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Abstract

Modern remote sensing methods such a laser altimetry (lidar) and Interferometric

Synthetic Aperture Radar (IfSAR) produce georeferenced elevation data at unprece-

dented rates. Many Geographic Information System (GIS) algorithms designed for

terrain modelling applications cannot process these massive data sets. The primary

problem is that these data sets are too large to fit in the main internal memory of

modern computers and must therefore reside on larger, but considerably slower disks.

In these applications, the transfer of data between disk and main memory, or I/O,

becomes the primary bottleneck. Working in a theoretical model that more accu-

rately represents this two level memory hierarchy, we can develop algorithms that

are I/O-efficient and reduce the amount of disk I/O needed to solve a problem.

In this thesis we aim to modernize GIS algorithms and develop a number of I/O-

efficient algorithms for processing geographic data derived from massive elevation

data sets. For each application, we convert a geographic question to an algorithmic

question, develop an I/O-efficient algorithm that is theoretically efficient, implement

our approach and verify its performance using real-world data. The applications we

consider include constructing a gridded digital elevation model (DEM) from an irreg-

ularly spaced point cloud, removing topological noise from a DEM, modeling surface

water flow over a terrain, extracting river networks and watershed hierarchies from

the terrain, and locating polygons containing query points in a planar subdivision.

We initially developed solutions to each of these applications individually. However,

we also show how to combine individual solutions to form a scalable geo-processing

pipeline that seamlessly solves a sequence of sub-problems with little or no manual

intervention. We present experimental results that demonstrate orders of magnitude

improvement over previously known algorithms.
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Chapter 1

Introduction

Flooding from severe weather causes significant damage worldwide each year. In the

United States alone, flooding causes billions of dollars in damage annually [32]. Since

2000, over fifty percent of major disaster declarations issued by the US Federal Emer-

gency Management Agency (FEMA), were the result of flooding. FEMA publishes a

set of flood hazard maps that indicate the likelihood of flooding in a particular area.

These maps are a critical component for determining the need for and the cost of

flood insurance. Recent increases in urban development, especially in coastal areas,

has created more impervious surfaces that lead to increased runoff and potential in-

creases in flood risk. As a result, many of the flood hazard maps published in the past

several decades are outdated and do not accurately reflect current flooding potential.

Recently FEMA started a flood map modernization project [63] to develop modern

digital flood maps using Geographic Information Systems (GIS) and modern remote

sensing techniques. Modern remote sensing methods acquire data at very high res-

olution quickly and affordably. This makes the acquisition of digital data desirable

for many agencies at the federal, state, and local level. The result is a plethora of

massive digital geographic data sets. While digital geographic data will result in

maps that are more accurate, easier to update, and easier to distribute, processing

the massive amount of data poses a number of technical challenges. The development

of scalable algorithms for processing massive data sets has not kept pace with the

rapid collection of data.

This thesis aims to address the technical challenges of processing massive multi-

gigabyte geographic data sets, particularly data sets derived from terrain elevation
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data acquired using modern remote sensing techniques. The primary challenge is

to efficiently manage the transfer of data between large but slow external storage

devices and fast but comparatively small internal memory devices where data is

actually processed. This thesis focuses on identifying real applications in GIS where

current algorithmic methods do not scale to large data sets. We identify several

such applications and develop efficient and scalable algorithmic solutions to solve

real-world problems. We analyze the complexity of our algorithms in a theoretical

framework suitable for large data sets. To demonstrate the practicality and scalability

of our solutions, we implement our algorithms and present experimental results based

on real-life data sets. Our approach typically processes data sets orders of magnitude

larger than previous algorithms.

1.1 Geographic Information Systems

A standard GIS is composed of a number of hardware and software tools that visu-

alize, store, query, and process a variety of spatial data. Examples of popular GIS

software providers or products include ESRI, GRASS, IDRISI, and MapInfo. Data

objects in a GIS have a spatial component describing their location and an attribute

component that describes any non-spatial information about the data objects. A GIS

models data in one of two primary ways; as fields or as geometric objects [70]. In the

field representation, each point in space has an attribute value (possibly null) such as

elevation, temperature, etc. By overlaying a regular grid over the field and sampling

the field value at the center of each grid cell, we obtain the raster or grid data format.

The size of the grid cell or resolution controls the level of detail at which we store

the field data. In the geometric object representation, features are described by lines,

points, polygons, or polytopes. We store the coordinates and connectivity of these

features in a vector data format.
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In addition to simply storing and visualizing data, a GIS provides a set of algo-

rithms for processing, querying, and manipulating data. For example, given a data

set describing elevation of a terrain, GIS algorithms could model water flow over the

terrain and extract river networks or compute flooding extent based on river inun-

dation height. These geo-processing algorithms add tremendous value to the data

and allow users to answer complex questions about their surroundings. While many

raster and vector data sets can be derived from other data sets via geo-processing,

there must be an initial source of data to supply to the GIS.

