
Computing Pfafstetter Labelings I/O-Efficiently
(abstract)

Lars Arge∗

Department of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

large@daimi.au.dk

Andrew Danner†

Department of Computer Science, Duke University
P.O.Box 90129, Durham, NC 27708-0129, USA

adanner@cs.duke.edu

Herman Haverkort‡

Dept. of Computer Science, University of Aarhus
Aabogade 34, DK-8200 Aarhus N, Denmark

cs.herman@haverkort.net

Norbert Zeh§

Faculty of Computer Science, Dalhousie University
6050 University Ave, Halifax, NS B3H 1W5, Canada

nzeh@cs.dal.ca

ABSTRACT

We present an I/O-efficient algorithm that decomposes a
grid-based terrain model into a hierarchy of watersheds.
Each watershed gets a unique label, a Pfafstetter label, and
each grid cell is labeled with the labels of all (nested) wa-
tersheds it belongs to. The algorithm runs in O(sort(T ))
I/Os, where T is the total length of the computed cell la-
bels. Our algorithm is simple and practical. We substantiate
these claims by presenting experimental results that verify
the performance of our algorithm.

1. INTRODUCTION

Over millions of years, rainfall has been slowly etching net-
works of rivers into the terrain. Today, studying these river
networks is important for managing drinking water supplies,
tracking pollutants, creating flood maps, and more. Hy-
drologists can use large-scale raster-based digital elevation
models, or DEMs, of the terrain along with a Geographic In-
formation System, or GIS, to automate much of these stud-
ies. Often it is not necessary to study the entire terrain
or river network at once. People are typically interested in
regions that are downstream of a particular river, or the
upstream areas that contribute flow to a particular river.
By decomposing the terrain into a set of disjoint hydrologic
units—regions where all water flows towards a single, com-
mon outlet—users can quickly identify areas of interest with-
out having to examine the entire terrain. The Pfafstetter la-
beling method described by Verdin and Verdin [10] defines a
hierarchical decomposition of a terrain into such units, each
with a unique id, or Pfafstetter label. These labels can be
computed automatically, given a network of rivers and their
drainage area. Pfafstetter labels encode topological proper-
ties such as upstream and downstream neighbors, making it

∗Supported in part by the US National Science Foundation
through RI grant EIA–9972879, CAREER grant CCR–9984099,
ITR grant EIA–0112849, and U.S.-Germany Cooperative Re-
search Program grant INT–0129182, by the US Army Research
Office through grant W911NF-04-1-0278, and by a Ole R/omer
Scholarship from the Danish National Science Research Council.
Part of this work was done while the author was at Duke Univer-
sity.
†Supported in part by the US National Science Foundation
through grant CCR–9984099.
‡Supported by a grant from the Danish National Science Research
Council.
§Supported by the Natural Sciences and Engineering Research
Council of Canada and the Canadian Foundation for Innovation.

possible to automatically identify hydrological units of in-
terest based on the Pfafstetter id alone.

Existing algorithms for computing hydrological units on
grid-based terrain models typically use either local filters to
identify terrain features [7, 9] or model flow over the en-
tire terrain [8] and then extract watersheds. Most of these
algorithms are not designed to handle large data sets.

In this paper, we show how to compute Pfafstetter la-
bels efficiently on grid-based DEMs that are too large to fit
into the main memory of a computer and must therefore re-
side on disks, which are larger, but also considerably slower.
To our knowledge, this paper provides the first algorithmic
analysis and experimental running times of Pfafstetter label
computation.

1.1 Pfafstetter labeling on grids

Conceptually, the definition of Pfafstetter labeling is inde-
pendent of the representation of the terrain, but for con-
creteness, we give a definition tailored to a grid-based ter-
rain model. A planar orthogonal grid or raster is a pattern
of horizontal and vertical lines that divide the plane into iso-
metric rectangular cells. In geographic information systems,
we use grids to model properties of the Earth’s surface: we
project a grid onto the surface and store the value of the
property of interest for each cell (for example, the eleva-
tion of the cell’s center). The Pfafstetter labeling of a grid-
based terrain model is defined by the flow directions and the
drainage areas of the cells. Each cell u in the grid has eight
neighbors that share at least one vertex with u. The flow
direction of u is a pointer to the neighbor cell to which water
that falls on or flows through u is assumed to flow. The grid
can thus be seen as a flow graph that has a node for each cell
in the grid, and in which there is a directed edge (u, v) if and
only if the flow direction of u points to neighbor v. A cell w
drains through u if there is a path in the graph, following the
flow directions, from w to u. The drainage area of a cell u is
the total area of the cells–including u–that drain through u.
Flow graphs without cycles and corresponding drainage ar-
eas can be computed from digital elevation models using a
few easy-to-use GIS tools. The TerraFlow software pack-
age [4] in particular computes these grids efficiently on large
elevation models.

