Integrating Parallel and Distributed Computing
Topics into an Undergraduate CS Curriculum

Andrew Danner and Tia Newhall

Computer Science Department
Swarthmore College
Swarthmore, PA 19081, USA

{adanner, newhall}@cs.swarthmore.edu

Abstract—We present changes to our undergraduate computer
science curriculum for a small liberal arts college. The changes
are designed to incorporate parallel and distributed computing
topics into all levels of our curriculum, with the goal of ensuring
that all graduating CS majors have exposure to, and experience
with, parallel and distributed computing. Our effort is moti-
vated by the ACM/IEEE Ironman Curriculum, which includes
a increased focus on these important topics. In addition, we
use the NSF/IEEE-TCPP model curriculum as a guide in our
effort. Because of the small size of our department, and the
breadth constraints of a liberal arts college, we face some unique
challenges. Our multi-year effort involves at least six courses in
our curriculum. Of these courses, one is a new introductory-level
course, while the others are existing courses whose content has
been modified to include more focus on these important topics.
We present our curricular changes and we discuss an initial
evaluation of the first implementation of these changes.

I. INTRODUCTION

The current ubiquity of multi-core computers, GPGPU
computing, and cluster computing has brought parallel and
distributed computing from an isolated research topic to a
core part of many areas of computer science. While these
parallel architectures introduce new memory hierarchies, inter-
process communication mechanisms, and new programming
environments, traditional computer science education at the
undergraduate level focuses on single threaded programming
and algorithmic analysis. Occasionally, parallel topics were
included in upper-level elective courses. The ACM/IEEE’s
Ironman [1] draft for the 2013 CS education curriculum
has added a new knowledge area of Parallel and Distributed
computing to stress the importance of teaching parallel com-
putation throughout the undergraduate curriculum and not just
in a single optional course.

To further encourage integrating parallel computing into
undergraduate education, Prasad et al. [2] developed the
NSF/IEEE-TCPP Curriculum Initiative on Parallel and Dis-
tributed Computing—Core Topics for Undergraduates. Through
their support, we are integrating core TCPP topics into six
courses in our undergraduate curriculum at Swarthmore Col-
lege. Our goals are to convey the increasing importance
in parallel and distributing computing to undergraduates; to
better prepare students for research opportunities in parallel
computing; and to integrate parallel topics throughout the
curriculum-including introductory-level, systems, theory, and
application courses.

One of the primary challenges of our proposal is that
Swarthmore College is an undergraduate-only institution. Stu-
dents must take 20 of their 32 courses outside of their major,
and our limited staffing prevents us from offering either the
wide variety of courses, or the depth of courses, offered
at large research universities. To ensure that students have
sufficient background in parallel and distributing computing,
it is essential that we cover parallel topics throughout the cur-
riculum, including introductory courses. A key component of
our work is the addition of a new course in our curriculum that
is focused on introducing computer systems and introducing
some parallel topics. It is designed to better prepare students
for upper-level systems courses and will allow us to discuss
more advanced topics in those courses by requiring this new
course as a prerequisite.

A. Overview

In Fall 2012, we began to integrate elements of the TCPP
curriculum into our courses. We added a new course required
for all CS majors and offered every semester, CS31: Introduc-
tion to Computer Systems. The course includes introductory
TCPP material and is now a prerequisite for upper-level
courses that build on parallel and distributed topics in different
contexts.

Existing upper-level electives are offered every other year.
We introduced or developed additional parallel material for
CS41: Algorithms in Fall 2012. We will be further developing
material in CS40: Graphics (Spring 2013), CS45: Operating
Systems (Fall 2013), and CS87: Parallel and Distributed
Computing (Spring 2014). In addition, we plan to add parallel
topics to CS75: Compilers and potentially to CS44: Databases
in the future. The proposed curricular changes and course
schedule will provide at least one introductory and one upper-
level course containing parallel core topics every semester.

