
A System Call-Centric Analysis and Stimulation Technique
to Automatically Reconstruct Android Malware Behaviors

Alessandro Reina
Dept. of Computer Science

Università degli Studi di Milano
ale@security.di.unimi.it

Aristide Fattori
Dept. of Computer Science

Università degli Studi di Milano
aristide@security.di.unimi.it

Lorenzo Cavallaro
Information Security Group

Royal Holloway, University of London
lorenzo.cavallaro@rhul.ac.uk

ABSTRACT
With more than 500 million of activations reported in Q3
2012, Android mobile devices are becoming ubiquitous and
trends confirm this is unlikely to slow down. App stores,
such as Google Play, drive the entire economy of mobile
applications. Unfortunately, high turnovers and access to
sensitive data have soon attracted the interests of cyber-
criminals too with malware now hitting Android devices at
an alarmingly rising pace. In this paper we present Copper-
Droid, an approach built on top of QEMU to automatically
perform out-of-the-box dynamic behavioral analysis of An-
droid malware. To this end, CopperDroid presents a unified
analysis to characterize low-level OS-specific and high-level
Android-specific behaviors. Based on the observation that
such behaviors are however achieved through the invocation
of system calls, CopperDroid’s VM-based dynamic system
call-centric analysis is able to faithfully describe the behav-
ior of Android malware whether it is initiated from Java,
JNI or native code execution.

We carried out extensive experiments to assess the effec-
tiveness of our analyses on a large Android malware data set
of more than 1,200 samples belonging to 49 Android mal-
ware families (provided by the Android Malware Genome
Project) and about 400 samples over 13 families (collected
from the Contagio project). Our experiments show that
a proper malware stimulation strategy (e.g., sending SMS,
placing calls) successfully discloses additional behaviors on
a non-negligible portion of the analyzed malware samples.

1. INTRODUCTION
With more than 500 million of activations reported in Q3

2012, Android mobile devices are becoming ubiquitous and
trends show that such a pace is unlikely slowing down [15].
Android devices are extremely appealing: powerful, with a
functional and easy-to-use user interface to access sensitive
user and enterprise data, they can easily replace traditional
computing devices, especially when information is mostly
consumed rather than produced.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EuroSec ’13, April 14 2013, Prague, Czech Republic
Copyright 2013 ACM 978-1-4503-2120-4/13/04 ...$15.00.

Application marketplaces, such as Google Play and the
Apple App Store, drive the entire economy of mobile appli-
cations. For instance, with more than 600,000 applications
installed, Google Play has generated revenues of about 237M
USD per year [8]. Such a wealth and quite unique ecosys-
tem with high turnovers and access to sensitive data have
unfortunately also attracted the interests of cybercriminals,
with malware now hitting Android devices at an alarmingly
rising pace. Users privacy breaches (e.g., access to address
book and GPS coordinates) [28], monetization through pre-
mium SMS and calls [28], and colluding malware to by-
pass 2-factor authentication schemes [7] are all real threats
rather than a fictional forecasting. Recent studies back eas-
ily such statements up, reporting how mobile marketplaces
have been abused to host malware or legitimate-resembling
applications (usually games) embedding malicious compo-
nents [26].

Unfortunately, the nature of Android applications makes
it hard—if not impossible—to rely on existing VM-based
dynamic malware analysis systems as is. In fact, Android
applications are generally written in the Java programming
language and executed on top of the Dalvik virtual ma-
chine [4], but native code invocation is however possible via
JNI or Linux ELF binary execution. This mixed environ-
ment seems to suggest the need to reconstruct and keep in
sync out-of-the-box semantics through virtual machine in-
trospection (VMI) [10] for both the OS and Dalvik views,
as very recently shown in [25]. On the one hand, OS-level
semantics (e.g., writing to a file, executing a program) would
allow to characterize JNI or native ELF-induced behaviors,
while Dalvik-level semantics would enable to disclose high-
level Android-specific behaviors (e.g., sending an SMS).

