placed close to the phone (e.g., in a pocket),
such as credit cards or personal identification cards.

5. MALWARE DETECTION
Apple, Google, and Nokia use application permissions and

review (as part of market curation and signing) to protect
users from malware. We evaluate the effectiveness of these
mechanisms against the malware in our data set.

Number of
Dangerous
permissions

Number of
non-malicious
applications

Number of
malicious
applications

0 75 (8%) -
1 154 (16%) 1
2 182 (19%) 1
3 152 (16%) -
4 140 (15%) 2
5 82 (9%) 1
6 65 (7%) -
7 28 (3%) 2
8 19 (2%) 1
9 21 (2%) 1
10 10 (1%) 1
11 6 (0.6%) 1
12 7 (0.7%) -
13 4 (0.4%) -
14 4 (0.4%) -
15 2 (0.2%) -
16 1 (0.1%) -
17 1 (0.1%) -
18 - -
19 - -
20 1 (0.1%) -
21 - -
22 - -
23 1 (0.1%) -
24 - -
25 - -
26 1 (0.1%) -

Table 2: The number of “Dangerous” Android per-
missions requested by 11 pieces of malware and 956
non-malicious applications [28].

5.1 Permissions
Permissions theoretically could help users or reviewers

identify malware, if the malicious applications’ permission
requests differ from normal, non-malicious applications’ per-
mission requests. Our goal is to determine whether permis-
sions are a useful tool for identifying malware in practice.

This section evaluates whether the Android malware in
our data set exhibits anomalous patterns of permission re-
quests. Could a simple classifier use the permission requests
of malware to differentiate malicious from non-malicious ap-
plications? We chose to study Android malware because An-
droid has the most extensive permission system and there-
fore represents the best platform for permission-based clas-
sification. To perform the study, we collected the permission
requests made by each piece of Android malware. This data
was not always available from anti-virus researchers, but we
were able to identify the permission requirements for 11 of
the 18 Android malware applications.

Number of Permissions. Table 2 displays the number
of permissions requested by the 11 pieces of malware in our
data set, alongside the permission requests of non-malicious
applications. On average, the Android malware in our data
set is more privileged than non-malicious applications: ma-
licious applications request an average of 6.18 Dangerous3

permissions, and non-malicious applications request an av-

3Android has four categories of permissions; users see per-
missions from the “Dangerous” category during installation.

erage of 3.46 Dangerous permissions. However, as Table 2
shows, the distribution of permissions for malware falls en-
tirely within the distribution for non-malicious applications.
2% of non-malicious applications request more permissions
than any piece of malware in our set [28], and two pieces
of malware ask for fewer permissions than the average for
non-malicious applications. This shows that the number of
permissions alone is not sufficient to identify malware, but
it could be used as part of a set of classification features.

Common Permissions. We consider whether any of the
permissions that are common within the set of malware are
infrequent among non-malicious applications. If so, those
permissions could be used as features to classify malware.
The most promising characteristic of the malware is the use
of SMS permissions. 8 of the 11 malicious applications (73%)
request the ability to send SMS messages without user con-
firmation, while 4% of non-malicious applications ask for
that permission [28]. This indicates that the SMS sending
permission might be an effective classification feature. We
also found that the READ_PHONE_STATE permission (which
controls access to the IMEI) may be a promising feature for
classifying malware, if used in combination with other fea-
tures. In particular, 8 of 11 (73%) of malicious applications
in our sample ask for this permission, while only 33% of
legitimate applications request this permission [28].

None of the other common malware permissions appears
promising for identifying malware because of a high false
positive rate. Besides the SMS sending permission and READ_

PHONE_STATE, all of the permissions that are common within
the malware are also requested frequently by non-malicious
applications. 9 malicious applications ask for Internet ac-
cess, 4 ask for the ability to read data on the SD card, and
4 want to read the user’s location. Despite their associa-
tion with abuse by malware, these permissions are also very
popular with non-malicious applications: 87% of legitimate
applications use the Internet and about one-third of appli-
cations ask for each of the other permissions [28].

Sets of Permissions. Enck et al. propose to identify mal-
ware with sets of permissions [26]. Their security rules clas-
sify applications based on sets of permissions rather than
individual permissions to reduce the number of false posi-
tives. For example, nearly one-third of applications request
access to user location, but far fewer request access to user
location and the ability to launch as soon as the phone boots.