For simplicity, we assume that our input consists of a grid
representing the river basin of a single river. This means
that there is one unique cell ρ, the mouth of the river, whose
flow direction points to a cell that is not among the cells in
our input. The flow graph must therefore be a single tree T



flow

direction

ρ

v2

p2

s2

p4

v4

s4

p6

v6

v8

s8

1

3

4

2

5

6

8

7

9

52

54

56

58

51

53

55

57

59

s6,p8

Figure 1. A flow graph T with the main river path (‘blue’ cells, shown
here as circles) and mouths of tributaries (black dots). Removing
the eight bold edges creates nine subtrees, each with the Pfafstetter
label shown in bold type. Each of these subtrees will be subdivided
and labeled recursively.

with root ρ.1 The main river path, R0, of T is a path that
starts at the root ρ and, at each cell, continues, against the
flow direction, to the child with highest drainage area, until
it ends in a leaf. Imagine that all cells of R0 are colored
blue and all other cells are currently black. For simplicity,
we assume that each blue cell has at most one black child.2

We define a subtree of T to be a tributary basin if the root
of the subtree, v, is black, but the parent of v is blue. We
call v a tributary mouth.

Consider the four tributary mouths v2, v4, v6, v8 with the
largest drainage area, where for i < j, the mouth vi flows
into the main river downstream of vj . Let pi and si denote
the parent and the sibling of vi, respectively. Consider the
nine subtrees resulting from the removal of the eight edges
(vi, pi) and (si, pi), for i ∈ {2, 4, 6, 8}, from T . Four of these
subtrees are tributary basins, they are rooted at v2, v4, v6,
and v8. The Pfafstetter label for a cell in a subtree rooted at
vi is i. The remaining subtrees are called interbasins and are
rooted at ρ, s2, s4, s6 and s8. All cells in the subtree rooted
at ρ, the root of T , have label 1. For a cell in a subtree
rooted at si the Pfafstetter label is i+1. See Figure 1 for an
example decomposition. In the case where a flow graph has
0 < k < 4 tributary mouths, we proceed as above but do not
assign the labels 2k+2 through 9. Each of the (at most) nine
subtrees is labeled recursively by applying the definition just
given and appending the resulting labels to the existing label
of the subtree—see, for example, interbasin 5 in Figure 1.
The recursive labeling stops when each subtree is a single
root-leaf path.

1.2 I/O Model

Because on large data sets, the efficiency of an algorithm
tends to be dominated by the time spent on transferring
1Grids with multiple basins are in fact quite easy to handle, but
they would complicate the exposition in this paper unnecessarily.
2We could enforce this by expanding each blue cell into a number
of consecutive blue nodes, one for each child.

data between main memory and disk, we analyse our algo-
rithms under the standard I/O-model proposed by Aggarwal
and Vitter [1]. In this model, computation only occurs on
data located in a main memory with a capacity of M ele-
ments. An I/O transfers a block of B consecutive elements
between main memory and a disk of conceptually infinite
capacity. The complexity measure of an algorithm in this
model is the number of I/Os it performs. Algorithms with
low complexity under this model are called I/O-efficient and
perform well even on large data sets. Trivially, the complex-
ity of scanning N elements is scan(N) = Θ(N

B
). Aggarwal

and Vitter showed that the complexity of sorting N ele-
ments is sort(N) = Θ(N

B
logM/B

N
B

). Note that sort(N) is
typically much smaller than N . In the past decades, a num-
ber of I/O-efficient data structures have been described, in-
cluding stacks on which N operations can be performed in
O(scan(N)) I/Os and priority queues on which N insertions
and extractions can be performed in O(sort(N)) I/Os [2, 5].