While true in principle, we observe that even high-level
Android-specific behaviors are indeed achieved via system
call invocations, underneath. In fact, as described later,
Android applications may interact with the system via well-
defined system call-initiated IPC and RPC invocations to
carry out their tasks. Although Java-related information
can undoubtedly further aid malware analysts to understand
fine-grained behaviors (e.g., encryption of user data), they
seem unnecessary to describe and understand the fundamen-
tal actions Android malware perform.

In this paper we present CopperDroid, an approach built
on top of QEMU [3] to automatically perform out-of-the-
box dynamic behavioral analysis of Android malware. To
this end, CopperDroid presents a unified analysis to char-
acterize low-level OS-specific (e.g., opening and writing to
a file, executing a program) and high-level Android-specific

(e.g., accessing personal information, sending an SMS) be-
haviors. In particular, based on the observation that such
behaviors are all achieved through the invocation of system
calls, CopperDroid’s VMI-based system call-centric analysis
faithfully describes Android malware behavior whether it is
initiated from Java, JNI or ELF code.

In summary, we make the following contributions:

1. We describe the design and implementation of a unified
dynamic analysis technique to characterize the behav-
ior of Android malware. Our analysis is able to auto-
matically describe low-level OS-specific and high-level
Android-specific behaviors of Android malware by ob-
serving and analyzing system call invocations, includ-
ing IPC and RPC interactions, carried out as system
calls underneath.

2. Based on the observation that Android applications
are inherently user-driven and feature a number of
implicit but well-defined entry points, we outline the
design and implementation of a stimulation approach
aimed at disclosing additional malware behaviors.

3. We provide a thorough evaluation of CopperDroid’s
analysis on more than 1,200 malware samples belong-
ing to 49 Android malware families as provided by
the Android Malware Genome Project [27] and about
400 samples over 12 Android malware families from
the Contagio project [6]. Our experiments show that
CopperDroid is able to automatically and faithfully de-
scribe the behavior of the samples in our data sets.
Furthermore, CopperDroid confirms the importance of
a proper malware stimulation approach (e.g., sending
SMS, placing calls), which allowed us to disclose an av-
erage of 28% of unique additional behaviors on more
than 60% of the Android Malware Genome Project’s
samples and 22% unique additional behaviors on more
than 70% of the Contagio-provided samples.

4. We developed a web interface1 through which our users
can submit samples to be analyzed by CopperDroid.
Results contains behavioral analysis (both in HTML
and JSON format, for easy parsing) and many ancil-
lary information (e.g., network traffic).

Although a non-negligible implementation effort, we how-
ever consider the framework we developed and briefly de-
scribe in Section 3 as a mere yet necessary mechanism to
carry out our actual contributions, i.e., CopperDroid’s VMI-
based system call-centric analysis, malware stimulation ap-
proach, and extensive evaluation on large data sets.

2. THE ANDROID SYSTEM
Android applications are typically written in the Java pro-

gramming language and then deployed as Android Packages
archive (APKs). Every APK is considered to be a self-
contained application that can be logically decomposed into
one or more components. Each component is generally de-
signed to fulfill a specific application task (e.g., GUI-related
actions, notification receiver) and it is invoked either by the
user or the OS.

According to the Android security model [1], each appli-
cation runs in a separate userspace process, as an instance

1Available at: http://copperdroid.isg.rhul.ac.uk/

<uses -permission android:name="[...]. RECEIVE_SMS" />
<uses -permission android:name="[...]. SEND_SMS" />
<uses -permission android:name="[...]. INTERNET" />
...
<receiver android:name=".SMSReceiver">
<intent -filter >
<action android:name=".. Telephony.SMS_RECEIVED" />

</intent -filter >
</receiver >

Figure 1: AndroidSMS Manifest File.

of the Dalvik virtual machine (DVM) [4], usually with a
distinct user and group ID.

Although isolated within their own sandboxed environ-
ment, Android applications can interact with other applica-
tions, and with the system, through a well-defined API. A
number of components can make up an application. In par-
ticular, Android defines activities, services, content providers,
and broadcast receivers.

Activities, services, and broadcast receivers are activated
by intents, i.e., asynchronous messages exchanged between
individual components to request an action. Activity and
service intents specify actions to be performed. Conversely,
broadcast receiver intents define the received event and are
delivered to the interested broadcast receivers.