Their set-based security rules identify 4 of the 11 pieces
of malware. In our data set, 2 malicious applications violate
their rules pertaining to SMS messaging, 1 malicious appli-
cation violates their location rules, and 1 malicious applica-
tion violates their rule about recording audio. These rules
would have caught 36% of this set of malware, and they re-
port a 3.8% false positive rate [26]. They achieve a low false
positive rate at the expense of a low recall rate. This has ap-
proximately the same false positive rate as using the single
SMS sending permission for classification, but with half the
recall. (The SMS sending permission captures a superset of
the applications captured by their rules.) However, the re-
call of the SMS rule would dramatically decrease if the rule
were put into place or smartphones began to require user
confirmation for premium-rate SMS messages. As a conse-
quence, more sophisticated rules and classification features,
such as future work on permission sets, would be required.

5.2 Application Review
Apple reviews all applications that are in the App Store.

Symbian automatically tests all Symbian Signed applica-
tions; some are also human-reviewed. We consider whether
these processes prevented the malware in our data set.

iOS. Although Apple has accidentally listed (and then re-
moved) grayware in the Apple App Store, we are unaware
of any malware that has been listed in the Apple App Store.
All 4 pieces of Apple malware spread through the same SSH
backdoor in jailbroken iOS devices, and none were listed
in the App Store. This may indicate that Apple’s review
process is successful at identifying or discouraging malware,
although an alternate explanation is that malware authors
are not targeting iOS because of the SMS restrictions.

Symbian. At least 5 of the 24 pieces of Symbian malware
in our data set were Symbian Signed. This implies that
they passed through at least the automated review, although
we were unable to determine which were human-reviewed.
Additionally, 2 malicious applications (ZeusMitmo [11] and
Spitmo [59]) evaded the signing process by working with
desktop malware to phish for users’ IMEIs prior to infec-
tion. After tricking users into revealing their IMEIs, the
malware authors added the IMEIs as “test phones” to their
developer certificates. Each malware author obtained mul-
tiple developer certificates to circumvent the restriction of
1000 phones per certificate. As a result, the malware would
have appeared Symbian Signed to the victims. At least 2
pieces of Symbian malware lacked certificates and, conse-
quently, were limited to the permissions that users were able
and willing to grant during installation. We were unable to
determine how many of the 15 remaining pieces of malware
were Symbian Signed. However, at least 29% of the Sym-
bian malware passed through or evaded the Symbian signing
process, which indicates that it is not an effective deterrent.

6. ROOT EXPLOITS
Root exploits (also known as “jailbreaks”) are used by

both malware authors and smartphone owners. Malware au-
thors want to circumvent security mechanisms, and smart-
phone owners want to customize their phones. As a result,
the widespread public availability of root exploits found by
smartphone owners inadvertently enables malware authors
to write sophisticated malware.

In this section, we discuss the ecosystem surrounding root
exploits of mobile handsets. First, we describe the incentive
structure that encourages people to find and publicize root
exploits. Next, we present data regarding the availability of
root exploits over time for 6 Android handsets. Finally, we
discuss a strategy for fixing the incentive structure so that
it no longer promotes the availability of root exploits.

6.1 Incentives
Root exploits for mobile phones are coveted by two dif-

ferent groups of people: malware authors and smartphone
users who want to modify their phones. Malware authors
can use root exploits to gain extra privileges and perform
any operation on the phone. For example, an attacker can
use a root exploit on an Android phone to gain access to
parts of the API that are supposed to be protected by the
permission system. On the other hand, smartphone owners
covet root exploits to create and install homebrew (i.e., cus-
tomized) versions of operating systems. Consumers desire

Phone Phone Release Date Days without known
root exploit

Days with known root
exploit

Percent of time with
known root exploit

EVO 4G June 4, 2010 83 304 79%
Epic 4G August 31, 2010 9 290 97%
Atrix 4G February 22, 2011 3 121 98%

Thunderbolt March 17, 2011 18 83 82%
T-Mobile G2X April 15, 2011 0 72 100%
Droid Charge May 14, 2011 11 32 74%

Table 3: We report the number and percentage of days between a handset’s release date and June 26, 2011
in which there was a publicly available root exploit published by the Android homebrew community.