1.2 Data Collection

The initial or base data for a GIS can be collected using direct field measurements,

digitization of paper maps, or remote sensing methods. Originally digital data for

a GIS was manually converted from paper maps or manually entered into a digital

format from direct field measurements. These methods are particularly slow and labor

intensive. Modern remote sensing methods acquire digital data directly and collect

massive amounts of geographical data rapidly without extensive manual intervention.

Remote sensing methods acquire data about an object without direct physical

contact, typically using sensors aboard aircraft or satellites. Remote sensing devices

methods can be either passive or active. A passive remote sensing method records

ambient electromagnetic energy (e.g., from the sun) reflected from the surface of the

Earth or energy emitted (e.g., infrared thermal energy) from the surface. The recent

orthophotography and satellite imagery on Google maps is one popular example of

passive remote sensing. Alternatively, active remote sensing methods generate their

own source of energy that interacts with the terrain, backscatters, and is recorded by

a sensor. Three common active remote sensing methods are radar, lidar, and sonar.

Each of these systems sends a pulse of radiation (or sound in the case of sonar)

3



towards a target and detects the energy reflected from the target. By knowing the

location of the sensor and the travel time of the pulse, one can measure the distance

between the sensor and the target. The location of the sensor is typically known using

global positioning systems (GPS) and/or an inertial navigational system (INS). As

the sensor moves forward, remotely sensed data is collected in swaths perpendicular

to the direction of travel.

In this thesis, we are particularly interested in remotely sensed data that describes

the elevation of Earth’s surface. The two most common means of collecting terres-

trial elevation data are interferometric synthetic aperture radar (IfSAR) and light

detection and ranging (lidar). Sonar is typically used for bathymetric applications

(measuring the depth of a waterbody). IfSAR uses a pair of antennas that each

record both the amplitude and phase of reflected microwave (3-25 cm wavelength)

signals. The phase difference between the two recorded signals is used to measure the

elevation of the underlying terrain. The antennas can be mounted on an airplane, a

helicopter, or—in the case of NASA’s Shuttle Radar Topography Mission (SRTM)—a

space shuttle. Airborne IfSAR has a spatial resolution of up to approximately 3 me-

ters when flown at 6100m above ground level and a swath width of 8km [55]. IfSAR

systems on spacecraft have a resolution of 25-100 meters.

Lidar uses laser pulses and a single sensor to measure the elevation by recording

the round trip time of the laser pulse and knowing the initial position of the beam.

Modern systems emit pulses at rates between 10,000 and 50,000 pulses per second.

Lidar uses a smaller wavelength (0.90 µm) in the near infrared spectrum. Aircraft

with lidar systems fly close to the ground at altitudes of 1200–2400 meters above

ground level. Because lidar uses a smaller wavelength and data is collected closer to

the ground, lidar can have a spatial resolution better than IfSAR and approaching 1

meter. However, the typical width of a lidar swath is 1800m at a flight altitude of
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2400m [55], so more flight passes are needed to cover the same area as IfSAR sensors.

For further technical details on IfSAR and lidar refer to [55, 58] and the references

therein.

Lidar remote sensing represents the state of the art in modern mapping of eleva-

tion. Massive amounts of data can be acquired quickly over a large area, and at an

affordable costs. The speed of data acquisition make the collection of multiple time-

series data sets at yearly or monthly intervals possible. The state of North Carolina

is mapping the entire state using lidar technology and other states are planning to

do the same. However, raw lidar data is collected as a set of scattered x, y, z points

and this raw point format is not suitable for terrain analysis. The data must first be

converted to a raster or vector terrain model.

1.3 Terrain Modelling

One of the primary benefits of remotely sensed elevation data sets is the ability to

build a digital model the Earth’s surface and analyze its properties. However, only a

fraction of all points represent heights of the surface of the Earth. Pulses can bounce

off of treetop canopies, buildings, and even features as small as mailboxes. In some

applications, users are interested forest canopies or urban landscapes, but for people

interested in studying the underlying terrain, these features are considered noise that

obscure the underlying surface. Typically, lidar data providers process the raw data

to remove vegetation and buildings and deliver a set of bare Earth points to users

interested in terrain applications. In areas of dense vegetation, 90% or more of the

original point set may be discarded as not part of the bare Earth model. Resulting

bare Earth point sets therefore have a heterogeneous point density.

