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Summary. Given a set S of points in R
3 sampled from an elevation function H : R

2 → R,
we present a scalable algorithm for constructing a grid digital elevation model (DEM). Our
algorithm consists of three stages: First, we construct a quad tree on S to partition the point set
into a set of non-overlapping segments. Next, for each segment q, we compute the set of points
in q and all segments neighboring q. Finally, we interpolate each segment independently using
points within the segment and its neighboring segments.

Data sets acquired by LIDAR and other modern mapping technologies consist of hundreds
of millions of points and are too large to fit in main memory. When processing such massive
data sets, the transfer of data between disk and main memory (also called I/O), rather than the
CPU time, becomes the performance bottleneck. We therefore present an I/O-efficient algo-
rithm for constructing a grid DEM. Our experiments show that the algorithm scales to data
sets much larger than the size of main memory, while existing algorithms do not scale. For
example, using a machine with 1GB RAM, we were able to construct a grid DEM containing
1.3 billion cells (occupying 1.2GB) from a LIDAR data set of over 390 million points (occu-
pying 20GB) in about 53 hours. Neither ArcGIS nor GRASS, two popular GIS products, were
able to process this data set.

1 Introduction

One of the basic tasks of a geographic information system (GIS) is to store a repre-
sentation of various physical properties of a terrain such as elevation, temperature,
precipitation, or water depth, each of which can be viewed as a real-valued bivariate
function. Because of simplicity and efficacy, one of the widely used representations
is the so-called grid representation in which a functional value is stored in each cell
of a two-dimensional uniform grid. However, many modern mapping technologies
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do no acquire data on a uniform grid. Hence the raw data is a set S of N (arbitrary)
points in R

3, sampled from a function H : R
2 → R. An important task in GIS is

thus to interpolate S on a uniform grid of a prescribed resolution.
In this paper, we present a scalable algorithm for this interpolation problem. Al-

though our technique is general, we focus on constructing a grid digital elevation
model (DEM) from a set S of N points in R

3 acquired by modern mapping tech-
niques such as LIDAR. These techniques generate huge amounts of high-resolution
data. For example, LIDAR3 acquires highly accurate elevation data at a resolution of
one point per square meter or better and routinely generates hundreds of millions of
points. It is not possible to store these massive data sets in the internal memory of
even high-end machines, and the data must therefore reside on larger but consider-
ably slower disks. When processing such huge data sets, the transfer of data between
disk and main memory (also called I/O), rather than computation, becomes the per-
formance bottleneck. An I/O-efficient algorithm that minimizes the number of disk
accesses leads to tremendous runtime improvements in these cases. In this paper we
develop an I/O-efficient algorithm for constructing a grid DEM of unprecedented
size from massive LIDAR data sets.

Related work. A variety of methods for interpolating a surface from a set of
points have been proposed, including inverse distance weighting (IDW), kriging,
spline interpolation and minimum curvature surfaces. Refer to [12] and the refer-
ences therein for a survey of the different methods. However, the computational
complexity of these methods often make it infeasible to use them directly on even
moderately large points sets. Therefore, many practical algorithms use a segmenta-
tion scheme that decomposes the plane (or rather the area of the plane containing
the input points) into a set of non-overlapping areas (or segments), each contain-
ing a small number of input points. One then interpolates the points in each segment
independently. Numerous segmentation schemes have been proposed, including sim-
ple regular decompositions and decompositions based on Voronoi diagrams [18] or
quad trees [14, 11]. A few schemes using overlapping segments have also been pro-
posed [19, 17].

As mentioned above, since I/O is typically the bottleneck when processing large
data sets, I/O-efficient algorithms are designed to explicitly take advantage of the
large main memory and disk block size [2]. These algorithms are designed in a model
in which the computer consists of an internal (or main) memory of size M and an
infinite external memory. Computation is considered free but can only occur on ele-
ments in main memory; in one I/O-operation, or simply I/O, B consecutive elements
can be transfered between internal and external memory. The goal of an I/O-efficient
algorithm is to minimize the number of I/Os.