Figure 2: A timeline displaying the dates that known root exploits were available for 6 popular Android
phones. Circles mark the release dates of the phones.

homebrew handsets because the majority of smartphones
ship with at least one of the following limitations:

• Users can install only those applications that are dis-
tributed through the official application store (e.g., iOS
only permits applications from the App Store).

• Users cannot perform complete system backups.

• Carriers forbid or restrict tethering so that users are
required to pay an additional fee to share the phone’s
Internet connection with a computer.

• Carriers pre-install certain applications on phones and
then disable their removal, such as Sprint’s NASCAR
Android application.

• Users cannot install custom versions of the operating
system that contain additional features or improve-
ments. For example, one custom version of Android
provides OpenVPN support [20].

A root exploit allows a user to evade these restrictions be-
cause it provides the user with complete control of the phone’s
software stack.

Currently, the incentives of malware authors and smart-
phone owners are aligned with respect to root exploits. Mal-
ware authors benefit from the community of non-malicious
individuals who are interested in finding root exploits for
mobile phones. The homebrew community typically finds
root exploits as quickly as possible when new phones or
software upgrades are released, in order to maintain full ac-
cess to the software stack. Malware authors do not need to
develop their own root exploits because they can wait for
smartphone tinkerers to do so for them.

Malware from our data set is already taking advantage
of root exploits that are found by smartphone users. Four
pieces of Android malware (DroidDream, Zhash, Droid Kung
Fu, and Basebridge) used root exploits that were published
by the homebrew community to attack phones [33, 56, 37,
23]. At least two of them included multiple root exploits to
ensure success on different devices.

6.2 Root Exploit Availability
We performed a measurement experiment to determine

the availability of root exploits. If the homebrew community
has published a root exploit for a given device and operating
system version, then that device is at risk of attack with a
root exploit. To quantify the scope of this threat, we chose
to study the availability of root exploits for 6 of PCWorld’s
“Top 10 Android Phones” [7]. We chose the top 5 phones
in the list plus the phone with the earliest release date, the
EVO 4G. We focus on Android because existing Android
malware uses root exploits, but we are not aware of Symbian
or iOS malware that does so.

Methodology. For each phone, we gathered data on (1)
the release date and firmware updates for the phone, and
(2) the dates when the homebrew community reported that
a root exploit was available for the current firmware version
of the phone. By comparing these two dates, we can see how
long a root exploit was available for a phone relative to the
lifespan of that phone and firmware version.

We collected data on firmware updates by looking for news
stories that report the release dates of new phones and OTA
(over-the-air) firmware updates. We gathered the release
dates of root exploits by looking through the forums on the
xda-developers web site [6], a popular web site dedicated
to Android and Windows mobile developers. Root exploits
are often published on xda-developers as a set of detailed
instructions on how to root a firmware version of a device.
This represents a lower bound of the time that a root ex-
ploit is available because we may not have found the earliest
instructions to root the device.

Results. The summary data from this experiment is pro-
vided in Table 3. The availability of root exploits over time
is also depicted graphically in Figure 2. Every device had
a root exploit publicly available for at least 74% of the de-
vice’s lifetime. The latest firmware versions lacked a pub-
lished root exploit for only the first 5.2 days, on average.
Additionally, root exploits were available prior to or on the
official release dates of 9 of the 24 total versions.

6.3 Discussion
As our study shows, the homebrew community is quick

to develop root exploits for new handsets and software ver-
sions. Although our study focuses on Android, other plat-
forms also face this problem; for example, the latest iOS
version was released on May 4, 2011, and jailbreaking tuto-
rials were available by May 6, 2011 [9]. Currently, legitimate
users are incentivized to develop root exploits in an effort to
gain control of their devices and to maintain the increased
functionality that they obtain with root access. We there-
fore believe that the current “locked” model used by phone
vendors is detrimental to the security of end users because
it aligns the incentives of attackers and smartphone users.
For Android, the percentage of days that root exploits are
available is so high that it might be more effective for mal-
ware authors to use these root exploits in lieu of tricking
users into accepting dangerous permissions.

An alternative model that does not incentivize homebrew
root exploits exists. Some device manufacturers have be-
gun to ship phones with unlocked bootloaders [14]. This
allows users to customize their phones without relying on
an exploit, but it requires physical access to the phone so
that remote attackers cannot abuse it. Under this model,
attackers must find exploits without the help of the home-
brew community. This prevents the efforts of the homebrew
community from affecting the safety of all phone users.

