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Abstract. This paper introduces a novel privacy-aware geographic routing pro-
tocol for Human Movement Networks (HumaNets). HumaNets are fully decen-
tralized opportunistic store-and-forward, delay-tolerate networks composed of
smartphone devices. Such networks allow participants to exchange messages
phone-to-phone and have applications where traditional infrastructure is unavail-
able (e.g., during a disaster) and in totalitarian states where cellular network mon-
itoring and censorship are employed. Our protocol leverages self-determined lo-
cation profiles of smartphone operators’ movements as a predictor of future loca-
tions, enabling efficient geographic routing over metropolitan-wide areas. Since
these profiles contain sensitive information about participants’ prior movements,
our routing protocol is designed to minimize the exposure of sensitive informa-
tion during a message exchange. We demonstrate via simulation over both syn-
thetic and real-world trace data that our protocol is highly scalable, leaks little
information, and balances privacy and efficiency: messages are 30% more likely
to be delivered than similar random walk protocols, and the median latency is
only 23-28% greater than epidemic protocols while requiring an order of magni-
tude fewer messages.

1 Introduction
The ubiquity of smartphones enable new communication models beyond those provided
by cellular carriers. While standard cellular communication uses a centralized infras-
tructure that is maintained by the service provider, smartphones have communication
interfaces such as ad-hoc WiFi and Bluetooth that allow direct communication between
devices. Since smartphone owners often carry their devices, leave them constantly on,
and encounter other individuals (and their smartphones) in their daily routines, smart-
phones enable fully decentralized store-and-forward networks that completely avoid the
cellular infrastructure.

Human Movement Networks (HumaNets) [3] fit this model and are designed to al-
low participants to exchange messages phone-to-phone without using any centralized
infrastructure. HumaNets’ “out-of-band” message passing is applicable when cellular
networks are unavailable or if the networks are untrusted (i.e., operated by a totalitar-
ian state that censors [14], shuts down [36], or otherwise leverages its communication
systems to restrict its citizenry [17]).

Rather than rely on network addresses, HumaNets route messages using geocast
– an addressing scheme that directs messages towards a particular geographic region.
To cope with mobility, HumaNet routing protocols route messages based on message
carriers’ predicted future locations. This is accomplished by leveraging self-determined
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location profiles that approximate the smartphone owners’ routine movements. The pat-
terns of human mobility – for example, the daily commute to and from work – serve as
predictors of future locations. HumaNets take advantage of this observation by greedily
forwarding messages to smartphones whose owners’ location profiles indicate that they
are good candidates for delivery.

Privacy issues must be central when designing a HumaNet routing protocol since
location profiles contain sensitive information about participants’ prior movements.
The disclosure of such information is particularly dangerous when HumaNets are used
for covert communication in totalitarian regimes. Existing decentralized routing ap-
proaches that do not consider privacy [18, 20], rely on trusted third parties [13], or
assume a priori trust relationships [6] are also unsuitable for HumaNets.

This paper proposes a novel routing protocol for HumaNets that protects partici-
pants’ location profiles from an adversary who wishes to learn previous movements
and/or determine “important” locations of network users (e.g., home, work, or the lo-
cation of underground activist meetings). Our technique, which we call Probabilistic
Profile-Based Routing (PPBR), balances performance and privacy by efficiently rout-
ing messages in a manner that minimizes the exposure of users’ location profiles. We
demonstrate through trace-driven simulations using both real-world and synthetic hu-
man movement data that our PPBR protocol is highly scalable, efficiently routes mes-
sages, and preserves the privacy of profile information. In summary, the contributions
of this paper are:

– The introduction and design of a fully decentralized, privacy-preserving, geographic-
based HumaNet message routing protocol for smartphones;

– An analysis of the privacy and security properties offered by our routing protocol;
– A trace-driven simulation study (using both real-world and synthetic data) that eval-

uates our method’s scalability and efficiency.

2 Network Assumptions and Goals

To achieve reasonable performance, HumaNets leverage humans’ tendency to follow
routines: The locations that people frequented in the past are predictors of their fu-
ture locations [3]. However, a device’s location history may be extremely sensitive, and
moreover, combining multiple nodes’ location histories may allow an adversary to dis-
cover social networks and enumerate participants’ movements. Hence, the high-level
goal of our PPBR protocol and the central challenge of this paper is to enable effi-
cient geographic-based messaging that limits the exposure of information at message
exchanges. In particular, an adversary who witnesses a message exchange should learn
little important information about the participants’ location histories.

Importantly, however, our HumaNet routing protocol does not conceal the identities
of the network’s participants. An adversary who intercepts a PPBR message can reason-
ably conclude that the sender is participating in a HumaNet. Participating in a HumaNet
inherently carries risk if used as an anti-censorship technology: This is unfortunately
true of any system that may be deemed “subversive”. However, when other means of
communication are impossible (either due to global monitoring or blocked connectiv-
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ity), HumaNets provide a means to exchange information in a manner that is efficient,
scalable, difficult to surveil, and privacy-aware.1

Requirements. HumaNets routing protocols are designed for location-aware mobile
devices. We assume that network participants can learn their locations (e.g., via GPS2)
without relying on the cellular service provider’s network, and that devices contain
sufficient storage to record their movement histories. We note that current generation
smartphones meet HumaNets’ modest storage and processing requirements.