1.3 Our results

In this paper, we present an I/O-efficient algorithm that
computes the Pfafstetter labels of the cells in a grid-based
terrain model inO(sort(T )) I/Os, where T is the total length
of the computed labels. In practice, we are only interested
in the O(1) most significant digits of the labels, so that each
label can be truncated and encoded in O(1) bytes. Then
the computations take only O(sort(N)) I/Os, where N is
the number of grid cells.

When the input, the output, and some O(N)-size auxil-
iary data structures fit in internal memory, we can compute
the labeling in O(T ) time (or O(N), if we are only interested
in the O(1) most significant digits of the labels).

The remainder of the paper is structured as follows. As
a first step towards a solution, we define a simpler problem
in Section 2, namely the computation of Pfafstetter labels
on a flow graph that represents a single river whose trib-
utary basins consist of only one cell each. We describe a
data structure known as the Cartesian tree and show how
to use it to compute Pfafstetter labels on such a river. In
Section 3, we discuss how to decompose a grid model of a
general river basin with flow directions and drainage areas
into a tree of tributaries, each of which can be labeled with
a local Pfafstetter label independently using the algorithm
in Section 2. We conclude the description and analysis of
our algorithm with Section 4, where we describe how to
label a complete river basin by combining the local Pfaf-
stetter labels into complete labels for each cell in the river
basin. We present some experimental results showing the
scalability and performance of our algorithm in Section 5,
and give some concluding remarks in Section 6. We omit
internal-memory algorithms and the analysis for truncated
labels from this abstract.

2. COMPUTING PFAFSTETTER
LABELS ON A SINGLE RIVER

In this section, we consider a flow graph as defined in Sec-
tion 1.1 where each subtree attached to the main river con-
sists of a single leaf. These leaves do not need to have the
same drainage areas. Refer to Figure 2 for an example. We
will show how to compute the Pfafstetter labels as defined
earlier on such a pruned flow graph.

As before, let the cells on the main river be colored blue,
while the remaining cells are colored black. We assume that
the cells are given as a list L such that the blue cells are
ordered from mouth to source, and each black cell is placed
between its parent and its sibling. Our goal is to compute



2312 85 12367812131524252834

t2

t4

t6

t8

C1 C3 C5 C7 C9

L

C(L)

flow direction

Figure 2. Bottom figure: a flow graph that consists of a single
river, where each subtree not on the main river is a single leaf. The
numbers are the drainage areas of the cells. List L contains the cells
of the flow graph from left to right. Top figure: the Cartesian tree on
L, with its four heaviest nodes and the five subtrees between them.

the Pfafstetter label for each element in L. To this end,
we scan L to compute an augmented Cartesian tree on the
elements of L, as explained in Section 2.1; then we process
this tree recursively to compute the labels for all elements
in the tree, as explained in Section 2.2.

2.1 Cartesian Tree

Let A = (a1, a2, . . . , aN ) be a sequence of N distinct weights.
The Cartesian tree [6], C(A), of the sequence A is defined
as follows: if A is empty, C(A) is empty. For N > 0, let
ai be the largest element in A. The Cartesian tree of A
consists of a root v that contains av := ai, a left subtree
that is the Cartesian tree C((a1, ..., ai−1)) of the elements
to the left of ai, and a right subtree that is the Cartesian
tree C((ai+1, ..., aN )) of the elements to the right of ai. The
internal-memory algorithm for the construction of a Carte-
sian tree takes O(N) time [6]. When implemented carefully
using two stacks that hold the nodes of the tree under con-
struction, the algorithm is I/O-efficient, taking O(scan(N))
I/Os to output the nodes of the tree in post-order3.

To be able to label a river with Pfafstetter labels as ex-
plained in the next subsection, we store with every node in
the Cartesian tree the four heaviest elements among its de-
scendants (including itself). The four heaviest elements be-
low every node can be determined by a straightforward post-
order traversal of the tree. Because the tree is constructed
incrementally in post-order, we can perform this post-order
traversal while the tree is being constructed, without in-
creasing the number of I/Os by more than a constant factor.
We omit the details from this abstract.

2.2 Labeling a river

Recall that a single river is represented by a list L consisting
of a main river of blue cells and a set of black tributary cells
each of which is stored between its blue parent and its blue
sibling. We build an augmented Cartesian tree on these cells
as described above, where the weight of a cell is defined as
follows: A black cell’s weight is equal to its drainage area,
while every blue cell has weight zero. When cells of equal
weight need to be compared, the cell that appears first in
the list is considered to have the highest weight. With each
cell we store not only its position in the list and its weight,
but also its location in the grid.