B. Project Goals

Our main goal is to ensure that every Swarthmore CS major
and minor is exposed to parallel and distributed computing. In
particular, we focus on teaching students “parallel thinking”.
We want every student to be exposed to fundamental issues
in parallel and distributed computing from the algorithmic,
systems, architecture, and programming perspectives. Students

should also develop skills to analyze and problem solve in
parallel and distributed environments.

In addition to our primary goal, we also want to increase
opportunities for students to participate in parallel and dis-
tributed research projects. We plan to share course materials
that we develop such as lectures, lab assignments, and syllabi,
with colleagues at other CS departments who are interested in
adding parallel content to similar courses.

In the rest of this paper, we provide a brief background
of our department and highlight recent curricular changes in
Section II. Next, we describe changes made to our Fall 2012
courses and proposed changes to future courses in Section III.
Finally, in Section IV we provide initial evaluation of our
changes to our Fall 2012 courses.

II. SWARTHMORE BACKGROUND

Swarthmore is a small, elite liberal arts college. The Com-
puter Science Department consists of five tenure track faculty
and offers CS major and minor degrees. Because of our small
size, we are not able to cover all areas of computer science. We
provide a set of core introductory courses, and a set of upper-
level electives designed to provide some depth and breadth to
students.

Our curriculum is based on several factors including the
small size of our department, the expertise of our faculty, and
the nature of a computer science curriculum in the context of a
liberal arts college [3]. Our pedagogical methods include a mix
of lectures, active in-class exercises, and labs. A large number
of our graduates eventually go on to CS graduate school;
for this reason, our curriculum includes a focus on preparing
students for graduate study by providing them instruction
and practice in reading and discussing CS research papers,
in technical writing, in oral presentation, and in independent
research projects. We offer some seminar-style courses, much
like graduate seminars, that are a mix of discussion and
projects—designed to help prepare our students for graduate
study and for summer research experiences.

The main goal of our curriculum is to increase proficiency
in computational thinking and practice. We believe this will
help both majors and non-majors in any further educational
or career endeavor. We teach students to think like computer
scientists by teaching algorithmic problem solving, by devel-
oping their analytical thinking skills, by teaching them the
theoretical basis of our discipline, and by giving them practice
applying the theory to solve real-world problems. We feel that
by teaching our students how to learn CS, they master the
tools necessary to adapt to our rapidly changing discipline.

A. Our Curriculum Prior to 2012

Our most recent previous curriculum was last offered during
the 2011-12 academic year, when we had only four tenure
lines. It included three introductory-level courses: a CS1
course taught in Python; a CS2 course taught in C++; and
a Machine Organization course with some C programming.
Because of the constraints of being in a liberal arts setting, as

well as constraints with how frequently we can offer upper-
level courses (typically once every two years for a given
course), we cannot have a deep prerequisite structure. As a
result, all of our upper-level courses only had CS1 and CS2
as prerequisites. After taking CS2, students needed to take one
of Theory or Algorithms, one of Programming Languages or
Compilers, our senior seminar course, and three upper-level
electives. We also require two math courses beyond second
semester Calculus.

Prior to our new curriculum, students were only exposed
to systems topics and to parallel and distributed computing
topics in upper-level electives. This meant that students could
graduate with a CS major and have little to no systems back-
ground and no exposure to parallel or distributed computing
topics.

B. Our New Curriculum

Our previous introductory sequence prepared students well
in algorithmic problem solving, programming, and algorithmic
analysis, and thus prepared students well for about one half of
our upper-level courses. However, we found that our students
lack of computer systems background made them less well
prepared for many of our upper-level courses in systems
related areas and, as a result, we had to spend time in each
of these courses teaching introductory systems material and
C programming. It made these courses seem more difficult to
the students new to this material, and repetitive to the students
who had seen this material in other upper-level courses. It also
meant that there was often advanced material we could not get
to in these courses.

Our revised curriculum [4] is designed to ensure that all
students have some basic computer systems background so
they can be better prepared for all our upper-level courses.
In Fall 2012, we added a new required introductory sequence
course, CS31, that is an introduction to computer systems. This
course replaces our machine organization course and is now a
prerequisite to one half of our upper-level courses. CS31 also
includes a focus on parallel systems and parallel computing.