Many Θ(N) time algorithms that do not explicitly consider I/O use Θ(N) I/Os
when used in the I/O-model. However, the “linear” bound, the number of I/Os needed
to read N elements, is only Θ(scan(N)) = Θ(N

B ) in the I/O model. The number of

3 In this paper, we consider LIDAR data sets that represent the actual terrain and have been
pre-processed by the data providers to remove spikes and errors due to noise.
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I/Os needed to sort N elements is Θ(sort(N)) = Θ(N
B logM/B

N
B ) [2]. In prac-

tice, B is on the order of 103–105, so scan(N) and sort(N) are typically much
smaller than N . Therefore tremendous speedups can often be obtained by develop-
ing algorithms that use O(scan(N)) or O(sort(N)) I/Os rather than Ω(N) I/Os.
Numerous I/O-efficient algorithms and data structures have been developed in re-
cent years, including several for fundamental GIS problems (refer to [4] and the
references therein for a survey). Agarwal et. al [1] presented a general top-down lay-
ered framework for constructing a certain class of spatial data structures–including
quad trees–I/O-efficiently. Hjaltason and Samet [9] also presented an I/O-efficient
quad-tree construction algorithm. This optimal O(sort(N)) I/O algorithm is based
on assigning a Morton block index to each point in S, encoding its location along a
Morton-order (Z-order) space-filling curve, sorting the points by this index, and then
constructing the structure in a bottom-up manner.

Our approach. In this paper we describe an I/O-efficient algorithm for construct-
ing a grid DEM from LIDAR points based on quad-tree segmentation. Most of the
segmentation based algorithms for this problem can be considered as consisting of
three separate phases; the segmentation phase, where the decomposition is computed
based on S; the neighbor finding phase, where for each segment in the decomposi-
tion the points in the segment and the relevant neighboring segments are computed;
and the interpolation phase, where a surface is interpolated in each segment and the
interpolated values of the grid cells in the segment are computed. In this paper, we
are more interested in the segmentation and neighbor finding phases than the par-
ticular interpolation method used in the interpolation phase. We will focus on the
quad tree based segmentation scheme because of its relative simplicity and because
it has been used with several interpolation methods such as thin plate splines [14]
and B-splines [11]. We believe that our techniques will apply to other segmentation
schemes as well.

Our algorithm implements all three phases I/O-efficiently, while allowing the
use of any given interpolation method in the interpolation phase. Given a set S of N
points, a desired output grid specified by a bounding box and a cell resolution, as well
as a threshold parameter kmax, the algorithm uses O(N

B
h

log M

B

+sort(T )) I/Os, where

h is the height of a quad tree on S with at most kmax points in each leaf, and T is
the number of cells in the desired grid DEM. Note that this is O(sort(N)+sort(T ))
I/Os if h = O(log N), that is, if the points in S are distributed such that the quad tree
is roughly balanced.

The three phases of our algorithm are described in Section 2, Section 3 and Sec-
tion 4. In Section 2 we describe how to construct a quad tree on S with at most kmax

points in each leaf using O(N
B

h
log M

B

) I/Os. The algorithm is based on the frame-

work of Agarwal et. al [1]. Although not as efficient as the algorithm by Hjaltason
and Samet [9] in the worst case, we believe that it is simpler and potentially more
practical; for example, it does not require computation of Morton block indices or
sorting of the input points. Also in most practical cases where S is relatively nicely
distributed, for example when working with LIDAR data, the two algorithms both
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use O(sort(N)) I/Os. In Section 3 we describe how to find the points in all neighbor
leaves of each quad-tree leaf using O(N

B
h

log M

B

) I/Os. The algorithm is simple and

very similar to our quad-tree construction algorithm; it takes advantage of how the
quad tree is naturally stored on disk during the segmentation phase. Note that while
Hjaltason and Samet [9] do not describe a neighbor finding algorithm based on their
Morton block approach, it seems possible to use their approach and an I/O-efficient
priority queue [5] to obtain an O(sort(N)) I/O algorithm for the problem. However,
this algorithm would be quite complex and therefore probably not of practical inter-
est. Finally, in Section 4 we describe how to apply an interpolation scheme to the
points collected for each quad-tree leaf, evaluate the computed function at the rele-
vant grid cells within the segment corresponding to each leaf, and construct the final
grid using O(scan(N)) + O(sort(T )) I/Os. As mentioned earlier, we can use any
given interpolation method within each segment.