We additionally assume that participants have knowledge of the routing area. Since
HumaNets enable geocast routing, a message that is targeted at specific receivers re-
quires the sender to have some knowledge about the receivers’ likely future locations
(e.g., their home or work); this requirement is similar to that imposed by traditional
networking where users need knowledge of a service’s hostname or IP address. We also
assume that participants know some coarse-grain information about general movement
statistics over the routing area. In particular, nodes should be capable of estimating the
“popularity” of city areas – e.g., that the upper west side of Manhattan is more densely
traveled than Far Rockaway, Queens. This information can be obtained from census
data, other public source of information, or personal experience. Such information can
be shipped with the HumaNets software and is assumed to be known to an adversary.
Threat Model. We envision both passive and active adversaries. A passive adver-
sary may have any number of confederates and is able to observe message exchanges
at a fixed number of locations throughout the HumaNet routing area. An active adver-
sary may additionally participate in HumaNets by generating fake messages, accepting
messages, and/or dropping or misrouting messages.

We do not provide protection against a mobile targeting adversary. An adversary
that can physically follow a node can trivially learn about its whereabouts and discover
its routine movements. Such a “stalker” adversary is also very costly to deploy. In this
paper, we focus on less targeted attackers and assume an adversary who monitors, in-
tercepts, or participates in local exchanges that occur in its presence. The adversary is
aware of the participants and their locations at the time of an exchange, and thus we do
not claim that our system provides traditional location-privacy [19] for ad hoc networks,
although such extensions may be relevant here.

The adversary’s goals are as follows:
– DISRUPTION: Inject failures into the network such that messages can no longer be

reliably delivered.
– DE-ANONYMIZATION: Determine the originating sender of intercepted messages.
– PROFILING: Infer movement patterns of a targeted individual or learn his/her “im-

portant” locations (e.g., home, work, underground meeting place).
Performance and Security Goals. The goal of our routing protocol is to provide the
following properties in the presence of active and passive adversaries:

– RELIABILITY: Messages should reach their intended destinations with high proba-
bility.

1 It may be possible for users to use steganographic channels to conceal their participation in a
HumaNet, although we do not explore such techniques in this paper.

2 GPS is a unidirectional protocol and requires only the reception of signals from U.S.-operated
satellites.
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– EFFICIENCY: Messages should reach their intended destinations with reasonable
latency and overhead.

– SCALABILITY: HumaNets should be able to scale to a large number of participants
with many concurrent messages.

– POINT-TO-POINT: Messages should be exchanged only point-to-point and avoid
any centralized routing structures.

– PRIVACY-PRESERVATION: The protocol should not leak the sender’s identity, nor
should it reveal information about participants’ previous locations.

At first blush, it may seem that naı̈ve flooding and random walk strategies are
sufficient to achieve the above goals. Although these strategies achieve the POINT-
TO-POINT and PRIVACY-PRESERVATION properties, they are lacking with respect to
SCALABILITY, EFFICIENCY, and/or RELIABILITY. In particular, flooding achieves op-
timal latency and delivery rates because all paths are explored, but scales poorly since
all transfers that do not occur along the optimal path constitute a wasted effort (and,
consequently, wasteful power consumption). Moreover, since several senders may use
HumaNets to disseminate their messages, flooding requires that nodes store (and worse,
communicate) a large fraction of all messages. At the other extreme, random walk pro-
tocols in which messages are transferred (as opposed to copied) upon node contacts
scales well but incurs poor RELIABILITY and EFFICIENCY.

It may also seem that traditional cryptographic solutions would be applicable here.
However, the decentralized and highly dynamic nature of HumaNets make their de-
ployment difficult. In particular, many cryptographic solutions require centralized ser-
vices or trusted third parties. Such approaches are problematic in our setting since a
strong (e.g., nation-state) adversary could either compromise or prevent access to cen-
tralized services. Routing techniques that rely on complex key distribution schemes
or expensive cryptographic operations (for example, SMC [43]) are incompatible with
HumaNets’ distributed architecture and use of power-constrained devices. A significant
advantage of PPBR is that it provides PRIVACY-PRESERVATION using simple proba-
bilistic techniques, and avoids the key management and computation issues present in
protocols that provide more traditional cryptographic protections [6, 13, 38].

3 Privacy-Preserving Routing
At a high level, the Probabilistic Profile-Based Routing (PPBR) protocol requires par-
ticipants (nodes) to estimate whether they are good candidates for delivering a message.
Upon receiving a message from a carrier — i.e., a node that announces a message —
the receiving node makes a local determination as to whether it is well positioned to
deliver the message to the addressed destination. The node either accepts or discards
the message, and in either case, does not notify the current carrier as to its choice. If
the message is accepted, the receiving node becomes a carrier and begins to announce
the message. However, unlike flooding techniques in which messages are continuously
duplicated, leading to an exponential number of message copies, each message carrier
in PPBR announces the message to only k contacts, of which only one out of the k re-
ceiving nodes should accept it. The main task is thus for a receiver to locally determine
whether it is best suited to deliver the message out of the k−1 other nodes that received
the message.
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3.1 HumaNet Preliminaries

Addressing. HumaNets provide a basic addressing primitive, geocast, in which mes-
sages are addressed to a geographic location (e.g., a city square). Messages are routed
to nodes who are likely to travel towards the destination address and are then locally
flooded within the confines of the specified destination. We do not consider temporal
features in addressing or routing – i.e., addressing a message to a location for a specific
time – but the protocol described herein can be easily expanded to meet temporal spec-
ifications3. Additionally, HumaNets do not provide message confidentiality; however,
message payloads can be protected using standard encryption techniques.