We additionally reorganized our upper-level courses into
three groups. Students must take at least one course in each
group. This change increases breadth of our major and minor.
The groupings are as follows (courses requiring CS31 as a
new prerequisite are starred):

e Group 1: Theory and Algorithms: Algorithms, Theory.

¢ Group 2: Systems: Networking*, Databases*, Operating
Systems*, Compilers*, Parallel and Distributed Comput-
ing*.

o Group 3: Applications: Graphics*, AI, Natural Lan-
guage Processing, Information Retrieval, Biolnformatics,
Software Engineering, Adaptive Robotics, Programming
Languages.

Students take two additional upper-level electives, including
any from the three groups, and including Computer Architec-
ture, Mobile Robotics, or Vision, taught in the Engineering
department.

III. INCORPORATING THE NSF/IEEE-TCPP
CURRICULUM

Our current curricular focus is to incorporate most of
the NSF/IEEE-TCPP curriculum into our undergraduate CS
curriculum and to re-structure major and minor requirements
to ensure that every student has exposure to these important
topics.

Our effort is a multi-year plan, involving at least six courses,
one of which is new, while the others are existing courses to
which parallel topics will be added or expanded. This set of
courses include the following (the first semester in which each
will be taught within our new curriculum is listed):

o CS31:

o CS41:

o CS40:

o CS45:

o CS75:

o CS87:

In addition, we may introduce parallel and distributed

computing topics in a new Databases course, which will first
be offered in Spring 2014.

Introduction to Computer Systems, Fall 2012
Algorithms, Fall 2012

Graphics, Spring 2013

Operating Systems, Fall 2013

Compilers, Spring 2014

Parallel and Distributed Computing, Spring 2014

A. Details of our Affected Courses

We discuss in detail the curricular changes to each of the six
courses in which we are implementing the NSF/IEEE-TCPP
curriculum. Two of the courses, Algorithms and Introduction
to Computer Systems, were first taught in their new form in
Fall 2012. The others will be taught in subsequent semesters.

CS31: Introduction to Computer Systems. CS31 is a new
introductory course first offered in Fall 2012. It is required for
all CS majors and minors. It is also a new prerequisite to many
of our upper-level courses, providing students with appropriate
background in systems, assembly, and parallel computing.

There are three main learning goals associated with this
course: the first is to understand how a program goes from
being expressed in a high-level parallel or sequential program-
ming language to being executed on a computer; the second is
to understand computer systems costs associated with program
performance and to be able to evaluate trade-offs in system de-
sign; and the third is to understand parallel computing, includ-
ing programming, algorithmic and systems issues, with a focus
on shared memory parallelism and threaded programming.
Secondary goals include: learning C, assembly, and Pthreads
programming; learning debugging and debugging tools such
as gdb and valgrind; designing and carrying out performance
experiments; and working collaboratively in small groups.

The course is structured much like a vertical slice through
the computer, starting from the building blocks of binary data
representation and circuits, through how programs written in
high-level languages are executed. We consider both sequential
programs written in C and parallel programs running on multi-
core computers written using Pthreads.

The course includes an associated weekly lab section.
These labs are used to teach students the programming tools

necessary for carrying out lab assignments, to provide practice
on lecture content, and to help students with their lab work.
The lab assignments provide student practice with practical
application of the topics covered in lecture. Table I lists the
labs assigned in our first offering of CS31, and includes
learning goals associated with each assignment. We used the
Bryant and O’Hallaron textbook [5] for the course. Two of the
lab assignments used in CS31 came from these authors: the
binary bomb and the Unix shell labs. In addition to being the
CS31 textbook, we anticipate that it will serve as a useful
reference for students in many of our upper-level courses.
The web page for CS31 [6] includes more details including
the weekly schedule with reading assignments, full lab as-
signments, weekly lab assignments, and links to programming
resources and references.