To investigate the practical efficiency of our algorithm we implemented it and
experimentally compared it to other interpolation algorithms using LIDAR data. To
summarize the results of our experiments, we show that, unlike existing algorithms,
our algorithm scales to data sets much larger than the main memory. For example,
using a 1GB machine we were able to construct a grid DEM containing 1.3 billion
points (occupying 1.2GB) from a LIDAR data set of over 390 million points (occu-
pying 20GB) in just 53 hours. This data set is an order of magnitude larger than what
could be handled by two popular GIS products–ArcGIS and GRASS. In addition to
supporting large input point sets, we were also able to construct very large high res-
olution grids; in one experiment we constructed a one meter resolution grid DEM
containing more than 53 billion cells—storing just a single bit for each grid cell in
this DEM requires 6GB.

In Section 5 we describe the details of the implementation of our theoreti-
cally I/O-efficient algorithm that uses a regularized spline with tension interpolation
method [13]. We also describe the details of an existing algorithm implemented in
GRASS using the same interpolation method; this algorithm is similar to ours but it
is not I/O-efficient. In Section 6 we describe the results of the experimental compar-
ison of our algorithm to other existing implementations. As part of this comparison,
we present a detailed comparison of the quality of the grid DEMs produced by our
algorithm and the similar algorithm in GRASS that show the results are in good
agreement.

2 Segmentation Phase: Quad-Tree Construction

Given a set S of N points contained in a bounding box [x1, x2]× [y1, y2] in the plane,
and a threshold kmax, we wish to construct a quad tree T [8] on S such that each
quad-tree leaf contains at most kmax points. Note that the leaves of T partition the
bounding box [x1, x2] × [y1, y2] into a set of disjoint areas, which we call segments.

Incremental construction. T can be constructed incrementally simply by in-
serting the points of S one at a time into an initially empty tree. For each point p,
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we traverse a root-leaf path in T to find the leaf v containing p. If v contains less
than kmax points, we simply insert p in v. Otherwise, we split v into four new leaves,
each representing a quadrant of v, and re-distribute p and the points in v to the new
leaves. If h is the height of T, this algorithm uses O(Nh) time. If the input points
in S are relatively evenly distributed we have h = O(log N), and the algorithm uses
O(N log N) time.

If S is so large that T must reside on disk, traversing a path of length h may
require as many as h I/Os, leading to an I/O cost of O(Nh) in the I/O-model. By
storing (or blocking) the nodes of T on disk intelligently, we may be able to access a
subtree of depth log B (size B) in a single I/O and thus reduce the cost to O(N h

log B )
I/Os. Caching the top-most levels of the tree in internal memory may also reduce the
number of I/Os needed. However, since not all the levels fit in internal memory, it is
hard to avoid spending an I/O to access a leaf during each insertion, or Ω(N) I/Os
in total. Since sort(N) ¿ N in almost all cases, the incremental approach is very
inefficient when the input points do not fit in internal memory.

Level-by-level construction. A simple I/O-efficient alternative to the incre-
mental construction algorithm is to construct T level-by-level: We first construct the
first level of T, the root v, by scanning through S and, if N > kmax, distributing each
point p to one of four leaf lists on disk corresponding to the child of v containing p.
Once we have scanned S and constructed one level, we construct the next level by
loading each leaf list in turn and constructing leaf lists for the next level of T. While
processing one list we keep a buffer of size B in memory for each of the four new leaf
lists (children of the constructed node) and write buffers to the leaf lists on disk as
they run full. Since we in total scan S on each level of T, the algorithm uses O(Nh)
time, the same as the incremental algorithm, but only O(Nh/B) I/Os. However,
even in the case of h = log4 N , this approach is still a factor of log M

B

N
B / log4 N

from the optimal O(N
B log M

B

N
B ) I/O bound.