Disincentivizing root exploits does not solve all problems
associated with device customization. Users with jailbro-
ken phones face the risk of vulnerabilities introduced by
customized operating systems. All 4 pieces of iOS mal-
ware targeted a backdoor in incorrectly configured jailbro-
ken phones [47], and one piece of Android malware took
advantage of a security error introduced by certain custom
Android versions [55]. However, unlike the threat posed
by root exploits, this type of malware is limited to phones
that have been voluntarily customized by their owners. Ac-
cording to estimates, 15% to 20% of Android phones are
rooted [51], and 6% of iPhones are jailbroken [65].

7. RELATED WORK
Mobile Malware. In 2004, Guo et al. predicted that mo-
bile malware would be used for attacks against telecom net-
works, call centers, spam, identity theft, and wiretapping [32].
Others have surveyed and discussed mobile malware seen in
2005 through 2008 [49, 53, 61, 52, 40]. We present an up-
dated discussion of the feasibility of mobile-based attacks,
given modern smartphone capabilities. We also evaluate
the incentives that underlie the different types of attacks.
In 2009, Enck et al. presented potential incentives for mo-
bile malware [26]. We follow their work with a more in-
depth consideration of mobile malware incentives and a sur-
vey that validates their predictions that premium SMS and
information-gathering malware would become prevalent. In
more recent work, Becher et al. and Vidas et al. discuss po-
tential mobile attack vectors, such as the web browser and
physical access [12, 64]. They focus on describing attack
mechanisms, whereas we survey malware.

Underground Economies. In 2007, Franklin and Paxson
collected IRC logs relating to the Internet black market [30].
They investigated the types of data traded and found that
the price of a compromised desktop machine varies between

$2 and $25, depending on the time of year. A 2008 Symantec
white paper also explored the prices and availability of stolen
data on the black market [41].

DDoS on Cellular Networks. In addition to the Inter-
net attacks we discussed in Section 4.2.6, DDoS attacks can
be launched against the cellular network. Phones in close
physical proximity to each other could simultaneously place
calls to flood call centers and GSM base stations [32]. The
primary difficulty with this attack is that users are likely to
notice spurious phone calls on their phones, so we do not
expect this to become a popular attack vector. Traynor et
al. also showed that 11, 750 mobile phones in the same area-
code sized region could degrade service to other phones in
the region by 93% by sending data messages to cellular net-
work servers [62]. This type of attack would require a high
infection rate in a localized area but could be accomplished
with a rapid-spreading worm. Finally, malformed SMS mes-
sages can crash phones, causing a DDoS when the phones
drop off the network and repeatedly try to reconnect at the
same time [19]. This attack simply requires a hit list of mo-
bile phone numbers and a bulk SMS operator, and it does
not require installation of malware onto the phone.

Other Platforms. We do not discuss Windows Mobile,
Windows Phone 7, Palm, or BlackBerry malware. Although
defenses differ between platforms, the incentives for mobile
malware are not platform-dependent. Similar malware ex-
ists for BlackBerry and Windows phones (for example, a
BlackBerry variant of ZeusMitmo defeats two-factor authen-
tication [63], and a Windows Mobile Trojan makes premium
international calls [27]). We are not aware of any Black-
Berry, Palm, or Windows phone malware that currently im-
plements the future attacks discussed in Section 4.2.

8. CONCLUSION
Mobile malware is evolving into a complex ecosystem that

will likely eventually rival the desktop malware landscape.
In this paper, we survey the behavior of current mobile mal-
ware payloads. At present, mobile malware is motivated pri-
marily by a desire to send premium-rate SMS messages and
sell information. The former motivation can be defeated by
requiring user confirmation for premium-rate SMS messages
(as iOS does), but more research is required on the topic of
defending against malware that steals user data and creden-
tials. We also explore potential future directions of malware;
in particular, we think that credential theft, credit card theft
via NFC, and advertising click fraud are the most likely to
be targeted by future malware authors.

As part of our survey, we examined the permissions of
Android malware. Android malware commonly requests the
ability to directly send SMS messages, which is uncommon
among non-malicious applications. However, we were unable
to identify any other permission-based patterns for malware
classification. Permission-based classification will require fu-
ture consideration as the set of known Android malware
grows. We also observed that none of the malware in our
data set was approved by the Apple App Store, which in-
dicates that human review may be an effective preventative
measure for malware. Symbian’s automated review-and-sign
process fared worse; nearly a third of the Symbian malware
in our data set was approved by or evaded this process.