2.1 Manifests
Android manifests are XML files that must be included

in every APK. A manifest declares application components
as well as the set of permissions the application requests
along with the hardware and software features the applica-
tion uses. In addition, a manifest may include intent filters,
i.e., the set of intents the application is willing to handle.

Figure 1 reports a stripped-down Android manifest of
AndroidSMS, a fictional application we developed for explana-
tory purposes. The manifest clearly shows the application
requires permission to receive and send SMS, and to access
the Internet. Furthermore, AndroidSMS declares a broadcast
receiver component (class SMSReceiver) that will respond to
SMS_RECEIVED intents.

Android manifests contain a number of interesting infor-
mation and their inspection can indeed disclose preliminary
insights about an application maliciousness [29].

2.2 Binder: IPC and RPC
The Android OS and applications strongly rely on inter-

process communication (IPC) and remote procedure calls
(RPCs). To this end, Android uses Binder, a custom imple-
mentation of the OpenBinder protocol [19]. As the Binder
protocol is quite complex, we highlight next only the infor-
mation needed to understand CopperDroid’s analysis.

Just like any other RPC mechanism, Binder allows a Java
process (e.g., an application) to invoke methods of remote
objects (e.g., services) as if they were local methods, through
synchronous calls. This is transparent to the caller and all
the underlying details (e.g., message forwarding to appro-
priate receivers, start or stop of processes) are handled by
the Binder protocol during the remote invocation.

To work properly, the caller application must know the
remotely-callable methods with parameters. This is achieved
through the Android Interface Definition Language (AIDL),
which is leveraged by “server-side” components developers.
Once defined, an AIDL file is used to automatically gener-

CopperDroid Emulator

GDB stub

Android OS

Dalvik

Linux Kernel

CopperDroid Analysis

System
Call

Tracking

Binder
Analysis

R
S
P

Figure 2: CopperDroid Architecture.

ate client- and server-side code in the form of a proxy class,
used by a caller, and a stub class, extended by the callee to
implement the logic of the service.

The AIDL files of core Android services are available on-
line. As described later, CopperDroid relies on such interfaces
to automatically infer the interactions between applications
from low-level events. Although a few AIDL files may be
missing (e.g., custom services), CopperDroid has never expe-
rienced such an issue in our current experiments. Manual re-
verse engineering and ad-hoc unmarshalling procedures can
be introduced to handle such specific scenarios, even if full
reverse engineering IPC-stub generation automation is part
of our on-going research effort.

3. COPPERDROID
The architecture of CopperDroid is shown in Figure 2. Our

whole Android system runs on top of a modified Android
emulator (the CopperDroid emulator), which is built on top
of QEMU [3]. To this end, we have enhanced (i.e., instru-
mented) the Android emulator to enable system call tracking
and support our out-of-the-box system call-centric analyses.
As Figure 2 shows, all our analyses are executed outside
the CopperDroid emulator and we rely on virtual machine
introspection (VMI) [10] to fill the semantic gap between
the CopperDroid emulator and the whole Android system.

To allow for a flexible host-to-emulator communication
and introspection, CopperDroid leverages the remote serial
protocol (RSP) of the GNU debugger [11] (see Figure 2).
The Android emulator provides GDB support via GDB stubs
to developers. A GDB stub is an implementation of RSP,
which enables the target machine to communicate with the
host machine on which a remote GDB session with a client
is established. Therefore, any client that is able to com-
municate over RSP can debug the target machine. Please
note that this does not modify anyhow the analyzed An-
droid system, nor it can be detected by apps running inside
CopperDroid’s emulator.

3.1 Tracking System Call Invocations
Tracking system call invocations is at the basis of virtually

all the dynamic malware behavioral analysis systems [12,13,
23]. Most—if not all—of such systems implement a form of

VMI to track system call invocations on a virtual x86 CPU.
Although similar, the ARM architecture underlying the An-
droid emulator—and therefore CopperDroid—presents a few
details that may challenge VMI-based system call invoca-
tions tracking and are thus worth describing.