Hybrid construction. Using the framework of Agarwal et. al [1], we design a
hybrid algorithm that combines the incremental and level-by-level approaches. In-

NE

NW

SW

SE

Fig. 1. Construction of a quad-tree layer of depth three with kmax = 2. Once a leaf at depth
three is created, no further splitting is done; instead additional points in the leaf are stored in
leaf lists shown below shaded nodes. After processing all points the shaded leaves with more
than two points are processed recursively.
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stead of constructing a single level at a time, we can construct a layer of log4
M
B

levels. Because 4log
4

M

B = M/B < M , we construct the layer entirely in internal
memory using the incremental approach: We scan through S, inserting points one
at a time while splitting leaves and constructing new nodes, except if the path from
the root of the layer to a leaf of the layer is of height log4

M
B . In this case, we write

all points contained in such a leaf v to a list Lv on disk. After all points have been
processed and the layer constructed, we write the layer to disk sequentially and re-
cursively construct layers for each leaf list Li. Refer to Figure 1.

Since a layer has at most M/B nodes, we can keep a internal memory buffer of
size B for each leaf list and only write points to disk when a buffer runs full (for
leaves that contain less than B points in total, we write the points in all such leaves
to a single list after constructing the layer). In this way we can construct a layer on N
points in O(N/B) = scan(N) I/Os. Since a tree of height h has h/ log4

M
B layers,

the total construction cost is O(N
B

h
log M

B

) I/Os. This is sort(N) = O(N
B log M

B

N
B )

I/Os when h = O(log N).

3 Neighbor Finding Phase

Let T be a quad tree on S. We say that two leaves are neighbors if their associated
segments share part of an edge or a corner. Refer to Figure 2 for an example. If L is
the set of segments associated with the leaves of T, we want to find for each q ∈ L the
set Sq of points contained in q and the neighbor leaves of q. As for the construction
algorithm, we first describe an incremental algorithm and then improve its efficiency
using a layered approach.

q

Fig. 2. The segment q associated with a leaf of a quad tree and its six shaded neighboring
segments.

Incremental approach. For each segment q ∈ L, we can find the points in the
neighbors of q using a simple recursive procedure: Starting at the root v of T, we
compare q to the segments associated with the four children of v. If the bounding
box of a child u shares a point or part of an edge with q, then q is a neighbor of at
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least one leaf in the tree rooted in u; we therefore recursively visit each child with
an associated segment that either neighbors or contains q. When we reach a leaf we
insert all points in the leaf in Sq .

To analyze the algorithm, we first bound the total number of neighbor segments
found over all segments q ∈ L. Consider the number of neighbor segments that are
at least the same size as a given segment q; at most one segment can share each of
q’s four edges, and at most four more segments can share the four corner points of q.
Thus, there are at most eight such neighbor segments. Because the neighbor relation
is symmetric, the total number of neighbor segments over all segments is at most
twice the total number of neighbor segments which are at least the same size. Thus
the total number of neighbor segments over all segments is at most 16 times the num-
ber of leaves of T. Because the total number of leaves is at most 4N/kmax, and since
the above algorithm traverses a path of height h for each neighbor, it visits O(Nh)
nodes in total. Furthermore, as each leaf contains at most kmax points, the algorithm
reports O(Nkmax) points in total. Thus the total running time of the algorithm is
O((h + kmax)N) = O(hN)). This is also the worst case I/O cost.