HumaNets interpret the routing area as a grid, the dimensions of which are assumed
to be known a priori to all nodes (for example, based on latitude and longitude). Mes-
sages are addressed to a particular grid square. In the remainder of the paper, when
describing a message address or destination, we refer to the index of the corresponding
grid square.

Finally, HumaNets are fully decentralized, delay tolerate networks, and as such, de-
liver messages according to a “best-effort” policy. Importantly, PPBR does not utilize
message delivery acknowledgments; the omission of ACKs and NACKs increases pri-
vacy since it prevents an observer from trivially discovering whether or not a message
was accepted by the receiver.

Message Exchanges. Messages are exchanged between smartphone devices when
they come into wireless contact with one another. We consider a contact to occur when
two nodes are within wireless transmission range, e.g., the range of Bluetooth or a point-
to-point 802.11 transmission in ad hoc mode. At set time intervals, nodes awaken and
begin the routing protocol. If a contact is made, messages can be exchanged. Otherwise,
if there are no other participants nearby, the node returns to normal activity.

HumaNets require coarse time synchronization (i.e., within a few seconds) to en-
sure message exchanges occur at the appropriate times. Such synchronicity could be
achieved using NTP servers, but this would require nodes to send messages over cen-
tralized networks. Fortunately, smartphone devices are already highly synchronized as
a requirement of participating in the centralized cellular network [2, 32] (a network
which HumaNets do not use to send messages). If cellular services are disabled or are
untrusted to provide correct time information, nodes could alternatively obtain the tim-
ing information from GPS satellite timestamps.

3.2 Routing Overview and Constructions

PPBR consists of two phases: a passing phase and a holding phase (see Figure 1). In the
passing phase, a carrier of a message attempts to pass the message to the first k nodes
that it encounters. A node that receives a message will locally estimate whether it has
the highest similarity to the message address (a grid square) out of the k−1 other nodes

3 One method is for nodes to maintain multiple location profiles, each representing movement
information collected at different times of the day. The message exchange algorithm is as
described later; however, each node now uses the location profile most relevant to the addressed
time and location. With this addition, a message carrier is likely to not only deliver the message
to the location, but also to deliver it at the specified time.
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who also received (or will receive) the message. If the node perceives itself to be the
best candidate for delivery, it accepts the message, becomes a carrier, and prepares to
transition to the passing phase. Otherwise, the message is dropped. A node transitions
from the passing phase to the holding phase once it has announced the message to k
other neighbors.

The challenge of PPBR is enabling each node to accurately predict whether it is the
best of k candidates to accept a message without conferring with other nodes. The intu-
ition behind our approach is that a node can compute a similarity score to a message’s
destination using its location profile – a compact representation of its movement his-
tory. To populate its location profile, a node periodically records its GPS location and
determines the fraction of time spent within each grid square. Using its location profile
along with background knowledge of the movement patterns of an “average” node, the
node can estimate how well it is positioned to deliver the message relative to the k − 1
other participants who will receive the message.

a

a
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c
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a
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d

d
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Fig. 1: Overview of PPBR routing. (1) The
initial message carrier (node a) enters the
passing phase (grey shading). (2) The car-
rier encounters three nodes. (3) Node b con-
siders itself the best of k candidates and ac-
cepts the message, becoming a carrier and
initiating its passing phase. After advertis-
ing k messages, node a enters the holding
phase (black shading).

An important characteristic of PPBR’s
passing phase is that message reception is
not acknowledged. An eavesdropper there-
fore cannot determine whether a message was
accepted or declined by a nearby node. This
makes it difficult for an adversary to con-
duct PROFILING attacks against a receiver,
since it has no information to form a judg-
ment as to whether the receiver’s profile is
well-suited for delivering the message. (We
explore the effectiveness of PROFILING at-
tacks against a carrier who announces a mes-
sage in Section 5.) To further aggravate PRO-
FILING attacks, if a node accepts a message
and becomes a carrier, it does not announce
the message until it has moved a distance d
away from its current location, preventing the
eavesdropper from observing the transition.

After a carrier has performed k message announcements, it transitions to the holding
phase. In the holding phase, the carrier maintains the message for some time period,
during which the node, hopefully, enters the message’s addressed grid square and starts
the local flood (restricted to the destination grid square). If the node does not reach the
addressed grid square within a local timeout, the carrier drops the message. A message
also has an associated global timeout after which all carriers drop the message.

Location Profiles. Nodes compute location profiles based on their movement histo-
ries.4 Although long term collection could be useful in constructing a profile, HumaNets
rely on shorter historical windows to minimize the effects from non-repeated move-
ments, e.g., vacations.

4 News reports suggest that popular smartphones may already collect and store such informa-
tion [5].



7

Each node periodically polls its location (e.g., via GPS) to update its location pro-
file. The profile is a matrix indexed by geographic grid square such that the value at
position 〈x, y〉 is the normalized number of location readings in which the node was
located at position 〈x, y〉 in the grid. That is, the value at position 〈x, y〉 in the location
profile corresponds to the frequency that the node visited location 〈x, y〉 in the physi-
cal world over some time window. Following our heuristic, we assume that the matrix
value at 〈x, y〉 (which is defined based on past behavior) approximates the node’s future
likelihood of visiting location 〈x, y〉 in the physical topology.