The ARM ISA provides the swi instruction for invok-
ing system calls, which causes the well-known user-to-kernel
transition by triggering a software interrupt. Once the swi

instruction is executed, the cpsr register is set to super-

visor mode with the program counter register pointing to
the system call handler. To track system call invocations,
we instrument QEMU when the swi instruction is executed.
That instruction is not (dynamically) binary translated and
can therefore easily be intercepted when QEMU handles the
proper software interrupt. When the swi instruction is in-
tercepted, we check if a system call is actually being invoked,
if that is in the list of the to-be-tracked system calls, and
if the current process is in the list of the to-be-monitored
processes. Of course, it is also of paramount importance to
detect when a system call is about to return as that allows
to save its return value, which enriches the analysis with
additional semantic information.

Usually, the return address of a system call invocation
instruction swi is saved in the link register lr. While it
seems natural to set a breakpoint at that address to retrieve
the system call return value, a number of system calls may
actually not return at all (e.g., exit, execve). Therefore,
instead of relying on a cumbersome heuristic, the generic
approach CopperDroid adopts is to intercept CPU privilege-
level transitions. In particular, CopperDroid detects when-
ever the cpsr register switches from supervisor to user mode
(cpsr_write), which allows to uniformly retrieve system call
return values, if any.

3.2 Binder Analysis: Dissecting IPC and RPC
As outlined in Section 2.2, the Android system heavily re-

lies on kernel-implemented IPC and RPC channels to carry
out tasks and (some) permission-related policy enforcement.
Therefore, tracking and dissecting the communications that
happen over this media is a key aspect for reconstructing
high-level Android-specific behaviors. Although recently ex-
plored to enforce user-authorized security policies [24], to the
best of our knowledge, CopperDroid is the first approach to
carry out a detailed analysis of such communication channels
to comprehensively characterize OS-specific and Android-
specific behaviors of malicious Android applications.

Let us consider an application that sends an SMS as our
running example. From a high-level perspective (e.g., Java
methods), sending an SMS roughly corresponds to obtain-
ing a reference to an instance of the class SmsManager, the
phone SMS manager, and sending the SMS out by invoking
the method sendTextMessage on the instance, with the des-
tination phone number and the text message as the method’s
arguments. Overall, this corresponds to locating the Binder
service isms and remotely invoking its sendText function
with the proper arguments.

Conversely, from a low-level perspective, the same actions
correspond to the sender application invoking two ioctl sys-
tem calls on /dev/binder: one to locate the service and the
other to invoke its method. CopperDroid thoroughly intro-
spects the arguments of each binder-related ioctl system
call to reconstruct the remote invocation. This allows to
identify the invoked method and its parameters, enabling

write_size

write_consumed

write_buffer

...

BC_* Params BC_TR Params BC_* Params

target

code

uid
...

buffer

InterfaceToken Param 1 Param 2 ...

ioctl(binder_fd, BINDER_WRITE_READ, &binder_write_read);

Figure 3: Parameters of a BINDER_WRITE_READ ioctl.

de-facto to infer the high-level semantic of the operation.
Although the Binder protocol implements other ioctls,

the BINDER_WRITE_READ is the most important one as it al-
lows to transfer data between processes. Figure 3 depicts
a few details about the parameter of these ioctls. As can
be observed, they may embed one or more operations for
the Binder protocol. These operations are stored sequen-
tially in the write_buffer field of the ioctl’s last argument.
The Binder protocol supports a number of operations, but
CopperDroid focuses only on transactions, i.e., IPC oper-
ations that actually transfer data. In particular, it focuses
on BC_TRANSACTION and BC_REPLY, operations responsible to
initiate and return an answer to IPC transactions, respec-
tively.

Just intercepting transactions may however be of limited
use when it comes to understand Android-specific behav-
iors, which only a thorough analysis can eventually disclose.
CopperDroid dynamically parses the structure depicted in
Figure 3 and retrieves all the valuable transaction-provided
information to describe Android-specific behaviors. In par-
ticular, we focus on the buffer field that usually contains
a string (e.g., InterfaceToken), which identifies an interface
implemented by the callee. The string is followed by the
RPC parameters, properly serialized by a custom Android
marshalling protocol (parcel).