Layered approach. To find the points in the neighboring segments of each seg-
ment in L using a layered approach similar to the one used to construct T, we first
load the top log4

M
B levels of T into memory. We then associate with each leaf u in

the layer, a buffer Bu of size B in internal memory and a list Lu in external mem-
ory. For each segment q ∈ L, we use the incremental algorithm described above to
find the leaves of the layer with an associated segment that completely contains q or
share part of a boundary with q. Suppose u is such a layer leaf. If u is also a leaf
of the entire tree T, we add the pair (q, Su) to a global list Λ, where Su is the set of
points stored at u. Otherwise, we add q to the buffer Bu associated with u, which
is written to Lu on disk when Bu runs full. After processing all segments in L, we
recursively process the layers rooted at each leaf node u and its corresponding list
Lu. Finally, after processing all layers, we sort the global list of neighbor points Λ
by the first element q in the pairs (q, Su) stored in Λ. After this, the set Sq of points
in the neighboring segments of q are in consecutive pairs of Λ, so we can construct
all Sq sets in a simple scan of Λ.

Since we access nodes in T during the above algorithm in the same order they
were produced in the construction of T, we can process each layer of log4

M
B levels

of T in scan(N) I/Os. Furthermore, since
∑

q |Sq| = O(N), the total number of I/Os

used to sort and scan Λ is O(sort(N)). Thus the algorithm uses O( N
B

h
log M

B

) I/Os in

total, which is O(sort(N)) when h = O(log N).

4 Interpolation Phase

Given the set Sq of points in each segment q (quad tree leaf area) and the neighboring
segments of q, we can perform the interpolation phase for each segment q in turn sim-
ply by using any interpolation method we like on the points in Sq , and evaluating the



8 P. K. Agarwal, L. Arge, and A. Danner

computed function to interpolate each of the grid cells in q. Since
∑

q |Sq| = O(N),
and assuming that each Sq fits in memory (otherwise we maintain a internal memory
priority queue to keep the nmax < M points in Sq that are closest to the center of q,
and interpolate on this subset), we can read each Sq into main memory and perform
the interpolation in O(scan(N)) I/Os in total. However, we cannot simply write the
interpolated grid cells to an output grid DEM as they are computed, since this could
result in an I/O per cell (or per segment q). Instead we write each interpolated grid
cell to a list along with its position (i, j) in the grid; we buffer B cells at a time in
memory and write the buffer to disk when it runs full. After processing each set Sq ,
we sort the list of interpolated grid cells by position to obtain the output grid. If the
output grid has size T , computing the T interpolated cells and writing them to the list
takes O(T/B) I/Os. Sorting the cells take O(sort(T )) I/Os. Thus the interpolation
phase is performed in O(scan(N) + sort(T )) I/Os in total.

5 Implementation

We implemented our methods in C++ using TPIE [7, 6], a library that eases the
implementation of I/O-efficient algorithms and data structures by providing a set
of primitives for processing large data sets. Our algorithm takes as input a set S

of points, a grid size, and a parameter kmax that specifies the maximum number
of points per quad tree segment, and computes the interpolated surface for the grid
using our segmentation algorithm and a regularized spline with tension interpolation
method [13]. We chose this interpolation method because it is used in the open source
GIS GRASS module s.surf.rst [14]—the only GRASS surface interpolation
method that uses segmentation to handle larger input sizes—and provides a means to
compare our I/O-efficient approach to an existing segmentation method. Below we
discuss two implementation details of our approach: thinning the input point set, and
supporting a bit mask. Additionally, we highlight the main differences between our
implementation and s.surf.rst.

Thinning point sets. Because LIDAR point sets can be very dense, there are
often several cells in the output grid that contain multiple input points, especially
when the grid cell size is large. Since it is not necessary to interpolate at sub-pixel
resolutions, computational efficiency improves if one only includes points that are
sufficiently far from other points in a quad-tree segment. Our implementation only
includes points in a segment that are at least a user-specified distance ε from all other
points within the segment. By default, ε is half the size of a grid cell. We implement
this feature with no additional I/O cost simply by checking the distance between a
new point p and all other points within the quad-tree leaf containing p and discarding
p if it is within a distance ε of another point.