More formally, consider a current window of location entries
W = (〈xi, yi〉, 〈xj , yj〉 . . .) that are already mapped to grid square references. The
profile p, indexed by grid squares, contains the values:

p[〈x, y〉] =

{ |W〈x,y〉|
|W | if 〈x, y〉 ∈W

0 otherwise
, (1)

where W〈x,y〉 is the sub-list containing location entries occurring within the grid square
〈x, y〉, p[·] is the index function returning the associated value, and | · | indicates the
length of the list.

General Node Profile. An advantage of PPBR is that it does not require nodes to
share their location profiles. However, the technique assumes some globally shared in-
formation which we call the general node profile. The general node profile is a model
of the “average” node’s movement, and has the same structure and features as the stan-
dard location profile. Rather than representing the frequented locations of a single node,
the general profile expresses the patterns of the general population. We assume that the
general node profile is included with HumaNet software.

As we demonstrate in Section 4, the general node profile does not have to be a per-
fect model and can be based on a rough estimate of population densities. In practice, we
posit that a sufficient general node profile could be constructed using public data such
as population densities from census data, transportation studies, or common knowledge.

Marginal Similarity. A node determines if it is the best of k − 1 other message
recipients by comparing its similarity with the message’s destination to the “average”
node’s similarity calculated using the general node profile. If the node’s similarity is a
factor greater, the message is accepted.

More precisely, a node must first be able to calculate the similarity of a location
profile to a message address (grid square). This is done by considering not only the
value in the profile at the addressed grid-point, but also the values at nearby grid-points,
discounted by their square distance. Formally, we define the similarity of a node n to a
message m addressed to am to be:

sim(p, am) = p[am] +
∑
ap∈p

ap 6=am

p[ap]

dist(ap, am)2
, (2)

where p is a location profile and dist(ap, am) denotes the Euclidean distance between
grid-points ap and am. This computation captures the desired property that a node that
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more frequently visits the message’s targeted destination (and nearby areas) will have
higher similarity than a node that visits the destination region less often5.

A similarity score computed with the general node profile, rather than an individual
node’s profile, represents an estimate of the “average” node’s similarity to the message
address. We define the relationship between a node n’s similarity and that of the general
node’s similarity as the marginal similarity σ. It is calculated as σ = sim(pn,am)

sim(pg,am) , where
pn is the profile of node n and pg is the general node profile. The marginal similarity
speaks to how well a node is suited to become a carrier of a message addressed to
am as compared to a node on average: higher values indicate the node would make a
good message carrier, while lower values indicate a poor carrier. The next challenge is
selecting a threshold value for σ at which point only one of the k nodes that received
the message will accept it and become a carrier.

Threshold Selection. We define τ as the threshold marginal similarity score at which
a node accepts a message and becomes a carrier. Intuitively, τ should be the marginal
similarity such that 1/k marginal similarity calculations are greater than τ . The thresh-
old is calculated locally (and privately) by each node. First, a node computes σ for every
grid square in pg:

σ̄ =

〈
sim(pn, a)

sim(pg, a)

∣∣∣∣ ∀ a ∈ pg 〉 (3)

The computations are arranged in a sorted list σ̄, where σ̄i < σ̄j if i < j. σ̄ represents
marginal similarity calculations for all likely message addresses, and we wish the node
to accept a message for 1/k of those addresses. To do this, a node chooses τ such that
1/k values in σ̄ are greater than τ ; more precisely, τ = σ̄i and i = b|σ̄| ∗ (k − 1)/kc,
where | · | denotes the length function. τ must be updated whenever the node’s location
profile changes. To conserve battery, such a computation could occur nightly while the
device is charging.

It should be noted that the threshold computation assumes a uniform distribution
of message addresses. Although this assumption does not likely hold in practice, our
experimental results indicate that our approach is sufficiently accurate to cause approxi-
mately 1/k messages to be accepted by potential carriers. In particular, using our tested
datasets (see Section 4.1) in which messages are addressed non-uniformly, between
8.5%-9.5% of messages are accepted.

In summary, PPBR supports geocast messaging in which messages are addressed to
a particular grid square and intended for all participants residing therein. A message
carrying node (a carrier) in the passing phase will duplicate the message to k other
nodes before transitioning to the holding phase. Of the k nodes that receive a message,
k − 1 should drop the message while a single node should retain it. This process is
oblivious to the message sender (and an adversary) who is unaware of which of the
nodes accepted the message and which dropped it. To determine if a node is a good

5 In our simulations, we found that a squared decay function (i.e., the importance of similar-
ity decreases as the square of the distance from the message address) produces good results.
We have additionally experimented with other decay functions, and found that they produce
similar (but slightly degraded) performance.
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carrier (i.e., the best of k), a receiving node computes their marginal similarity σ, which
compares their similarity to that of the general node’s, as embodied by the general node
profile. If σ is greater than their locally calculated threshold τ , the message is accepted,
otherwise it is rejected. Nodes that accept a message will transition to a passing phase
after traveling a distance d from the point of reception, where they repeat the process by
exchanging the message with k other nodes. At any point, the message may reach the
addressed grid square, within which, the message is flooded to all participants present.
Additionally, if a node does not deliver a message within a local timeout, the message is
dropped. After a global timeout occurs, all message copies in the network are discarded.