Currently, both malware authors and smartphone users
are incentivized to find root exploits. The homebrew com-

munity publishes root exploits to help smartphone owners
customize their phones. However, malware can use these
same root exploits to circumvent smartphone security mech-
anisms; indeed, 4 pieces of malware in our data set do this.
We consider the impact of the homebrew community and
find that root exploits are available between 74% and 100%
of phones’ lifetimes. We recommend that phone manufactur-
ers support smartphone customization so that the homebrew
community does not need to seek root exploits.

Acknowledgements
We would like to thank Chris Grier for his insightful com-
ments about the motivations for current desktop malware.
This work is partially supported by a gift from Google and
NSF grants CNS-1018924 and CCF-0424422. This material
is also based upon work supported under NSF Graduate Re-
search Fellowships. Any opinions, findings, conclusions, or
recommendations expressed here are those of the authors
and do not necessarily reflect the views of the NSF.

9. REFERENCES
[1] Adwords content guidelines.

http://adwords.google.com/support/aw/bin/

static.py?hl=en&guide=28435&page=guide.cs.

[2] Android Market. http://www.android.com/market.

[3] Google AdSense Program Policies.
https://www.google.com/adsense/support/bin/

answer.py?answer=48182.

[4] iPhone App Store.
http://www.apple.com/iphone/apps-for-iphone.

[5] Ovi store. http://store.ovi.com.

[6] xda-developers. http://www.xda-developers.com.

[7] Top 10 Android Phones, 2011.
http://www.pcworld.com/reviews/collection/

3286/top_10_android_phones.html.

[8] A. Al-Bataineh and G. White. Detection and
Prevention Methods of Botnet-generated Spam. In
MIT Spam Conference, 2009.

[9] T. Asad. Jailbreak ios 4.3.3 untethered on iphone 4,
3gs, ipad, ipod touch with pwnagetool 4.3.3 [tutorial].
Redmond Pie, 2011.
http://www.redmondpie.com/jailbreak-ios-4.3.

3-untethered-iphone-4-3gs-ipad-ipod-touch-4g-

3g-using-pwnagetool-4.3.3-tutorial.

[10] M. Balakrishnan, I. Mohomed, and
V. Ramasubramanian. Where’s That Phone?
Geolocating IP Addresses on 3G Networks. In IMC,
2009.

[11] D. Barroso. ZeuS Mitmo: Man-in-the-mobile (III).
http://securityblog.s21sec.com/2010/09/

zeus-mitmo-man-in-mobile-iii.html.

[12] M. Becher, F. Freiling, J. Hoffmann, T. Holz,
S. Uellenbeck, and C. Wolf. Mobile Security Catching
Up? Revealing the Nuts and Bolts of the Security of
Mobile Devices. In IEEE Symposium on Security and
Privacy, 2011.

[13] M. Boodaei. Mobile Users Three Times More
Vulnerable to Phishing Attacks. Trusteer Technical
Report.

[14] C. Burns. HTC Unlocking Bootloaders Across the
Board [OFFICIAL], 2011. http://www.slashgear.

com/htc-unlocking-bootloaders-across-the-board

-official-26155031.

[15] J. Caballero, C. Grier, C. Kreibich, and V. Paxson.
Measuring pay-per-install: The commoditization of
malware distribution. In USENIX Security, 2011.

[16] M. Calamia. Mobile payments to surge to $670 billion
by 2015.
http://www.mobiledia.com/news/96900.html, 2011.

[17] R. Cannings. An update on Android Market security.
Google Mobile Blog.
http://googlemobile.blogspot.com/2011/03/

update-on-android-market-security.html.

[18] G. Clucley. Hacked iPhones held hostage for 5 Euros.
Naked Security, 2009.

[19] C.Mulliner, N. Golde, and J. Seifert. SMS of Death:
From Analyzing to Attacking Mobile Phones on a
Large Scale. In USENIX Security, 2011.

[20] Cyanogen(mod). OpenVPN, 2011.
http://www.cyanogenmod.com/features/openvpn.

[21] N. Daswani, C. Mysen, V. Rao, S. Weis,
K. Gharachorloo, and S. Ghosemajumder. Online
advertising fraud. Crimeware: Understanding New
Attacks and Defenses, 2008.