CS31 includes many topics from the TCPP curriculum, with
a focus on covering much of the minimal skill set. Topics
covered span the Architecture, Programming and Algorithms
topics from the TCPP curriculum. Table II lists the specific
topics covered and a description of how they are covered.

The course serves as a first introduction to machine
organization and computer systems, and to parallel
architecture, systems and programming. There is a strong
focus on analyzing problems from a systems perspective. For
example, students use what they learn about the memory
hierarchy to evaluate the performance of code based on
its memory costs in addition to its algorithmic complexity.
The course introduces experimentation and performance
measurement and analysis at various levels, including
applying performance metrics such as latency, bandwidth,
I/O and synchronization costs, Amdahl’s Law, space-time
tradeoffs, locality, and speed-up. The focus on systems
topics, including virtual memory, processes and threads, in
combination with assembly programming, allows students to
have a good background for understanding issues associated
with shared memory and synchronization in threaded
programs.

CS41: Algorithms. Our upper-level algorithms course [7]
explores fundamentals of algorithmic design and analysis,
including formalizing an algorithmic statement of a problem
from abstract descriptions, developing algorithmic solutions,
proving correctness, and analyzing both runtime and space
complexity. The course previously covered some TCPP topics
including asymptotic analysis, time and space complexity,
divide and conquer, and recursive techniques. In Fall 2012,
we introduced two weeks of material to 43 students covering
alternative computational models including parallel (PRAM,
BSP/CILK) models, and the out-of-core (I/O-efficient) model.
We used merge sort as a primary example revisiting the
analysis of its complexity in the RAM and out-of-core
contexts, as well as discussing the work and span of
parallel merge sort. We added core TCPP concepts including
speedup, scalability, work, and span in the discussion of our
analysis. A more detailed summary of topics is shown in
Table III, and course materials including topics, lab exercises,

TABLE I

CS31 LAB ASSIGNMENTS.

ASSIGNMENT

TOPIC

[

GOALS

Data Representation

Binary data representation,
Binary arithmetic and operations

understand binary representation of different C types
convert between hex, decimal, binary

binary Arithmetic and bit-wise operations, overflow
intro to C programming and gdb

Building an ALU

Digital Logic, Circuits,
Executing Machine code

to build and test circuits from basic gates
understand how machine code instrs are executed

Bit compare, Bit vectors

Bit-wise operations
Memory, Assembly Code

writing assembly code

disassembling code in gdb

understanding bit-wise operators and encodings
C programming and debugging

Binary Bomb

IA32 Assembly, The Stack
Scope, Functions

reading and tracing IA32 assembly
understanding C to IA32 translation
practice with tools for examining binary files

Game of Life

C Programming, Timing Experiments

understand dynamic memory, C pointers

writing and designing larger C programs
understanding memory layout of 2D arrays
learning how to add timing measurement to C code

Python lists in C

C pointers, C structs,
Low-level Memory

implementing and using C-style libraries
understanding memory storage layout of different C types
C operations on memory (memcpy, void *, recasting, pointers)

Unix Shell

Processes, Unix Process Creation,
Signals, Race Conditions

understand how a Unix shell works
understand processes and the process hierarchy
understand signals

practice using fork, exec, signal handlers

Parallel Game of Life
Using Pthreads and
Experimental Scalability Study

Threads, Shared Memory Programming,
Synchronization, Scalability Analysis

understanding shared memory programming
understanding and solving synchronization problems
pthread programming experience

developing a parallel algorithm

designing and carrying out scalability experiments
analyzing data and explaining results in written report

TABLE I

NSF/TEEE-TCPP CURRICULAR Toprics COVERED IN CS31.