To understand the invoked method and the unmarshalling
procedure for its parameters, CopperDroid uses a novel tech-
nique. First it identifies the InterfaceToken specified in the
payload. Then, such information is used to find the AIDL
description of the interface CopperDroid needs, to associate
the numeric code to the invoked method and to understand
the types of its parameters. This step is necessary because,
even if a parcel includes methods to create easily unmar-
shallable stream of bytes (including metadata to associate
bytes to types), payloads are often marshalled directly as
the receiver knows exactly how to unmarshall them.

3.3 Path Coverage
Although effective, a simple install-then-execute dynamic

analysis may miss a number of interesting (malicious) behav-
iors. On the one hand, this problem has long been affect-

ing traditional dynamic analysis approaches as non-exercised
paths are simply unanalyzed. If such paths host additional
(or the only) malicious behaviors, then any dynamic anal-
ysis would fail unless proper, but generally expensive and
complex exploration techniques are adopted [5, 16]. On the
other hand, this problem is exacerbated by the fact that mo-
bile applications are inherently user driven and interaction
with applications is generally necessary to increase coverage.
For instance, let us consider an application with a manifest
similar to the one depicted in Figure 1. After installation,
the application would only react to the reception of SMS,
showing no interesting nor additional behavior otherwise.

Furthermore, traditional executables have a single entry
point, while Android applications may have multiple ones.
Most applications have a main activity, but ancillary ac-
tivities may be triggered by the system or by other appli-
cations and the execution may reach them without flowing
through the main. To address such coverage problem, Cop-
perDroid implements a novel approach (based on extracting
information from the malware Manifest) to artificially stim-
ulate the analyzed malware with a number of events of in-
terest. For example, injecting events such as phone calls and
reception of SMS texts would lead to the execution of the
registered application’s broadcast receivers. Another exam-
ple that comes from our experience with Android Malware
is the BOOT_RECEIVED intent that many samples use to get
executed as soon as the victim system is booted (much like
\CurrentVersion\Run registry keys on Windows systems).

4. EVALUATION
This section presents the experiments and results of a

thorough evaluation of CopperDroid on two considerably large
sets of Android malware. The first is provided by the An-
droid Malware Genome Project [27] and consists of more
than 1,200 malware belonging to 49 different families. The
second is made of around 400 malware samples gathered
from Contagio [6].

Our experimental setup is as follows. We run an unmodi-
fied Android 2.2.3 image on top of our CopperDroid-enhanced
emulator. The system is customized to include personal in-
formation, such as contacts, SMS texts, call logs, and pic-
tures. Each analyzed malware sample is installed in the
emulator and traced until a timeout is reached. At the end
of the analysis, a clean execution environment is restored
to prevent corruptions caused by installing more than one
sample in the same system.

4.1 Behaviors under Stimulation
To evaluate the effectiveness of the stimulation approach

of CopperDroid we proceed as follows. First, we analyze the
whole set of samples without external stimulation. Then, we
perform the stimulation-driven analysis of the same malware
set, as outlined in Section 3.3.

Once system call traces of all samples in both phases are
collected, we extract the behaviors observed during these
two different executions. For each sample i, we create two
sets Ti and Ni containing the behaviors observed during
the analyzed execution of i, respectively with and without
stimulation. Our choice of working with high-level represen-
tation of behaviors is dictated by the fact that directly com-
paring the sets of collected system calls would be too fine-
grained for our purposes. Nonetheless, one more problem
still persists. To understand the usefulness of our stimula-