When the river has at least one tributary (black cell),
the root of the tree now stores the tributary t with biggest
drainage area, along with the three next-biggest tributaries

3A post-order listing of a binary tree is a list of its nodes that
consists of the post-order listing of the left subtree of the root,
followed by the post-order listing of the right subtree of the root,
followed by the root.

(if they exist); the left child of the root is a Cartesian tree on
the cells that lie in or flow into the main river downstream
of t (excluding t itself), while the right child is a Cartesian
tree on the cells upstream of t’s parent.

Observation 1 The four weights stored in the root of the
augmented Cartesian tree C are the weights of the nodes in
a connected subgraph of C that includes the root.

We can now label the complete list L recursively as fol-
lows. Each recursive call is parameterized with a node of
C and the Pfafstetter label of an interbasin. The recursion
starts by calling the algorithm on the root of the tree with
an empty label.

When called on a node v, we find node v in C and examine
v for the four heaviest cells in the tree rooted at v. If all
of them have weight zero, the tree rooted at v represents a
stretch of river without black cells, that is, without conflu-
ences with tributaries. We then label all nodes under v with
the given interbasin label from right to left in the order in
which they appear in L.

Otherwise, we order the heaviest cells under (and includ-
ing) v from left to right according to their position in L
into a list t2, t4, t6, t8. Assume for the moment that all four
heaviest nodes exist and have positive weight, that is, they
represent black cells. Because by Observation 1, these four
nodes together form a tree with three edges, and because the
Cartesian tree is a binary tree, these nodes together have at
most five children other than t2, t4, t6 and t8. These children
are the roots of the five subtrees C1, C3, C5, C7, C9 that would
be obtained by removing the nodes of t2, t4, t6 and t8 from
the Cartesian tree—see Figure 2 for an example. C1 contains
all cells that lie on or flow into the main river downstream
of t2 (excluding t2). For i ∈ {3, 5, 7}, subtree Ci contains all
cells that lie on or flow into the main river upstream of the
parent of ti−1 and downstream of ti+1 (excluding ti+1). C9

contains all cells that lie upstream of t8’s parent. We now
proceed as follows. We label C9 recursively by recursing on
the root of C9 with the interbasin label equal to the given
interbasin label plus the digit “9”. For i = 8, 6, 4, 2 (going
in downstream order), we label ti (which is stored in v) with
the given interbasin label plus the digit i, and then recurse
on the root of Ci−1 with the given interbasin label plus the
digit i− 1.

If v has k < 4 black descendants, we order them by their
position in L into a list t2, t4, . . . , t2k: subtrees C2k+3, . . . , C9

do not exist and are not labeled.

Lemma 1 The Pfafstetter labels for the N cells in a list L
that represents a single river can be computed and output
from right to left in O(scan(T )) I/Os, where T is the total
size of the computed labels.

Proof. We implement the above algorithm by first comput-
ing a post-order listing of a Cartesian tree on L as explained
in Section 2.1. This costs O(scan(N)) I/Os.

When the recursive labeling algorithm visits a node u, it
always visits it before any descendants of u, and it visits any
descendants in the right subtree of u before any descendants
in the left subtree of u. The algorithm thus visits the nodes
of the Cartesian tree in the reverse order of left-to-right post-
order (skipping nodes that are the second-, third- or fourth-
heaviest nodes below nodes that have already been visited).
The nodes to recurse on can thus be obtained in O(scan(N))
I/Os in total by putting the post-order listing of the tree on
a stack and popping nodes from it as needed.

Outputting the labels of all cells in L takes O(scan(T ))
I/Os, where T is the total size of the computed labels.

We omit further details from this abstract.



3. DECOMPOSING A TERRAIN
INTO RIVERS

Above we explained how to label a single riverRi when given
as a list Li of blue cells ordered from mouth to source, with
tributary mouths placed as black cells between their parents
and their siblings. In this section we show that we can ef-
ficiently decompose a grid-based terrain model into a set of
rivers and construct such a list for each river. Moreoever,
our decomposition constitutes a hierarchy of tributaries, a
tributary tree, where each vertex stores a river Ri repre-
sented by a list Li, and where Ri is a child of Rj if and only
if Ri flows directly into Rj , that is, the mouth of Ri is a
black cell in Lj . We consider the children of each node Rj

in this tree to be ordered from left to right according to the
ordering of their mouths in Lj .