[22] N. Daswani and M. Stoppelman. The anatomy of
Clickbot. A. In Proceedings of the first conference on
First Workshop on Hot Topics in Understanding
Botnets, pages 11–11. USENIX Association, 2007.

[23] S. Doherty and P. Krysiuk. Android.Basebridge.
Symantec, 2011.
http://www.symantec.com/security_response/

writeup.jsp?docid=2011-060915-4938-99.

[24] M. Egele, C. Kruegel, E. Kirda, and G. Vigna. PiOS:
Detecting Privacy Leaks in iOS Applications. In
NDSS, 2011.

[25] W. Enck, P. Gilbert, B. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. TaintDroid: An
Information-Flow Tracking System for Realtime
Privacy Monitoring on Smartphones. In OSDI, 2010.

[26] W. Enck, M. Ongtang, and P. McDaniel. On
Lightweight Mobile Phone Application Certification.
In CCS, 2009.

[27] F-Secure. Trojanised mobile phone game makes
expensive phone calls. http://www.f-secure.com/
weblog/archives/00001930.html, 2010.

[28] A. P. Felt, K. Greenwood, and D. Wagner. The
Effectiveness of Application Permissions. In USENIX
WebApps, 2011.

[29] A. P. Felt and D. Wagner. Phishing on Mobile
Devices. In W2SP, 2011.

[30] J. Franklin and V. Paxson. An inquiry into the nature
and causes of the wealth of Internet miscreants. In
CCS, 2007.

[31] D. Goodin. Backdoor in top iPhone games stole user
data, suit claims. The Register, 2009.

[32] C. Guo, H. J. Wang, and W. Zhu. Smart Phone
Attacks and Defenses. In ACM Workshop on Hot
Topics in Networks, 2004.

[33] J. Hamada. New Android Threat Gives Phone a Root
Canal. Symantec, 2011.
http://www.symantec.com/connect/blogs/

new-android-threat-gives-phone-root-canal.

[34] E. Haselsteiner and K. Breitfuß. Security in near field
communication. Workshop on RFID Security, 2006.

[35] iClarified. How to change your iPhone IMEI with
ZiPhone (Windows). http:
//www.iClarified.com/entry/index.php?enid=657.

[36] J. Jamaluddin, N. Zotou, and P. Coulton. Mobile
phone vulnerabilities: a new generation of malware. In
IEEE International Symposium on Consumer
Electronics, 2004.

[37] X. Jiang. Security Alert: New Sophisticated Android
Malware DroidKungFu Found in Alternative Chinese
App Markets. http://www.cs.ncsu.edu/faculty/
jiang/DroidKungFu.html, 2011.

[38] C. Johnson. Kenzero virus blackmails those who
illegally download anime porn. BBC. http:
//news.bbc.co.uk/2/hi/technology/8622665.stm.

[39] Juniper Global Threat Center. Fake player.
http://globalthreatcenter.com/?p=1907.

[40] G. Lawton. Is it finally time to worry about mobile
malware? Computer, May 2008.

[41] M. Fossi (Editor). Symantec Report on the
Underground Economy. Symantec Corporation, 2008.

[42] J. Markoff. Surveillance of Skype Messages Found in
China. New York Times, 2008.

[43] B. Miller, P. Pearce, C. Grier, C. Kreibich, and
V. Paxson. What’s Clicking What? Techniques and
Innovations of Today’s Clickbots. In DIMVA, 2011.

[44] Mobclix. Monthly value of an app user. http://blog.
mobclix.com/index/PDF/january_infographic.pdf.

[45] C. Mulliner. Vulnerability Analysis and Attacks on
NFC-enabled Mobile Phones. In Proceedings of the 1st
International Workshop on Sensor Security (IWSS) at
ARES, Fukuoka, Japan, 2009.

[46] Y. Niu, F. Hsu, and H. Chen. iPhish: Phishing
Vulnerabilities on Consumer Electronics. In UPSEC,
2009.

[47] P. Porras and H. Saidi and V. Yegneswaran. An
Analysis of the Ikee.B (Duh) iPhone Botnet. SRI
International, 2009. http://mtc.sri.com/iPhone.

[48] Panda Security. Eeki.A. http://www.pandasecurity.
com/homeusers/security-info/215107/Eeki.A, 2009.