#
Malware Samples w/ Behavior Inc. Behav.
Family Add. Behav. w/o Stim. w/ Stimuli

Android Malware Genome Project

1 ADRD 17/21 7.24 4.5 (62%)

2 AnserverBot 186/187 31.52 8.2 (26%)

3 Asroot 0/8 5.62 0.0 (0%)

4 BaseBridge 70/122 16.44 5.2 (32%)

5 BeanBot 4/8 0.12 3.8 (3000%)

6 Bgserv 9/9 31.22 6.8 (22%)

7 CoinPirate 1/1 7.00 6.0 (86%)

8 CruseWin 2/2 1.00 2.0 (200%)

9 DogWars 0/1 0.00 0.0 (⊥)

10 DroidCoupon 1/1 4.00 6.0 (150%)

11 DroidDeluxe 1/1 10.00 1.0 (10%)

12 DroidDream 15/16 26.88 5.7 (22%)

13 DroidDreamL. 44/44 7.18 1.7 (25%)

14 DroidKungFu1 4/34 5.03 2.0 (40%)

15 DroidKungFu2 3/30 12.23 4.0 (33%)

16 DroidKungFu3 158/308 16.31 4.5 (28%)

17 DroidKungFu4 31/94 21.69 4.7 (22%)

18 DroidKungFuS. 0/3 3.00 0.0 (0%)

19 DroidKungFuU. 1/1 12.00 1.0 (9%)

20 Endofday 1/1 0.00 1.0 (⊥)

21 FakeNetflix 0/1 0.00 0.0 (⊥)

22 FakePlayer 0/6 3.17 0.0 (0%)

23 GGTracker 1/1 10.00 2.0 (20%)

24 GPSSMSSpy 6/6 0.00 2.3 (⊥)

25 GamblerSMS 1/1 1.00 3.0 (300%)

26 Geinimi 34/63 16.19 3.1 (20%)

27 GingerMaster 0/4 29.00 0.0 (0%)

28 GoldDream 43/47 15.28 6.3 (42%)

29 Gone60 9/9 7.00 1.0 (15%)

30 HippoSMS 4/4 6.25 1.5 (24%)

31 Jifake 1/1 2.00 2.0 (100%)

32 KMin 45/51 66.47 2.2 (4%)

#
Malware Samples w/ Behavior Inc. Behav.
Family Add. Behav. w/o Stim. w/ Stimuli

33 LoveTrap 1/1 5.00 2.0 (40%)

34 NickyBot 0/1 14.00 0.0 (0%)

35 NickySpy 0/2 15.50 0.0 (0%)

36 Pjapps 24/40 7.35 4.1 (57%)

37 Plankton 2/11 9.55 1.0 (11%)

38 RogueLem. 2/2 8.50 4.0 (48%)

39 RogueSPP. 3/9 10.00 3.0 (30%)

40 SMSReplic. 1/1 0.00 6.0 (⊥)

41 SndApps 0/10 1.00 0.0 (0%)

42 Spitmo 1/1 0.00 8.0 (⊥)

43 Tapsnake 0/2 1.50 0.0 (0%)

44 Walkinwat 1/1 12.00 1.0 (9%)

45 YZHC 1/22 0.05 6.0 (13200%)

46 Zitmo 1/1 1.00 5.0 (500%)

47 Zsone 12/12 16.67 3.8 (23%)

48 jSMSHider 1/13 18.46 1.0 (6%)

49 zHash 10/11 11.00 3.1 (29%)

– Overall 752/1226 10.3 2.9 (28%)

Contagio

1 AnserverBot 3/3 11.00 8.0 (73%)

2 BaseBridge 1/4 2.50 2.0 (80%)

3 Beauty 3/3 30.67 6.3 (21%)

4 DroidDream 7/11 26.00 3.3 (13%)

5 DroidKungFu 0/2 12.00 0.0 (0%)

6 Geinimi 27/37 22.70 4.6 (21%)

7 GoldDream 1/2 59.00 11.0 (19%)

8 KMin 45/47 69.87 4.3 (7%)

9 Pjapps 14/15 23.40 5.6 (24%)

10 RootExploit 8/10 14.90 2.2 (16%)

11 Steek 16/17 14.00 10.9 (79%)

12 UNCAT. 157/237 11.77 3.6 (31%)

13 Zitmo 7/7 8.71 5.6 (64%)

– Overall 289/395 23.6 5.2 (22%)

Table 1: Results of the stimulation. First column reports the malware family, second column reports the
number of samples that exhibited additional behaviors over the total number of samples belonging to the same
family, third column report the average number of observed behaviors without stimulation and last column
reports the average number of additional behaviors exhibited by stimulated samples and their percentage
over non-stimulated behaviors.

tion approach in analyzing one sample, for instance, we have
to compare both sets Ti and Ni and observe if any behavior
appear in the first set but not in the latter. If this condition
holds, then it is likely that our stimulation induced the mal-
ware to follow different execution paths, exposing previously
unseen behaviors.