MAIN TOPIC

[DETAILS

PEDAGOGICAL METHODS |

The Memory Hierarchy

Storage Circuits, RAM, Disk, Caching and Cache Organizations,
Paging, Replacement Policies, Cache Coherence

Lecture, Lab Assignments,
Exams, Written Assignments

Multicore and Threads

Architecture, Buses, Coherency, Explicit Parallelism,
Threads and Threaded Programming

Lecture, Lab Assignments,
Exams, Written Assignments

Operating Systems

Overview, Goals, Processes, Threads, Synchronization Primitives
(locks, semaphores), Virtual Memory, Efficiency,
Mechanism/Policy and Space/Time Trade-offs

Lecture, Lab Assignments,
Exams, Written Assignments

Parallel Algorithms and Programming

Shared Memory Programming, Threads, Synchronization,

Lecture, Lab Assignments,

Deadlock, Race Conditions, Critical Sections, Producer-Consumer,
Amdahl’s Law, Scalability, Speed-up

Exams, Written Assignments

Other Topics Covered In-Depth

Machine Organization Topics, Assembly programming, C to IA32,
The Stack, Function Call Mechanics

Lecture, Lab Assignments,
Exams, Written Assignments

Other Topics Covered

Distributed Computing, Message passing basics
TCP-IP sockets, Pipelining, Super-scalar, Implicit parallelism

Lecture

TABLE III
NSF/IEEE-TCPP CURRICULAR ToPICS COVERED IN CS41.

MAIN TOPIC

[

DETAILS

[PEDAGOGICAL METHODS |

Parallel and Distributed Models and Complexity

Asymptotic Bounds, Time, Memory, Space, Scalability,
PRAM, Task graphs, Work, Span

Lecture, Lab Exercises, Home-
work, Exams

Algorithmic Paradigms

Divide and Conquer, Recursion, Scan, Blocking, Out-
of-Core (I/O-Efficient) Algorithms

Lecture, Lab Exercises, Home-
work, Exams

Algorithmic Problems

Sorting, Selection, Matrix Computation

Lecture, Lab Exercises, Exams

and homework assignments are available on the publicly
accessible course web page [7]. While the primary text for
the course was Kleinberg and Tardos [8], we used parallel
material from Cormen et al. [9]. Students explored parallel
algorithms in group lab exercises, and as part of their final
exam.

CS40: Computer Graphics. The primary focus for the Graph-
ics course is on data structures and algorithms for representing
and rendering 3D models. We have gradually introduced
parallel topics, primarily CUDA, into the course. In two weeks
of instruction in Spring 2011 we provided a brief introduc-
tion into CUDA and covered TCPP core topics including
SIMD and stream architectures, memory organization (CPU
memory, GPU memory, shared memory), hybrid computing,
GPU threads, synchronization, scheduling on CUDA GPUs,
data layout, and speedups. Practical examples and assignments
explored both graphics and general purpose applications, in-
cluding parallel reductions on large arrays.

In Spring 2013, we plan to further develop these topics,
possibly expanding into a third week of coverage. By re-
designing some of the introductory material and introducing
programmable shaders from the start of the course, students
can begin to understand GPU programming well before we
begin a full discussion of GPGPU programming using CUDA.
This will allow us to better integrate TCPP topics without
sacrificing more traditional core material.

Furthermore, making CS31 a prerequisite to CS40 allows
us to skip some introductory parallel concepts in graphics, and
explore more advanced CUDA topics. As parallel concepts
become more commonplace throughout the curriculum, we
may be able to offer a large multi-week project in which
students develop a hybrid MPI/CUDA ray tracer to run on
GPU clusters.

CS45: Operating Systems. CS45 covers a fairly standard
undergraduate OS curriculum, including processes, threads,
synchronization, memory management, file systems, I/O, pro-
tection and security and an introduction to distributed systems.
The course strives to have a good balance of theory and
practice. It includes a strong focus on analyzing performance
based on systems costs, trade-offs in system design, layered
design, and the separation of mechanism and policy.

Prior to CS31 being added to our curriculum, CS45
also provided an introduction to C programming and C
programming tools, to computer architecture, and to Unix
utilities. With the addition of CS31 as a new prerequisite
to CS45, we will be able to cover more advanced operating
systems topics in OS. In particular to the NSF/IEEE-TCPP
Curriculum, we will add more coverage of distributed
systems, distributed file systems, networking and security. In
addition, because students will have experience with Pthread
programming, there may be an opportunity to have students
implement and test some of the complicated synchronization
problems that they solve in OS, but have only evaluated as
written problems in the past.