[49] C. Peikari. PDA attacks, part 2: airborne
viruses-evolution of the latest threats. (IN) SECURE
Magazine, 2005.

[50] P. Roberts. Android NFC bug could be the first of
many. http://threatpost.com/en_us/blogs/
android-nfc-bug-could-be-first-many-062011,
2011.

[51] S. Rosenblatt. Avast to go mobile, get VPN. The
Download Blog, 2011.
http://download.cnet.com/8301-2007_

4-20074377-12/avast-to-go-mobile-get-vpn.

[52] A. Schmidt, H. Schmidt, L. Batyuk, J. H. Clausen,
S. A. Camtepe, and S. Albayrak. Smartphone
Malware Evolution Regisited: Android Next Target?
In MALWARE, 2009.

[53] A. Shevchenko. An overview of mobile device security.
http://www.viruslist.com/en/analysis.

[54] T. Strazzere. Security Alert: HongTouTou, New
Android Trojan, Found in China. The Lookout Blog,
2011.

[55] T. Strazzere. Security Alert: Malware Found Targeting
Custom ROMs (jSMSHider). The Lookout Blog, 2011.

[56] T. Strazzere. Security Alert: zHash, A Binary that
can Root Android Phones, Found in Chinese App
Markets and Android Market. The Lookout Blog, 2011.

[57] Symantec. Android.geinimi.
http://www.symantec.com/security_response/

writeup.jsp?docid=2011-010111-5403-99.

[58] Symantec. Android threat set to trigger on the end of
days, or the
day’s end. http://www.symantec.com/connect/blogs/
android-threat-set-trigger-end-days-or-day-s-end,
2011.

[59] Symantec. Symbos.spitmo.
http://www.symantec.com/security_response/

writeup.jsp?docid=2011-040610-5334-99, 2011.

[60] B. Thompson. UAE Blackberry update was spyware.
http:

//news.bbc.co.uk/2/hi/technology/8161190.stm.

[61] S. Toyssy and M. Helenius. About malicious software
in smartphones. Journal in Computer Virology, 2006.

[62] P. Traynor, M. Lin, M. Ongtang, V. Rao, T. Jaeger,
P. McDaniel, and T. La Porta. On Cellular Botnets:
Measuring the Impact of Malicious Devices on a
Cellular Network Core. In CCS, 2009.

[63] Trend Micro. BBOS ZITMO.B.
http://about-threats.trendmicro.com/Malware.

aspx?language=us&name=BBOS_ZITMO.B, 2011.

[64] T. Vidas, D. Votipka, and N. Christin. All your droid
are belong to us: A survey of current android attacks.
In WOOT, 2011.

[65] J. Wortham. Unofficial Software Incurs Apple’s
Wrath. The New York Times, 2009.

APPENDIX
A. LIST OF MALWARE
Android. Fake Player, Geinimi, ADRD a.k.a. HongTouTou,
PJApps, DroidDream a.k.a. Rootcager, Bgserv, Zhash a.k.a.
Zeahache, Walk&Text a.k.a. Walkinwat, Adsms, Zsone a.k.a.
Smstibook, Smspacem, Lightdd a.k.a. Droid Dream Light,
DroidKungFu a.k.a. Legacy a.k.a. Gonfu, Basebridge, YZHC-
SMS a.k.a. Uxipp, Plankton a.k.a. Tonclank, jSMSHider,
and Ggtracker.

iOS. Dutch 5Euro Ransom, Ikee a.k.a. Eeki.A, Privacy.A,
and Ikee.B a.k.a. Duh.

Symbian. Kinap a.k.a. Panika a.k.a. Appdisabler, Flocker,
Exy a.k.a. Yxe, Feixiang, BadAssist, Album, CommDN,
MerogoSMS a.k.a. Merogo, Enoriv a.k.a. SMSSend.2, Down-
sis, Nokmaplug a.k.a. NMPlugin a.k.a. Nmapplug, CReadMe,
ZeusMitmo a.k.a. Zitmo a.k.a. Zbot, Sagasi a.k.a. SPIsSaga,
Themeinstaller, GamePackage, Zhaomiao a.k.a. SZhaomiao,
InSpirit, Instalarm a.k.a. Installer.A, Shurufa, Lopsoy, Spitmo,
Sslcrypt, and SkinServer.