Bit mask. A common GIS feature is the ability to specify a bit mask that skips
computation on certain grid cells. The bit mask is a grid of the same size as the
output grid, where each cell has a zero or one bit value. We only interpolate grid cell
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values when the bit mask for the cell has the value one. Bit masks are particularly
useful when the input data set consists of an irregularly shaped region where the
input points are clustered and large areas of the grid are far from the input points.
Skipping the interpolation of the surface in these places reduces computation time,
especially when many of the bit mask values are zero.

For high resolution grids, the number of grid cells can be very large, and the
bit mask may be larger than internal memory and must reside on disk. Randomly
querying the bit mask for each output grid cell would be very expensive in terms
of I/O cost. Using the same filtering idea described in Section 2 and Section 3, we
filter the bit mask bits through the quad-tree layer by layer such that each quad-tree
segment gets a copy of the bit mask bits it needs during interpolation. The algorithm
uses O( T

B
h

log M

B

) I/Os in total, where T is the number of cells in the output grid,

which is O(sort(T )) when h = O(log N). The bits for a given segment can be
accessed sequentially as we interpolate each quad-tree segment.

GRASS Implementation. The GRASS module s.surf.rst uses a quad-tree
segmentation, but is not I/O-efficient in several key areas which we briefly discuss;
constructing the quad tree, supporting a bit mask, finding neighbors, and evaluating
grid cells. All data structures in the GRASS implementation with the exception of the
output grid are stored in memory and must use considerably slower swap space on
disk if internal memory is exhausted. During construction points are simply inserted
into an internal memory quad tree using the incremental construction approach of
Section 2. Thinning of points using the parameter ε during construction is imple-
mented exactly as our implementation. The bit mask in s.surf.rst is stored as
a regular grid entirely in memory and is accessed randomly during interpolation of
segments instead of sequentially in our approach.

Points from neighboring quad-tree segment are not found in advance as in our
algorithm, but are found when interpolating a given quad-tree segment q; the algo-
rithm creates a window w by expanding q in all directions by a width δ and querying
the quad tree to find all points within w. The width δ is adjusted by binary search
until the number of points within w is between a user specified range [nmin, nmax].
Once an appropriate number of points is found for a quad-tree segment q, the grid
cells in q are interpolated and written directly to the proper location in the output
grid by randomly seeking to the appropriate file offset and writing the interpolated
results. When each segment has a small number of cells, writing the values of the
T output grid cells uses O(T ) À sort(T ) I/Os. Our approach constructs the output
grid using the significantly better sort(T ) I/Os.

6 Experiments

We ran a set of experiments using our I/O-efficient implementation of our algorithm
and compared our results to existing GIS tools. We begin by describing the data sets
on which we ran the experiments, then compare the efficiency and accuracy of our
algorithm with other methods. We show that our algorithm is scalable to over 395
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(a) (b)

Fig. 3. (a) Neuse river basin data set and (b) Outer Banks data set, with zoom to very small
region.

million points and over 53 billion output grid cells–well beyond the limits of other
GIS tools we tested.

Experimental setup. We ran our experiments on an Intel 3.4GHz Pentium 4
hyper-threaded machine with 1GB of internal memory, over 4GB of swap space, and
running a Linux 2.6 kernel. The machine had a pair of 400GB SATA disk drives in a
non-RAID configuration. One disk stored the input and output data sets and the other
disk was used for temporary scratch space.

For our experiments we used two large LIDAR data sets, freely available from
online sources; one of the Neuse river basin from the North Carolina Floodmaps
project [15] and one of the North Carolina Outer Banks from NOAA’s Coastal Ser-
vices Center [16].

Neuse river basin. This data set contains 500 million points, more than 20 GB
of raw data; see Figure 3(a). The data have been pre-processed by the data providers
to remove most points on buildings and vegetation. The average spacing between
points is roughly 20ft.

Outer banks. This data set contains 212 million LIDAR points, 9 GB of raw data;
see Figure 3(b). Data points are confined to a narrow strip (a zoom of a very small
portion of the data set is shown in the figure). This data set has not been heavily pre-
processed to remove buildings and vegetation. The average point spacing is roughly
3ft.