A set of point measurements is not a very good terrain model. Given an arbitrary

point in an unordered list of height measurements, it would be difficult to find a point
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that is geographically nearby. Therefore, the raw elevation point samples are usually

converted to more usable digital elevation model, or DEM. The two most common

terrain or surface models are the grid or triangulated irregular network (TIN). In the

grid model, the terrain is modeled as a two-dimensional array of cells, each with an

elevation. Each cell is adjacent to at most eight neighboring cells and finding the

elevation of nearby regions is as simple as indexing a particular cell in the array.

The TIN model connects all the point samples by a planar triangulation. Any

given location in space maps to a single triangle in the TIN. The elevation of that

location can be found by approximating the surface as a plane passing through the

three-dimensional vertices of the triangle containing the location. Both TIN and grid

DEMs are used frequently in GIS applications.

Algorithms for terrain modeling convert a set of remotely sensed points to a grid

or TIN DEM. A number of such algorithms have been proposed in the literature and

we will later review some of the more common approaches. Most algorithms were

designed to work only for hundreds or thousands of points acquired by traditional data

collection methods and do not scale to modern remote sensing methods that produce

millions or billions of points. For GIS users to benefit for this new hi-resolution data,

we must design efficient methods for constructing terrain models from massive data

sets. The problem does not end with constructing a terrain model however. The

resulting models themselves could be very large and constructing a DEM is only the

first step in a number of terrain analysis applications.

1.4 Terrain Analysis

Given a DEM, GIS algorithms can process the terrain to answer complex questions

or derive other GIS layers describing various properties of the terrain. We have

previously mentioned the ability to estimate flood hazard risk using elevation data
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as motivating FEMA to collect digital data using remote sensing. Other applications

of bare Earth DEMs include modeling erosion, assessing landslide risk, monitoring

topographic change over time, and many more. Lidar surface models that are not

the bare Earth elevation and include tree canopy height or buildings can be used

for ecological studies of forest growth or deforestation, or visibility analysis. We

further highlight a few applications in hydrography that are particularly relevant in

the context of this thesis.

We first consider the problem of modeling surface water flow over a terrain. Sup-

pose we are given a bare Earth model of a terrain. When water falls on a terrain,

it flows downhill until it reaches a local minimum1. As more water flows downhill,

small creeks are formed that flow into larger streams and rivers which typically flow

into a large global minimum such as a lake, sea, or ocean. If we assume that for each

point on the surface of the terrain, water flows in the direction of steepest descent,

the collection of paths of steepest descent form river networks. We say that at region

at a higher elevation drains through a region at a higher elevation if there is a path

of steepest descent from the higher region to the lower region. We could compute for

any small area in a terrain the total amount of area upslope that drains through the

area. This is typically called the flow accumulation or upslope contributing area of

the region. Regions that have a high upslope contributing area are good indicators of

rivers and given a digital elevation model, we can use these concepts to automatically

extract river networks from the terrain.

Modeling flow over a digital elevation model is complicated by the fact that DEMs

are constructed from measured data that is subject to error. Even with highly accu-

rate remote sensing methods, a typical DEM has some level of noise. In hydrologic

applications this noise can create a number of spurious local minima (or maxima) that

1For simplicity, assume the terrain is impervious and water is neither absorbed nor emitted by the
surface of the terrain.
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are not present in the actual terrain. The primary source of noise in low-resolution

DEMs was usually due to sampling errors and the inability to resolve small features

such as narrow canyons. Modern remote sensing methods resolve much smaller fea-

tures than previous approaches, but this can leads to a number of new problems.

As mentioned earlier, lidar often detects buildings, trees, and bridges. When con-

structing a bare Earth model, lidar data providers attempt to remove these features,

which are hydrologically considered noise, but the procedure is not perfect. Imprecise

removal of vegetation can produce a rough bare Earth surface with numerous small

spurious minima and maxima. A bigger problem is that bridge removal techniques

are not completely accurate and a number of bridges exist in many of the bare Earth

models. Bridges are particularly troublesome, because they almost always, by defini-

tion, intersect the path of natural waterways. Because both the grid and TIN DEMs

model the surface as a single valued height function over a two-dimensional plane,

the presence of bridges creates local minima upstream of the bridge locations.

If we use the simple model described above that always routes water down the

steepest downslope path in the DEM, flow paths will get stuck in the local minima

or sinks created by the either noise, or real terrain features such as bridges. These

sinks are undesirable in most hydrological applications and thus one terrain analysis

application is to remove sinks from a DEM. Removing sinks that prevent flow paths

from accurately representing real river networks is referred to as hydrologically con-

ditioning the DEM. Creating hydrologically conditioned DEMs in hi-resolution data

sets in which bridges are present is a new challenge in terrain analysis.