4 Performance Evaluation
To evaluate the performance of PPBR, we constructed a discrete event-driven HumaNets
simulator. Our simulator takes as input a trace of human (cellphone) movement and
overlays the PPBR routing algorithm. In all simulations, we choose k to be 10 and con-
duct 300 independent runs. Message senders are selected randomly across participants,
and message addresses (grid squares) are randomly chosen by selecting a (different)
node and addressing the message to its most frequented grid square as defined by its lo-
cation profile. Our simulation was concerned with measuring the effectiveness of PPBR
over metropolitan areas, and as such, we did not simulate local flooding. We considered
a message successfully delivered if it reaches the destination address. The grid overlay
consists of 200 m × 200 m grid squares, roughly the size of a city block, and we chose
d — the requisite travel distance of a node before transitioning to the passing phase —
to be the size of a grid square (200 m).

4.1 Simulation Settings and Inputs
Datasets. Due to privacy constraints, the number of realistic datasets that are suited
for evaluation is unfortunately small. We require that the data contain not only a large
number of nodes, but also that the movement of the nodes should express regular rou-
tines over an extended collection time (i.e., many days). There is considerable work in
constructing models for human movement [1, 4, 16, 23, 25, 28]; however, most of these
models do not realistically simulate movement over long periods, nor do they model
regularity. There also exists extensive catalogs of real world movement traces, such as
the CRAWDAD repository [27]; unfortunately, most of the traces are either too short
with too few nodes or do not contain fine-grained location information.

To demonstrate the feasibility of PPBR, we utilize a suitable real-world data trace
as well as a synthetic trace of human movement (summarized in Table 1):

– Cabspotting: The Cabspotting Dataset [34] contains GPS coordinates and times-
tamps of 536 taxicabs in the San Francisco area. The dataset spans 20 days: from
May 20, 2008 until June 7, 2008. It should be noted that although the movements
of taxis are not representative of the general population (taxis are arguably more
mobile than the average person), simulations using this dataset can be interpreted
as representing a network composed of the taxi drivers’ smartphones.

– SLAW: We require a synthetic model that (i) accurately represents human flight
patterns, (ii) contact rates, (iii) waypoints (popular places), and (iv) routines. The
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Nodes Length Area Contact Rate Waypoints
SLAW [28] 1000 7 days 100 km2 12.62 per hour 150

Cabspotting [34] 536 20 days 326 km2 1.17 per hour n/a

Table 1: Characteristics of the movement data sets.

closest model to meeting our needs is Self-similar Least Action Walk (SLAW) [28].
Based in part on Levy walks [35], SLAW introduces a protocol called Least Action
Trip Planning (LATP) that produces human-like trips between fractal waypoints,
that are themselves determined by finding hotspots in actual GPS traces. Lee et al.
showed that SLAW produces more human-like inter-contact times and flight paths
than other leading movement models [16, 25, 29].

Node Contacts. For two nodes to make contact, they must be in the same location at
the same time. However, the periodicity of location entries in the Cabspotting dataset
is not consistent across nodes (or for the same node). We consider two nodes to have
made contact if they are within 10 meters in a 10 second window. In SLAW, a location
entry is generated every 60 seconds consistently across all nodes; we consider a contact
to occur if two nodes are within 10 meters at the same minute mark.

Timeouts. We use a 12 hour local timeout with both traces. For the shorter, more
dense SLAW movement trace, a three day global timeout is used. The longer, more
sparse Cabspotting trace uses a seven day global timeout. Finally, simulations begin
after an initial delay so that node profiles can be well seeded; delays of three and seven
days are used for SLAW and Cabspotting, respectively.

Location Profiles. Each node constructs its location profile using a three day window
of location histories. Location profiles are updated daily, and the current day’s profile
represents the location history of the three previous days.

To generate the general node profile, we select a 10% sample of nodes from each
dataset and use three days worth of movement data. The 10% sample is excluded from
all simulation experiments. A visualization of the resulting general node profile are
shown in Figures 4 and 5 in the Appendix.

4.2 Simulation Results

To measure the efficiency of PPBR, we compare our strategy against two probabilistic
protocols that do not use location information: probabilistic random walk and proba-
bilistic flooding. The probabilistic random walk routing scheme also has passing and
holding phases; however, unlike PPBR, the random walk does not use location profiles.
Instead, a node accepts a carrier’s advertised message with a fixed probability of 1/k
(i.e., 10%). The random walk protocol allows us to measure both the effectiveness of
using location information as well as the local threshold selection process.

Additionally, we compare PPBR to a 10% probabilistic flood in which nodes dupli-
cate the message to a contacted node with probability 0.1. The flood provides insight
into a worst case for network load – i.e., exponential growth in the number of dupli-
cate messages. The global and local timeouts for both random protocols are identical to
those used by PPBR.
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Cabspotting [34] SLAW [28]
Med/Avg Latency (hrs) Rate Med/Avg Latency (hrs) Rate

PPBR 3.6/6.8 [1.2,4.6] 62.6% 4.2/4.8 [2.6,6.2] 61.8%
Walk-10% 4.4/6.0 [1.6,8.1] 43.4% 5.1/5.5 [2.9,5.2] 48.0%
Flood-10% 2.8/4.1 [1.6,4.4] 99.4% 3.4/3.3 [2.2,4.2] 100.0%

Table 2: Median and Average Latencies (first and third quartiles in braces) and Delivery Rate.