Recall the flow graph T of Section 1.1 shown in Figure 1.
Without loss of generality, we assume that the minimum
drainage area of any cell in T is one. The first river in
our decomposition is a root-leaf path, R0 of T defined by
starting at the root and, at each cell, continuing to the child
with highest drainage area. The list L0 forR0 is the list of all
cells along the path R0 in order from mouth to source, along
with the remaining children of those cells. The remaining
rivers are defined by applying the definition recursively to
each tributary of R0, that is, to each subtree rooted at a
node v such that the parent of v is on R0, but v is not. This
defines a set of rivers, each represented by a list of cells in
that river (blue cells) and mouths of tributaries (black cells).
Each cell in T appears in one or two such lists: once as a
blue node in the list of the river that flows through that cell,
and, if the cell is the mouth of a river Ri 6= R0, once as a
black node in the list of the river to which Ri is a tributary.

The above definition could be translated in a straightfor-
ward way into a depth-first traversal of T that generates all
river lists and produces a pre-order listing of the nodes of
the tributary tree in O(N) CPU operations. However, when
the input does not fit in internal memory and I/O-efficiency
determines the running time, we need another approach.

We compute the decomposition into rivers by processing
the flow graph T from the root to the leaves, constructing
each river’s list incrementally from the mouth to the source.
We do not construct the rivers one by one, but in parallel: at
each point in the process, there may be several rivers under
construction. To organize this process, we assign each river
a unique integer id as soon as the parent of its mouth in
T is visited, and maintain each river’s state as a quintuple
(RID ,RLen, v,TID−,TID+), where:

• RID is the id of the river;
• RLen is the number of elements that were already ap-

pended to its list LRID ;
• v is the next cell to append to LRID ;
• {TID−, ...,TID+} are ids that are reserved to be as-

signed to tributaries of river RRID .
The river states are kept in a priority queue, where highest
priority is given to the river whose next cell has highest
drainage area, with ties broken arbitrarily. Initially we set
up a priority queue with one river state that is the state of
the main river R0 before any cells have been added to its
list—more precisely, this river state is initialized as (RID =
0,RLen = 0, v = ρ,TID− = 1,TID+ = ∞), where ρ is the
root of T , that is, the mouth of R0.

We copy the flow graph T and store with each cell a copy
of its children, sort the cells by decreasing drainage area
(with ties broken in the same way as in the priority queue),
and put them on a stack of cells still to be processed. The
cell with highest drainage area, which must be the mouth of
the main river, is put on top of stack.

We now repeat the following until the stack is empty. We
pop a cell v from the stack of cells to be processed. The first
time we do this, v is the mouth of the main river, and the
state of the main river is the only river state in the priority
queue. Every other time, v has a parent, which has bigger
drainage area and therefore must have been popped from
the stack and dealt with before. Therefore the mouth of the
river R that contains v must have been found already, and
the state of R must be in the priority queue. Furthermore,
since v is the unprocessed cell with highest drainage area,
river R must have highest priority. We extract the river
state with highest priority from the priority queue, and thus
obtain the id RID of R, the length RLen of the list LRID

of R, and the minimum and maximum id TID− and TID+

available to name tributaries. We now process v as follows.

We first increase RLen by one and append v as element
number RLen to LRID , colored blue (we will discuss later
how to do this I/O-efficiently). Then we look at v’s children.

If v has no children, we are done with v: river R ends
here and there are no tributaries to discover, so we proceed
to processing the next cell on the stack.

If v has one child, it must be the next cell vblue up-
stream on R. The current state of R is thus described by
(RID ,RLen, vblue ,TID−,TID+). We insert that state into
the priority queue and proceed to processing the next cell
on the stack.