CS87: Parallel and Distributed Computing. We first added
CS87 to our curriculum in Spring 2010, and offered it a
second time in Spring 2012. This course is a broad survey
of parallel and distributed computing topics. CS87 includes
both lecture and in-class discussion of CS research papers. The
course includes many short lab assignments in the first half of
the semester to give students practice using different parallel
and distributed programing languages and paradigms. These
have included Pthreads, MPI, OpenMP, C socket client-server,
CUDA, and practice using XSEDE [10] resources for MPI and
hybrid MPI-CUDA programming. The short labs are designed
to teach students tools for carrying out independent course
projects during the second half of the course. The course is
about 1/3 systems topics, 1/3 programming languages, and 1/3
algorithms. There is an emphasis on paper reading, writing,
oral presentation, experimentation, and researching, proposing,
and carrying out an independent project.

The course covers many of the TCPP topics in all four
Areas. Topics covered in the most recent offering include:
the memory hierarchy, pipelining, multi-core, SMPs, false
sharing, vector processors, GPUs, MPPs, clusters, grid, P2P,
cloud computing, SIMD, MIMD, data parallel, client-server,
distributed memory, shared memory, threads, synchronization,
MPI, CUDA, OpenMP, Map-Reduce, hybrid CPU-GPU-MPI
programming, messaging communication, parallel program-
ming patterns, parallel reduce and scan, trade-offs, speed-
up, scalability, dependencies, time, power, parallel algorithms,
fault tolerance, distributed file systems, distributed shared
memory, security, and networking.

Because students have a wide range of computer systems
backgrounds entering this course, we have had to provide
instruction in basic systems, architecture and C programming.
With the addition of CS31 as a new prerequisite to CS87,
we will be able to assume that all students have background
in computer architecture, operating systems, C programming,
shared memory systems and programming, threads, and
synchronization as well as practice applying a systems
perspective to performance analysis. With this background,
much of the introductory material in CS87 can be replaced
with more advanced parallel and distributed computing topics.
This will allow for increasing both the breadth and depth of
coverage of these two fields. It will also allow for at least
one additional parallel or distributed short lab to replace a
C warm-up lab that was necessary prior to CS31 being a
prerequisite. Most likely the additional lab will involve using
Hadoop.

CS75: Compilers. CS75 covers a fairly standard undergradu-
ate compilers curriculum, including detailed coverage of parts
of the front-end and back-end of a compiler. Students imple-
ment a compiler for most of the C programming language over
the course of the semester, implementing a lexical analyzer,
parser, and a code generator with some optimizations, in a
multi-part semester-long project.

Prior to CS31 being added to our curriculum, CS75 also

served as an introduction to C programming and C and Unix
programming tools, an introduction to computer architecture,
and and introduction to assembly language and assembly
language programming. With the addition of CS31 as a
new prerequisite, our students will come in with extensive
background in C and [IA32 assembly, stack and function call
implementation, and a strong understanding of scope. This
will enable us to expand the content on compiler optimization
and on advanced topics. In particular to the TCPP effort,
we will add content about optimization for super-scalar,
multi-core and SMP systems, and we can discuss techniques
for solving false-sharing issues. We may also include some
coverage of just-in-time and dynamic compilation, and
compilation issues for general purpose GPU computing.

CS44: Databases. With our new tenure hire in Fall 2012, we
will be adding Databases to our set of regularly offered upper-
level courses. The course will be taught with a heavy focus
on the systems side of databases. Although not originally
included as part of our TCPP Early Adoptor effort, we expect
that this course will include some coverage of parallel and
distributed database systems, potentially including coverage
of parallel join algorithms, distributed transactions, and
distributed hash tables.