Threshold Estimation. As described in Section 3.2, each node computes its thresh-
old marginal similarity score (τ ) based on the general node profile and its knowledge of
the routing area. Ideally, τ should be chosen such that a message is transferred to exactly
one of the k nodes that a carrier encounters during its passing phase. To determine if
our local, per-node threshold calculations were generating good thresholds, we looked
at the variance of thresholds calculated at each node for one day in the simulation. Intu-
itively, a low variance indicates that nodes are independently able to reach a consensus
as to a good value for τ , without exchanging any information amongst themselves. The
average value for τ was 1.557 and 1.353 for SLAW and Cabspotting, respectively. We
found that there is very low variance among the nodes’ thresholds: 0.011 for SLAW
and 0.085 for Cabspotting. Further, we observed that thresholds were effectively limit-
ing message acceptance to 1/k; with k = 10 the probability of message retention was
9.5% and 8.5% for SLAW and Cabspotting, respectively.

Performance Metrics. We evaluate our routing performance using the following
metrics: delivery rate is the percentage of messages that reach the destination address
(a grid square); latency is the amount of time it takes for a message to be delivered;
and network load is the number of messages in the network at a given time. Ideally, the
routing protocol should deliver messages with a high delivery rate, low latency, and low
network load.

Delivery Rate and Latency. Table 2 lists the delivery rates and latencies for PPBR,
random walk, and probabilistic flooding. Unsurprisingly, flooding offers both the best
latency and delivery rates. (As we show later, it also incurs a very high network load,
making it impractical for networks of battery-constrained smartphone devices.) PPBR
routing outperforms random walk for both median latency and delivery rate. Although
the average latency for PPBR using the Cabspotting dataset is 0.8 hours slower, the
median latency is nearly an hour faster and within 28% of probabilistic flooding. The
skew in the average latency is caused in part by the higher delivery rate, and that some
messages were delivered after random walk was no longer delivering messages.

The delivery rates reported in Table 2 result from single attempted transmissions.
The sender can increase the delivery rate by sending redundant copies sufficiently
spaced in time to allow different sets of carriers to deliver the message.

Network Load. The load on the network is measured as the average number of mes-
sage duplicates in the system across all simulations runs. PPBR does not guarantee that
only a single copy of a given message is present in the system. Carriers announce a
message to k other nodes; ideally, only one node should accept it. If the message is
accepted, the carrier retains the message until either it is delivered or a local timeout
occurs. Hence, each message could potentially have multiple (or zero) duplicates.
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Fig. 2: The number of message copies (“duplicates”) of each message for (left) Cabspotting and
(right) SLAW, and inset, the average.

Figure 2 plots the number of messages that persist in the system over time, normal-
ized to the number of senders in the system (which, in our simulation experiments is
always 300). The average number of message copies, computed over the entire simu-
lation, is shown in the Figure’s key. Note that the number of message duplicates may
be less than one if either some messages are not accepted by any of the k encountered
nodes, or if all message copies are delivered to their destinations. As expected, flood-
ing incurs significant network load, resulting in approximately two orders of magnitude
more message copies than PPBR. Although the number of duplicates is slightly larger
for PPBR than our naı̈ve random walk protocol, the load is easily manageable.

5 Security Properties
Profiling. All message exchanges in PPBR occur in the open, and an adversary can
observe any exchange in its presence. However, PPBR offers strong privacy protections
against PROFILING attacks for both the node announcing a message as well as the node
who receives, and possibly accepts, the message announcement.

Message Exchange Carrier Protections: An adversary can determine that a carrier node
who advertises a message has a high marginal similarity to the message’s address; oth-
erwise, the node would not be advertising the message. More precisely, the adversary
knows that the marginal similarity for the carrier is lower bounded by the threshold τ .

By design, nodes choose τ such that they should expect to accept messages ad-
dressed to 1/k of the grid squares. Hence, the acceptance of a message does not nec-
essarily indicate that the message’s address is particularly important to the node that
accepted it. Depending upon the value of k, a node may be expected to accept messages
targeted at hundreds of grid squares across the routing area. An adversary cannot con-
clude that a message was accepted because the message’s address is frequently visited
by the advertising node. Moreover, as we show below, a node may not even accept a
message addressed to a grid square for which it is very familiar.

The choice of k has privacy and performance implications, and a clear tradeoff
exists: Larger values of k decrease privacy since nodes accept messages for fewer loca-
tions, and thus an adversary could deduce that these locations are more likely relevant
to the victim node. Conversely, smaller values of k increase privacy since nodes accept
messages to more locations, further obscuring which are important. Smaller values of k
also incur higher power consumption and network load as more nodes will likely accept
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Fig. 3: Fraction of Safe Interest Points (left) and Fraction of Interesting Observations (right).

(and transfer) the message. In our simulation studies, we found that k = 10 achieves
reasonable privacy while restraining the number of message transfers.

To study this tradeoff further, we determined for each node the set of addresses
(grid squares) that would result in its acceptance of a message. We then compared this
set of addresses to the nodes’ most frequented locations as defined in their location
profiles. As expected, nodes accepted messages addressed to 1/k of the grid squares,
on average. However, many of those locations correspond to grid squares that would be
uninteresting to an adversary concerned with PROFILING. If we consider an adversary
who is interested in the most frequented grid squares of a victim node – that is, the
highest value grid squares in the node’s location profile – these grid squares comprise
only a small fraction of the total locations for which a node would accept a message.