If v has two children, the one with biggest drainage area
is, by definition, the next cell vblue upstream on R, and the
other one must be the mouth vblack of a tributary to R. We
increase RLen by one again, and append vblack as element
number RLen to LRID , colored black. Since the cell v we
are visiting is the parent of tributary mouth vblack , we must
now give that tributary an id and insert its state into the
priority queue. We assign it id TID−, initialize its state to
(TID−, 0, vblack ,TID−+1,TID−+drainageArea(vblack )−1),
and insert it into the queue. Thus we reserve ids TID− + 1
through TID− + drainageArea(vblack ) − 1 for tributaries of
the newly discovered river RTID− . The state of R is now de-
scribed by (RID ,RLen, vblue ,TID− + drainageArea(vblack ),
TID+). We insert that river state into the priority queue,
and proceed to processing the next cell on the stack.

Lemma 2 InO(sort(N)) I/Os a grid-based elevation model
can be decomposed into a pre-order listing of the rivers in
the tree of tributaries, such that each Ri is returned as a
list Li that contains the cells in the river from mouth to
source, with tributary mouths placed between their parents
and their siblings in the flow graph.

Proof. We implement the above algorithm as follows. We
run Terraflow [4] on the input elevation grid to get a flow
direction and a drainage area for each cell in O(sort(N))
I/Os. We scan the flow direction and drainage area grid
with a 3x3 window in O(scan(N)) I/Os to create a list of
all cells in the grid, where each cell stores not only its own
drainage area, but also the drainage areas of all of its chil-
dren in T . Then we sort this list by decreasing drainage
area in O(sort(N)) I/Os and put it on a stack of unpro-
cessed cells, the cell with highest drainage area on top. The
processing of each cell v requires one stack operation, one
extraction from the priority queue, inspecting the drainage
areas of the children of v (which are stored with v), up to
two insertions into the priority queue, and up to two addi-
tions to a river list. Using I/O-efficient stacks and priority
queues, all O(N) stack and queue operations can be carried
out in O(sort(N)) I/Os [2, 5]. We implement the additions
to the river lists by maintaining one big list L∗ with elements
of the form (v,RID ,ROff , color), where v is a grid cell with



its drainage area and grid location, RID is the id of the river
that contains v, ROff is the position of v in the list LRID

of river RID , and color is the color of the cell in that list
(blue or black). When we append a cell v with color color
as element number ROff to list LRID , we simply append
(v,RID ,ROff , color) to L∗. When the complete algorithm
is done, we sort L∗ by RID and ROff in O(sort(N)) I/Os
to obtain the lists per river. Thus the total number of I/Os
needed to obtain the lists for all rivers in a given watershed
is O(sort(N)). The way in which the river ids are assigned
guarantees that sorting by river id automatically gives a
pre-order listing of the rivers in the tree of tributaries.

We omit the correctness proof from this abstract.

4. LABELING A COMPLETE BASIN
Consider the main river R0 of the flow graph T represented
by a list L0. Each cell in T is either a blue cell in L0 or
is part of some subtree whose root r is a black cell in L0.
For each blue cell u in L0, the Pfafstetter label is simply the
label of u in L0 as assigned by the algorithm of Section 2.
The Pfafstetter label for a cell in a subtree rooted at a black
cell v in L0 is the label of v in L0 concatenated with the
recursive labeling of the subtree rooted at v.

We can thus label all cells in the terrain as follows. We
decompose the terrain into a pre-order listing of a tree of
tributaries, each represented by a list of blue and black cells,
as explained in Section 3. We initialize an empty stack of la-
bel prefixes and push an empty label on it. Then we process
the rivers in the tree of tributaries one by one in pre-order.
For each river Ri, we pop a prefix from the stack and label
the cells in its list Li with the algorithm from Section 2,
while prefixing all labels with the prefix popped from the
stack. We append the labeled blue cells to a list of labeled
cells. We push the labels for the black cells on the stack in
the reverse order in which they appear in Li, to be used as
prefixes for the child rivers in the tributary tree. When we
have labeled all rivers, we sort the labeled blue cells by lo-
cation to arrange them in a grid. The following now follows
in a straightforward way from Lemma 1 and Lemma 2:

Theorem 1 The Pfafstetter labels of all cells of a grid-
based elevation model can be computed in O(sort(T )) I/Os,
where T is the total length of the computed labels.

5. EXPERIMENTAL RESULTS
We implemented the algorithms in this paper in C++ using
tpie [3], a library that provides support for implementing
I/O-efficient algorithms and data structures. In particular,
all sorting steps in our algorithm are done by simply call-
ing a TPIE function. For the priority queue, we used the
implementation from Terraflow [4], also based on tpie.