Scalability results. We ran our algorithm on both the Neuse river and Outer
Banks data sets at varying grid cell resolutions. Because we used the default value
of ε (half the grid cell size) increasing the size of grid cells decreased the number
of points in the quad tree and the number of points used for interpolation. Results
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are summarized in Table 1. In each test, the interpolation phase was the most time-
consuming phase; interpolation consumed over 80% of the total running time on the
Neuse river basin data set. For each test we used a bit mask to ignore cells more
than 300ft from the input points. Because of the irregular shape of the Outer Banks
data, this bit mask is very large, but relatively sparse (containing very few “1” bits).
Therefore, filtering the bit mask and writing the output grid for the Outer Banks
data were relatively time-consuming phases when compared to the Neuse river data.
Note that the number of grid cells in the Outer Banks is roughly three orders of
magnitude greater than the number of quad-tree points. As the grid cell size decreases
and the total number of cells increases, bit mask and grid output operations consume
a greater percentage of the total time. At a resolution of 5ft, the bit mask alone for
the Outer Banks data set is over 6GB. Even at such large grid sizes, interpolation—
an internal memory procedure—was the most time-consuming phase, indicating that
I/O was not a bottleneck in our algorithm.

Dataset Neuse Outer Banks
Resolution (ft) 20 40 5 10

Output grid cells (×10
6) 1360 340 53160 13402

quad-tree points (×10
6) 395 236 128 66

Total Time (hrs) 53.0 24.4 17.7 6.9
Time spent to... (%)
Build tree 2.0 3.8 4.5 8.6
Find Neighbors 10.6 15.1 14.5 16.4
Filter Bit mask 0.2 0.3 13.1 8.0
Interpolate 86.4 80.4 52.6 57.8
Write Output 0.8 0.4 15.3 9.2

Table 1. Results from the Neuse river basin and the Outer Banks data sets.

We also tried to test other available interpolation methods, including s.surf.rst
in the open source GIS GRASS; kriging, IDW, spline, and topo-to-raster (based on
ANUDEM [10]) tools in ArcGIS 9.1; and QTModeler 4 from Applied Imagery [3].
Only s.surf.rst supported the thinning of data points based on cell size, so for
the other programs we simply used a subset of the data points. None of the ArcGIS
tools could process more than 25 million points from the Neuse river basin at 20ft
resolution and every tool crashed on large input sizes. The topo-to-raster tool pro-
cessed the largest set amongst the ArcGIS tools at 21 million points.

The s.surf.rst could not process more than 25 million points either. Using
a resolution of 200ft, s.surf.rst could process the entire Neuse data set in six
hours, but the quad tree only contained 17.4 million points. Our algorithm processed
the same data set at 200ft resolution in 3.2 hours. On a small subset of the Outer
Banks data set containing 48.8 million points, s.surf.rst, built a quad tree on
7.1 million points and computed the output grid DEM in three hours, compared to
49 minutes for our algorithm on the same data set.
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The QTModeler program processed the largest data set amongst the other meth-
ods we tested, approximately 50 million points, using 1GB of RAM. The documen-
tation for QTModeler states that their approach is based on an internal memory quad
tree and can process 200 million points with 4GB of available RAM. We can process
a data set almost twice as large using less than 1GB of RAM.

Overall, we have seen that our algorithm is scalable to very large point sets and
very large grid sizes and we demonstrated that many of the commonly used GIS
tools cannot process such large data sets. Our approach for building the quad tree
and finding points in neighboring segments is efficient and never took more than
25% of the total time in any of our experiments. The interpolation phase, an internal
step that reads points sequentially from disk and writes grid cells sequentially to disk,
was the most time-consuming phase of the entire algorithm.

Comparison of constructed grids. To show that our method constructs cor-
rect output grids, we compared our output on the Neuse river basin to the original
input points as well as to grid DEMs created by s.surf.rst, and DEMs freely
available from NC Floodmaps. Because s.surf.rst cannot process very large
data sets, we ran our tests on a small subset of the Neuse river data set containing
13 million points. The output resolution was 20ft, ε was set to the default 10ft, and
the output grid had 3274 rows and 3537 columns for a total of 11.6 million cells.
Approximately 11 million points were in the quad tree.