This relationship is depicted in Figure 3 (left). The curves represent the averages
across all nodes in the Cabspotting and SLAW datasets. The x-axis denotes the number
of points an adversary is interested in (i.e., the x grid squares most frequented by the
node). The y-axis plots the fraction of the locations that are accepted by the node which
are of interest to the adversary. For example, using the Cabspotting dataset, 38% of
announced messages belong to the advertising node’s 800 most frequented locations. If
the adversary is interested in a node’s 200 most frequented grid squares, just 10% of
advertised messages belong to this interest set. More generally, the more specific the
adversary’s interest, the more difficult it is for him to distinguish the pertinent message
addresses that are announced by a node, and consequently, the more difficult it is to
discover the node’s most frequented locations.

The adversary’s ability to discern profile information is further diminished due to
our algorithm’s willingness to discard announcements that are targeted at highly fre-
quented areas. That is, a significant portion of the grid squares most frequented by a
node may have low marginal similarity. Recall that the marginal similarity is the ratio
of the node’s similarity score to the general node profile’s similarity score. Hence, if a
message is addressed to a grid square that is often frequented by the node but also highly
frequented according to the general node profile, then the ratio will not exceed the τ
threshold, and the node will never accept a message addressed there. Consequently,
such interesting locations are unobservable and safe from adversarial analysis.

Figure 3 (right) visualizes this relationship. Again, the x-axis considers the num-
ber of grid squares an adversary would find interesting for a victim node. The y-axis
represents the fraction of those interesting grid squares a node would never accept a
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message for, averaged across all nodes. For example, consider an adversary interested
in the top 200 most frequent locations of a node: In the Cabspotting data set, 68% of
those locations are safe from analysis by an adversary.

Message Exchange Receiver Protections: During the passing phase, receivers do not
acknowledge acceptance (or rejection) of a message, and hence an adversary cannot
directly determine its similarity to the message’s destination address.

An adversary who is able to follow the node for a distance of at least d can determine
whether the message has been accepted by observing whether or not it is re-advertised
by the node. However, since the node is physically followed, such a stalking attack
inherently leaks the victim’s location information regardless of the particular routing
protocol being used (and hence, as described in Section 2, stalking attacks are outside
of our threat model). Regardless, if the node is followed, or if a separate colluding
eavesdropper discovers that the node later advertised the message, then the adversary
can conclude that the node accepted the message. In such cases, the effectiveness of a
PROFILING attack against the receiver is identical to the effectiveness against a carrier
advertising a message (see above).

De-Anonymization. The standard addressing primitive of HumaNets is geocast, and
thus all participants at the addressed location at the time of delivery should receive
the message. Receiver anonymity is not protected in HumaNets because an adversary
located in the address location trivially learns the identities of the message recipients
by simply observing them.

However, PPBR provides in-transit anonymity for message originators (or senders).
An intercepted message, past the initial hop, cannot be traced to the original sender
without completely retracing the message’s path. If an adversary is witness to the initial
hop of a message, the originating sender may be exposed. We note, however, that this is
similar to the level of protection provided by many Internet-based anonymity systems
(e.g., Tor [12]) in which an adversary on the first hop trivially learns the sender. It is
also worth noting that message replay attacks in which an attacker re-injects a message
in hopes of discovering its path are also infeasible. It is highly unlikely a message will
take the same path due to variability in human movement.

Disruption. PPBR also provides protection against DISRUPTION attacks in which
an adversary attempts to intercept messages in the network. If the attacker is able to
infiltrate the network and receive a large portion of the k handoffs for each message,
then the probability that the message will be transferred to an honest node is reduced.
However, such an attack may also be prohibitively expensive for an adversary since
message exchanges occur whenever two participants have a chance encounter. Addi-
tionally, such an attack may be mitigated by adjusting the number of passing attempts
(i.e., k) to compensate for the attacker’s presence.

PPBR’s SCALABILITY property also makes it resistant to denial-of-service attacks
in which the attacker attempts to overwhelm the network’s resources by injecting spu-
rious messages. Although an attacker may inject wasteful messages into the HumaNet,
the impact of each additional message on the network is linear, by design. In compar-
ison, each additional message in a flooding protocol incurs an exponential increase in
network load, and a few injected messages may be sufficient to overload the network.
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6 Related Work
Location-Based Routing. The ability to leverage geographic information to effi-
ciently route packets has been well explored in the literature. In many instances, these
techniques require participants to announce their locations. For example, Last Encounter
Routing (LER) [18] and ProPHET [30] expose location information; LER assumes that
the network is sufficiently connected to allow stable and longstanding paths. The Bub-
ble protocol [21] uses social networks to efficiently route messages, but allows any
party to discover social relationships. Although these techniques may efficiently route
messages, they are not well-suited for settings in which the disclosure of location histo-
ries and/or social relationships may be cause for government-imposed punishment. We
desire protocols that efficiently and scalably deliver messages while preserving users’
location histories and social relationships.