IV. INITIAL EVALUATION

Our primary evaluation goals for this project are to assess
how well we integrate TCPP topics across the curriculum
and how our modifications influence student ability to think
effectively using parallel concepts. Immediate assessment of
individual courses is done through lab assignments, exams, and
end-of-course surveys. However, we are particularly interested
in how topics introduced in CS31 prepare students for upper-
level courses that explore advanced parallel topics. Naturally,
as we introduce topics across multiple courses and phase in
the prerequisite of CS31, there will be some redundancy and
repetition across upper-level courses. We plan to evaluate and
identify these common topics and consider them for inclusion
in later iterations of CS31.

Ideally, we would like students to apply knowledge of
parallel topics to other courses in the curriculum which do not
necessarily emphasize TCPP core topics. Spring 2013 presents
an opportunity to evaluate how topics in CS31 and CS41
(Algorithms) are retained and applied, as there will likely be
some students in CS40 (Graphics) who have had one or both
of these courses in the previous semester. Since CS31 will be
a prerequisite for Graphics, but not for Algorithms, we plan
to assess the level of overlap in topic coverage amongst these
courses and potentially adjust the coverage in future iterations
of these courses.

As we coalesce common TCPP core topics from upper-
level courses in CS31, there may be opportunities to move
smaller, simpler elements of parallel programming into other
introductory level courses, including our CS1 and CS2 equiva-
lent courses that currently do not emphasize parallel concepts.

A. Evaluation of CS41: Algorithms

Adding parallel topics to CS41 was a success from the
perspective of both faculty and students. An end of course
evaluation specifically asked students to comment on alternate
models of computation including the I/O model and parallel
models. Feedback was generally positive and several students
commented on how these models seem more applicable to
current computational problems. Two students mentioned that
studying alternate models of computation was one of their
favorite parts of the course, while no one listed parallel models
as their least favorite (the overall least favorite topics were
NP Completeness, solving recurrences, and writing proofs,
all features that are likely not going away in an Algorithms
course). Several students mentioned that the material on I/O-
efficient and parallel algorithms was covered too quickly,
and that they wished there was more coverage of parallel
algorithms.

From the faculty perspective, the new parallel material
fit naturally in the course syllabus, and the introduction of
alternate models after completing sections on divide and
conquer and solving recurrences made for a smooth transition
from traditional to parallel material. The use of merge sort
as a unifying algorithm helped students make connections
between the multiple models of computation. To address
concerns that the material was covered too quickly or that
there was not enough parallel material, it may be beneficial
to skip coverage of the I/O-model and introduce additional
examples in a parallel model and add homework problems
on parallel algorithms instead of only covering the topics in
lecture and lab sessions. Overall, integrating parallel topics
into an undergraduate algorithms course was successful and
something we plan to expand in future offerings of CS41.

B. Evaluation of CS31: Introduction to Computer Systems

Based on faculty assessments and student course evalua-
tions, our overall assessment of the first offering of CS31
is that it was very successful in meeting its goals. Com-
ments from student course evaluations helped to reinforce our
faculty’s evaluation of the courses. In particular, in student
answers to a very open-ended question on the course evalua-
tion, we received numerous comments specifically mentioning
course goals. The question was stated as “How did this course
contribute to your intellectual growth? Were you exposed to
new concepts or new perspectives? Explain.”. The following
are just a few of the student comments that specifically
mentioned CS31 learning goals:

o “I feel that I understand how a computer functions from
the ground up”.

e “I liked learning how to boost performance in terms of
systems costs”.

o “I feel much more knowledgeable about the inner work-
ings of computers. I think this knowledge will contribute
to my implementation of higher level programs”.

e “I learned to think about efficiency in ways other than
algorithm efficiency”.

o “I think this course was essential to exposing me to
systems concepts”.

o “Exposed to looking at runtime of programs differently.
I now know the essence behind how a computer actually
works”.

e “I think in a much more informed way about how
computers work under normal daily OS stuff. That is
really nice for both general information and for future
CS work™.

CS31 is designed to be a next course after our CS1 course,
so we want to ensure that students entering CS31 having taken
only our CS1 course, are not overwhelmed by the content or
by the C programming assignments. Based on feedback from
student course evaluations, we learned that the course was a
bit too ambitious and challenging for this group of students.
In addition, both the instructor and many students felt that
there should be more time spent on operating systems, parallel
computing, and Pthread programming. We plan to modify the
course in the following ways to address these issues:

1) Reduce by one lecture the coverage of IA32 assembly,
reduce the depth of coverage of compilers topics, and

eliminate heap memory management to make room for
expanding the coverage of other topics.