Fig. 4. Distribution of deviations between input points and interpolated surface (kmax = 35).

The interpolation function we tested used a smoothing parameter and allowed
the input points to deviate slightly from the interpolated surface. We used the same
default smoothing parameter used in the GRASS implementation and compared the
distribution of deviations between the input points and the interpolated surface. The
results were independent of kmax, the maximum number of points per quad-tree
segment. In all tests, at least 79% of the points had no deviation, and over 98% of the
points had a deviation of less than one inch. Results for s.surf.rst were similar.
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Since the results were indistinguishable for various kmax parameters, we show only
one of the cumulative distribution functions (CDF) for kmax = 35 in Figure 4.

Next, we computed the absolute deviation between grid values computed using
s.surf.rst and our method. We found that over 98% of the cells agreed within 1
inch, independent of kmax. The methods differ slightly because s.surf.rst uses
a variable size window to find points in neighboring points of a quad-tree segment
q and may not choose all points from immediate neighbors of q when the points
are dense and may expand the window to include points in segments that are not
immediate neighbors of q when the points are sparse. In Figure 5(a) we show a plot
of the interpolated surface along with an overlay of cells where the deviation exceeds
3 inches. Notice that most of the bad spots are along the border of the data set where
our method is less likely to get many points from neighboring quad-tree leaves and
near the lake in the upper left corner of the image where LIDAR signals are absorbed
by the water and there are no input data points.

(a) (b)

Fig. 5. Interpolated surface generated by our method. Black dots indicate cells where the devi-
ation between our method and (a) s.surf.rst is greater than three inches, (b) ncfloodmap
data is greater than two feet.

Finally, we compared both our output and that of s.surf.rst to the 20ft DEM
data available from the NC Floodmaps project. A CDF in Figure 6 of the absolute
deviation between the interpolated grids and the “base” grid from NC Floodmaps
shows that both implementations have an identical CDF curve. However, the agree-
ment between the interpolated surfaces and the base grid is not as strong as the agree-
ment between the algorithms when compared to each other. An overlay of regions
with deviation greater than two feet on base map shown in Figure 5(b) reveals the
source of the disagreement. A river network is clearly visible in the figure indicat-
ing that something is very different between the two data sets along the rivers. NC
Floodmaps uses supplemental break-line data that is not part of the LIDAR point set
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to enforce drainage and provide better boundaries of lakes in areas where LIDAR
has trouble collecting data. Aside from the rivers, the interpolated surface generated
by either our method or the existing GRASS implementation agree reasonably well
with the professionally produced and publicly available base map.

Fig. 6. Cumulative distribution of deviation between interpolated surface and data downloaded
from ncfloodmaps.com. Deviation is similar for both our method and s.surf.rst for all
values of kmax.

7 Conclusions

In this paper we describe an I/O-efficient algorithm for constructing a grid DEM
from point cloud data. We implemented our algorithm and, using LIDAR data, ex-
perimentally compared it to other existing algorithms. The empirical results show
that, unlike existing algorithms, our approach scales to data sets much larger than
the size of main memory. Although we focused on elevation data, our technique is
general and can be used to compute the grid representation of any bivariate function
from irregularly sampled data points.

For future work, we would like to consider a number of related problems. Firstly,
our solution is constructed in such a way that the interpolation phase can be executed
in parallel. A parallel implementation should expedite the interpolation procedure.
Secondly, as seen in Figure 5(b), grid DEMs are often constructed from multiple
sources, including LIDAR points and supplemental break-lines where feature preser-
vation is important. Future work will examine methods of incorporating multiple data
sources into DEM construction. Finally, the ability to create large scale DEMs effi-
ciently from LIDAR data could lead to further improvements in topographic analysis
including such problems as modelling surface water flow or detecting topographic
change in time series data.
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