We ran preliminary tests on grids of varying size. The
biggest data set contains 396.5 million grid cells. It is an
elevation model of the Neuse basin in North Carolina at a
resolution of 20 feet, and is publicly available from ncflood-
maps.com. The other data sets come from the National El-
evation Dataset (NED) from the United States Geological
Survey and model parts of Tennessee at a resolution of one
arc second (approximately 30 m). These data are publicly
available at seamless.usgs.gov. The experiments were run
on a Dell Precision Server 370 running Linux 2.6.11 with
1 GB of physical memory, a Pentium 4 3.40 GHz processor
with hyperthreading enabled, and three 400 GB SATA disk
drives. We used a single disk for temporary storage and set
the software memory limit to 258 MB. We preprocessed all
data sets with Terraflow to obtain grids of flow directions
and drainage areas, and then ran the algorithm described in

this paper. This resulted in the following running times (ex-
cluding the running time of Terraflow).

input size (MB) 17 116 150 713 5,819
size (mln cells) 2.7 21.7 30.8 147.0 396.5
running time 0m30 6m51 10m29 58m10 187m43
spent on:

importing data 16% 9% 8% 7% 16%
sorting input cells 12% 16% 16% 15% 13%
tracing rivers 43% 30% 31% 34% 30%
sorting river lists 9% 19% 19% 20% 19%
computing labels 5% 8% 7% 6% 6%
sorting labeled cells 8% 13% 14% 13% 12%
exporting data 6% 4% 5% 4% 5%

6. CONCLUDING REMARKS
In this paper, we presented an I/O-efficient algorithm that
computes the Pfafstetter labeling of a river basin on a grid-
based terrain model in O(sort(T )) I/Os, where T is the total
length of the computed labels.

Once the Pfafstetter labeling is computed, the watershed
boundaries yield a hierarchical decomposition of ridge lines
of the terrain. When overlaid with the stream lines gener-
ated by Terraflow, we could get a decomposition of the
terrain into hill slopes at multiple levels of detail. This could
be a starting point for terrain simplification algorithms that
preserve hydrological properties of the terrain.

References
[1] A. Aggarwal and J. S. Vitter. The Input/Output com-

plexity of sorting and related problems. Communica-
tions of the ACM, 31(9):1116–1127, 1988.

[2] L. Arge. The buffer tree: A technique for design-
ing batched external data structures. Algorithmica,
37(1):1–24, 2003.

[3] L. Arge, R. Barve, D. Hutchinson, O. Pro-
copiuc, L. Toma, D. E. Vengroff, and R. Wick-
remesinghe. TPIE User Manual and Reference (edi-
tion 082902). Duke University, 2002. The manual
and software distribution are available on the web at
http://www.cs.duke.edu/TPIE/.

[4] L. Arge, J. Chase, P. Halpin, L. Toma, D. Urban,
J. S. Vitter, and R. Wickremesinghe. Flow computation
on massive grid terrains. GeoInformatica, 7(4):283–313,
2003.

[5] G. S. Brodal and J. Katajainen. Worst-case efficient
external-memory priority queues. In Proc. Scandina-
vian Workshop on Algorithms Theory, LNCS 1432,
pages 107–118, 1998.

[6] H. N. Gabow, J. L. Bentley, and R. E. Tarjan. Scal-
ing and related techniques for geometry problems. In
Proc. of 16th ACM Symposium on Theory of Comput-
ing, pages 135–143, 1984.

[7] S. Jenson and J. Domingue. Extracting topographic
structure from digital elevation data for geographic in-
formation system analysis. Photogrammetric Engineer-
ing and Remote Sensing, 54(11):1593–1600, 1988.

[8] J. F. O’Callaghan and D. M. Mark. The extraction of
drainage networks from digital elevation data. Com-
puter Vision, Graphics and Image Processing, 28, 1984.

[9] T. K. Peucker. Detection of surface specific points by lo-
cal parallel processing of discrete terrain elevation data.
Computer Graphics and Image Processing, 4:375–387,
1975.

[10] K. L. Verdin and J. P. Verdin. A topological system for
delineation and codification of the Earth’s river basins.
Journal of Hydrology, 218:1–12, 1999.