2) Add a first week of introduction to C programming to
better prepare students for lab assignments.

3) Lengthen the coverage of parallel programming by at
least one lecture and possibly two. This will also include
adding additional Pthreads programming exercises either
to be done during a weekly lab session or as one of the
assigned labs in the courses.

4) Provide more practice with synchronization problems
and with solving them using Pthread synchronization
primitives.

Overall, we are very pleased with this course. Students
really enjoyed the course and felt that they learned a lot. The
next step in our evaluation will be to evaluate how well CS31
prepares our students for the upper-level courses that newly
require it as a prerequisite.

V. CONCLUSION AND FUTURE WORK

The Fall 2012 semester represents our first steps of in-
cluding parallel topics in our undergraduate curriculum at
Swarthmore College. The major curricular change was the
introduction of CS31, a new introductory course which better
prepares students for systems work in upper-level courses
while introducing concepts in parallel computing. Initial evalu-
ations from both student and faculty perspectives indicate that
CS31 met its proposed goals.

Additionally, we added two weeks of theoretical parallel
topics into CS41: Algorithms. The two weeks of new material
replaced other optional advanced topics in algorithms without
sacrificing core material. Evaluation of student lab work and
exams indicated that students could recognize the difference
between parallel and sequential algorithm analysis and identify
the benefits of parallel algorithms from a theoretical perspec-
tive.

Our plan is to continue implementing changes in our cur-
riculum to incorporate parallel concepts, starting with Com-
puter Graphics in Spring 2013 and continuing with Operating
Systems in Fall 2013, and Compilers and Parallel and Dis-
tributed Computing in Spring 2014.

Because many of our upper-level courses now require CS31
as a prerequisite, we anticipate that we can easily add parallel
and distributed material in these courses without sacrificing
core material. As we evaluate our changes to these courses,
we expect that some common introductory material in these
upper-level courses will continue to be integrated into CS31
to provide an appropriate background for further student
exploration of parallel topics in advanced CS courses.

Overall, we feel our initial implementation and evaluation
of our curricular changes were a success, and we plan to
continue integrating parallel topics throughout the curriculum
so students have an opportunity to take courses with parallel
and distributed topics every semester. Furthermore, we expect
students to be better prepared for research in parallel comput-
ing, or to apply these new skills to opportunities in industry.

REFERENCES

[1] ACM/IEEE-CS Joint Task Force, “Computer science curricula 2013,
ironman draft,” http://cs2013.org, 2012.

[2] Prasad S. et al., “NSF/IEEE-TCPP curriculum initiative on par-
allel and distributed computing - core topics for undergraduates,”
http://www.cs.gsu.edu/ tcpp/curriculum/, 2012.

[3] LACS Consortium, “A 2007 model curriculum for a liberal arts degree in
computer science,” in Journal on Educational Resources in Computing
(JERIC), vol. 7, 2007.

[4] Computer Science Department, Swarthmore
“Swarthmore computer science department
http://www.swarthmore.edu/cc_computerscience.xml, 2012.

[5] Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspec-
tive, 2/E. Prentice Hall, 2011.

[6] “CS31: Introduction To Computer Systems, Fall 2012, Course Web-
page,” http://www.cs.swarthmore.edu/ newhall/cs31/f12/, 2012.

[7] “CS41: Algorithms, Fall 2012, Course Webpage,”
http://www.cs.swarthmore.edu/ adanner/cs41/f12/, 2012.

[8] J. Kleinberg and E. Tardos, Algorithm Design. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2005.

[9] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms, 3rd ed. The MIT Press, 2009.

[10] National Science Foundation grant number OCI-1053575, “XSEDE
Extreme Science and Engineering Discovery Environment,”
http://www.xsede.org, 2011.

College,
curriculum,”