However, comparing the two collected sets would not lead
to the desired result either. Intuitively, the simplest way to
extract stimulation-induced behaviors is to compute Ci =
Ti \Ni, the relative complement of Ni relative to Ti. Then,
if Ci 6= ∅, Ci contains the set of stimulation-only induced
behaviors. In addition, as outlined above, every high-level
representation of a behavior comes with a set of additional
information that allow fine-grained observations and com-
parisons. Such information are useful to perform a normal-
ization on elements of Ni and Ti, to prevent an overestima-
tion of Ci (e.g., two HTTP GET requests to the same host/page
with a random parameter that would otherwise be consid-
ered distinct). Our future work includes experimenting with
more sophisticated invariant-based analysis [17] and cluster-
ing techniques [20] to prevent such overestimation.

Table 1 reports the results of applying the analysis just
outlined on the whole set of samples counting more than
1,600 malware. The overall results support the effectiveness
of our stimulation approach. We can observe an average
of 28% additional behaviors on more than 60% of the An-
droid Malware Genome Project’s samples, and an average of
22% additional behaviors on roughly 73% of the Contagio’s
samples.

5. RELATED WORK
In this section we cite and compare against the most rel-

evant work we believe directly relates with CopperDroid.
DroidScope [25] is a framework to create dynamic analysis

tools for Android malware that trades off simplicity and effi-
ciency for transparency: as an out-of-the-box approach it in-
struments the Android emulator, but it may incur high over-
head (for instance, when taint-tracking is enabled). Droid-
Scope leverages VMI [10] to gather information about the
system and exposes hooks and a set of APIs, which enable
the development of plugins to perform both fine and coarse-
grained analyses (e.g., system call, single instruction trac-

ing, and taint tracking). In principle, CopperDroid could
have been built on top of DroidScope, but at the time we
implemented it, DroidScope’s framework was not publicly
available. Moreover, the main focus of our research is not
to illustrate how to build a framework or a clever VMI tech-
nique for Android systems, but rather to point out how a
proper system call-centric analysis—which includes a deep
IPC/RPC Binder protocol analysis inspection—and stimu-
lation technique can comprehensively expose Android mal-
ware behaviors, as shown by our extensive evaluation.

Andrubis [22] is an extension to the Anubis dynamic mal-
ware analysis system to analyze Android malware [2, 12].
According to its web site, it is mainly built on top of both
TaintDroid [9] and DroidBox [21] and it thus shares their
weaknesses (mainly due to operating “into-the-box”). In ad-
dition, Andrubis does not perform any stimulation-based
analysis, limiting its effectiveness in discovering interesting
Android-specific behaviors.

Aurasium [24] is a technique (and a tool) that enables dy-
namic and fine-grained policy enforcement of Android ap-
plications. To intercept relevant events, Aurasium instru-
ments single applications, rather than adopting system-level
hooks. Working at the application level, however, exposes
Aurasium to easy detection or evasion attacks by malicious
Android applications.

Google Bouncer [14], as its name suggests, is a service that
“bounces” malicious applications off from the official Google
Play (market). Little is known about it, except that it is a
QEMU-based dynamic analysis framework. All the other in-
formation come from reverse-engineering attempts [18] and
it is thus impossible to compare it against our approach.

6. REFERENCES
[1] Android. Android developer reference. http://

developer.android.com/reference/packages.html.

[2] U. Bayer, C. Kruegel, and E. Kirda. Ttanalyze: A tool
for analyzing malware. In Proc. of EICAR, 2006.

[3] F. Bellard. QEMU, a fast and portable dynamic
translator. In Proc. of USENIX ATC, 2005.

[4] D. Bornstein. Dalvik VM internals. In Google I/O,
2008.

[5] D. Brumley, C. Hartwig, Z. Liang, J. Newsome,
D. Song, and H. Yin. Automatically identifying
trigger-based behavior in malware. Botnet Detection,
2008.