Location-based routing has also been studied in the context of wearable computing.
Of particular relevance is Davis et al.’s geographic-based routing protocol [10]. There,
the authors use flooding techniques to disseminate messages when the network’s de-
vices are storage constrained; they consider a pruning approach in which nodes drop
messages that are addressed to locations that they have not recently visited. Our rout-
ing techniques rely on similar heuristics, but take a more proactive approach by tar-
geting potential message carriers who are likely to visit a message’s destination. Sim-
ilarly, pocket-switched networks [7, 8, 20] provide methods of routing messages be-
tween pocket-sized devices. However, the protocols are intended for small area routing
(i.e., at the scale of an academic conference) and focus on reliability. Our protocols
are designed specifically for smartphones, leverage the devices’ ubiquity and location-
awareness, and target city-scale routing.

Location Privacy. There are a number of approaches that attempt to preserve loca-
tion privacy. Here, the goal is often to prevent an adversary from either identifying the
source of an intercepted communication or tracking a node over time.

Several protocols [15, 26, 37, 44] achieve location privacy by relying on ephemeral
pseudoidentities. Such approaches provide unlinkability by impeding an adversary’s
ability to associate different broadcasts with the same node. Although these techniques
can be used in conjunction with our PPBR protocol, we assume an adversary who is
physically present at various (but not all) locations in the network and can identify
individuals and associate broadcasts with their senders (e.g., through physical identifi-
cation and message triangulation). Similarly, anti-localization techniques [31] that are
designed to prevent an adversary from determining a sender’s location [22] are ineffec-
tive in our context in which the adversary physically observes nodes.

A number of location privacy protocols are loosely based off of AODV [33], a popu-
lar routing protocol for decentralized mobile networks (e.g., MANETs). However, such
techniques assume a highly connected and mostly static network in which messages
can be quickly forwarded between nodes. For example, the ALARM [11] routing sys-
tem privately disseminates topology snapshots to participating nodes, AO2P [41] as-
sumes mostly static positions and immediate connectivity between nodes, PRISM [13]
assumes a trusted third party and longstanding paths that can be used to route traffic,
and ODAR [39] relies on source routing. Similarly, the ANODR [26] system and its
extensions [37, 42] enable anonymous communication in a MANET by establishing
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onion-like structures [40] that obscure the identity of the sender. SDAR [6] also uses
onion-like routing, but uses a “trust management system” in which nodes choose which
peers to route messages towards based on their level of trust of those nodes.

These protocols assume that nodes are mostly stationary, communication can occur
with low latency, and anonymous paths can be reused for multiple exchanges. They are
not well-suited for networks of mobile smartphones where immediate connectivity is
not available, nodes are highly mobile, and paths cannot be predicted a priori. In con-
trast, we desire protocols that leverage routine movements and do not require human
operators to change their habits to participate, even if such a requirement limits oppor-
tunities for exchanging messages. Our setting therefore requires delay tolerant networks
(DTNs) where messages are stored and forwarded during chance encounters.

There are a number of existing DTN protocols that are similar to HumaNets, but
either have limited functionality or lack HumaNets’ privacy protections. For instance,
Zebranet [24] uses local information to efficiently exchange information between sensor
nodes in order to track wildlife. However, the network can route messages only towards
fixed basestations. GeoDTN+Nav [9] is a vehicular ad-hoc network routing scheme
that, like HumaNets, relies on location profiles to deliver messages in a DTN. However,
GeoDTN+Nav requires that at least some nodes follow fixed paths (e.g., bus routes)
or provide their destinations before travel (e.g., via a car navigation system). And in
previous work, we applied polygon-intersection algorithm [3] to HumaNets; however,
this protocol does not consider privacy.

The work that perhaps most closely resembles ours is Shifka et al.’s protocol [38].
Here, the authors use the heuristic that nodes that share more contexts are more likely to
encounter one another. Like our approach, participants construct profiles that describe
frequented locations. To provide profile confidentiality, their technique relies on public
encryption with keyword search (PEKS) to limit the adversary’s ability to enumerate the
contents of a profile. Additionally, their approach assumes a trusted third party (TTP)
that assigns attribute values (e.g., a frequented location) to nodes. In contrast, HumaNets
does not require a TTP, and allows nodes to self-determine their profiles.

7 Conclusion
This paper presents probabilistic profile based routing (PPBR), a novel privacy preserv-
ing geographic messaging protocol for HumaNets. Designed for networks of smart-
phone devices, our PPBR routing protocol avoids the use of the cellular network —
or any other centralized infrastructure — and is well-suited for environments in which
traditional communication is subject to monitoring and/or censorship. PPBR leverages
self-determined location profiles to assist routing while minimizing the disclosure of lo-
cation information to outside observers as well as adversaries who infiltrate the network.
In particular, we demonstrate that PPBR is resistant to disruption, de-anonymization,
and location-leakage attacks.

Using simulations over real-world and synthetic movement data, we show that PPBR
provides reasonable delivery rates and latency. Unlike flooding approaches, our proba-
bilistic routing algorithm does not require exponential message transfers, and is there-
fore appropriate for networks of battery-constrained smartphones. Our future work in-
cludes adapting PPBR to provide long-distance (state- and country-scale) messaging.
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Appendix: General Node Profile Heatmaps

Heatmaps of the general node profile for the SLAW and Cabspotting datasets are re-
spectively depicted in Figure 4 and 5.

Fig. 4: Heatmap of the General Node Profiles for the SLAW dataset. Darker shades indicate re-
gions with higher node densities.

Fig. 5: Heatmap of the General Node Profiles for the Cabspotting dataset. Darker shades indicate
regions with higher node densities.
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