[6] Contagio Mobile. Mila Parkour.
http://contagiominidump.blogspot.com.

[7] D. Desai. Malware Analysis Report: Trojan:
AndroidOS/Zitmo, Semptember 2011.
http://www.kindsight.net/sites/default/files/

android_trojan_zitmo_final_pdf_17585.pdf.

[8] M. Egele. Invited talk: The state of mobile security. In
DIMVA, 2012.

[9] W. Enck, P. Gilbert, B. Chun, L. Cox, J. Jung,
P. McDaniel, and A. Sheth. Taintdroid: an
information-flow tracking system for realtime privacy
monitoring on smartphones. In Proc. of USENIX
OSDI, 2010.

[10] T. Garfinkel and M. Rosenblum. A Virtual Machine
Introspection Based Architecture for Intrusion
Detection. In Proc. of NDSS, 2003.

[11] B. Gatliff. Embedding with gnu: the gdb remote serial

protocol. http://www.huihoo.org/mirrors/pub/
embed/document/debugger/ew_GDB_RSP.pdf, 1999.

[12] Iseclab. Anubis. http://anubis.iseclab.org.

[13] A. Lanzi, D. Balzarotti, C. Kruegel,
M. Christodorescu, and E. Kirda. AccessMiner: Using
system-centric models for malware protection. In Proc.
of CCS, 2010.

[14] H. Lockheimer. Bouncer. http://googlemobile.
blogspot.it/2012/02/android-and-security.html.

[15] T. Mai. Android Reaches 500 Million Activations
Worldwide.
http://www.tomshardware.com/news/Google-
Android-Activation-half-billion-Sales,17556.html,
2012.

[16] A. Moser, C. Kruegel, and E. Kirda. Exploring
multiple execution paths for malware analysis. In
Proc. of the IEEE Symposium on Security and
Privacy, 2007.

[17] J. Newsome, B. Karp, and D. Song. Polygraph:
Automatically generating signatures for polymorphic
worms. In Proc. of the IEEE Symposium on Security
and Privacy, 2005.

[18] J. Oberheide and C. Miller. Dissecting the Android’s
Bouncer. SummerCon, 2012. http://jon.oberheide.
org/files/summercon12-bouncer.pdf.

[19] Palmsource Inc. Open binder documentation.
http://www.angryredplanet.com/~hackbod/

openbinder/docs/html/index.html.

[20] R. Perdisci, W. Lee, and N. Feamster. Behavioral
clustering of http-based malware and signature
generation using malicious network traces. In Proc. of
the USENIX NSDI, 2010.

[21] The Honeynet Project. Droidbox.
https://code.google.com/p/droidbox/.

[22] TU Vienna. Andrubis: A Tool for Analyzing Unknown
Android Applications. http://anubis.iseclab.org/.

[23] C. Willems, T. Holz, and F. Freiling. Toward
automated dynamic malware analysis using
cwsandbox. Proc. of the IEEE Symposium on Security
& Privacy, 2007.

[24] R. Xu, H. Saıdi, and R. Anderson. Aurasium:
Practical policy enforcement for android applications.
In Proc. of USENIX Security, 2012.

[25] L.-K. Yan and H. Yin. DroidScope: Seamlessly
Reconstructing OS and Dalvik Semantic Views for
Dynamic Android Malware Analysis. In Proc. of
USENIX Security, 2012.

[26] W. Zhou, Y. Zhou, X. Jiang, and P. Ning. Detecting
repackaged smartphone applications in third-party
android marketplaces. In Proc. of CODASPY, 2012.

[27] Y. Zhou and X. Jiang. Android Malware Genome
Project. http://www.malgenomeproject.org/.

[28] Y. Zhou and X. Jiang. Dissecting android malware:
Characterization and evolution. In Proc. of the IEEE
Symposium on Security and Privacy, 2012.

[29] Y. Zhou, Z. Wang, W. Zhou, and X. Jiang. Hey, you,
get off of my market: Detecting malicious apps in
official and alternative android markets. In Proc. of
NDSS, 2012.