To accurately construct river networks from a set of remote sensed elevation

points, we first construct a DEM from remotely sensed data and then hydrologi-

cally condition the DEM. After modeling water flow and extracting rivers networks

from the terrain, we can further extend our terrain analysis and extract watersheds
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from the river network. In this application we wish to partition the terrain into a

set of non-overlapping regions called hydrological units or watersheds such that all

water in a single in hydrological unit flows through a common outlet. For many

hydrology applications, modeling is done using hydrological units rather than using

the terrain or river network directly. It is often desirable to create a hierarchy of

hydrological units at increasingly finer scales. These levels of detail allow users to

select hydrological units at a national, regional, or local scale, depending on their

interests.

1.5 Massive Problems with Massive Data

The few applications of terrain analysis highlighted above form a set of basic derived

GIS layers that are used in a number of more complex applications. Thus it is

important to have efficient algorithms for performing these types of terrain analysis.

Furthermore, in this particular set of examples, each application depends on some

other application. Watershed extraction depends on river network extraction, which

depends on sink removal, which depends on modeling a terrain from a set of raw

elevation sample points. An efficient and scalable solution for extracting watersheds

on massive terrain data sets is useless in practice if we do not have efficient and

scalable solutions for all previous steps in this geo-processing pipeline.

From a computational perspective the problem with massive, multi-gigabyte or

terrabyte data sets is that they are too large to fit in the small but fast main memory

of a modern computer and must therefore reside on larger, but much slower disks.

Computers can only process data that resides in main memory and must move data

between memory and disk when processing massive data sets. Because hard disk

drives are mechanical devices with movable parts, the access time of data on disk is on

the order of milliseconds, six orders of magnitude slower than the nanosecond access
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time of solid state devices including main memory. The transfer of data between disk

and main memory or I/O often becomes a bottleneck when processing massive data

sets.

The seek time to find a single data element on an external disk is a significant frac-

tion of data access time. Therefore, on modern computer systems, data is transfered

between disk and main memory in a sequential block of contiguous items. Because

sequential access of data is comparatively faster than the seek time, the amortized

I/O cost per item using block I/O is significantly lower than issuing a separate seek

for each individual item. If a program can use all items in a block in main memory

before replacing it with another block from disk, this locality of data reference re-

sults in dramatically better performance than programs that do not have such data

reference locality. To develop scalable algorithms that can process massive data sets

that reside on disk, we must model the behavior of the I/O-bottleneck and develop

algorithms that are efficient in this model.

1.6 The I/O Model of Computation

Most algorithms, including those in GIS, are traditionally designed in the random

access machine (RAM) model of computation. This is a rather simple model of com-

putation that assumes a single processor and an infinite amount of internal memory.

Each item accessed in memory has a constant access cost. The measure of perfor-

mance and complexity in this model is the number of comparisons or simple arith-

metic operations needed to solve a problem. While this model is sufficient for small

data sets that fit in main memory, it does not accurately model the multiple levels

of memory hierarchy in modern computers. Particular, the assumption of unit data

access cost is false in systems where data reside in both a fast internal memory and

on slow external disks.
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To better model a two-level memory hierarchy, Aggarwal and Vitter [7] proposed

the I/O or external-memory model of computation. This model consists of a proces-

sor, an finite internal memory of size M items, and an infinite sized external disk.

Data is transferred between the internal memory and the external disk in blocks of

B items. Such a transfer is considered one I/O. The complexity of an algorithm in

this model is the total number of I/Os needed to solve the problem in terms of the

four parameters N,M,B, and T , where N is the number of items in the problem

instance and the output size is T . In addition to the I/O complexity, one often also

considers the space complexity in terms of number of blocks used and the CPU work

complexity. While this two-level I/O model is still an approximation to a real ma-

chine, it captures the main features of block I/O and is the primary theoretical model

for developing and analyzing algorithms that scale to large data sets and are thus

I/O-efficient.

The two-level memory hierarchy in the I/O model is only an approximation of

modern computers which have multiple levels of memory hierarchy including disks,

main memory, L2 cache, L1 cache, and registers. Frigo et al. [47] introduced the cache-

oblivious model of computation to analyze algorithms in a multi-level hierarchy. In

this model, algorithms are developed in the RAM model of computation, but are

analyzed in the I/O-model. Because they are developed in the RAM model, they

can not explicitly use the I/O-model parameters M and B in the algorithm design.

However, if the algorithm is efficient when analyzed in the I/O-model, then this

cache-oblivious algorithm is efficient between any two levels of the memory hierarchy,

regardless of the parameters M and B on that level. It would seem that we should

aim to develop cache-oblivious algorithms, but it is typically difficult to develop

I/O-efficient algorithms without knowledge of M and B. Furthermore, the primary

bottleneck when processing massive data is the bottleneck between disk and main
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memory. If we optimize our algorithm for just these two levels, we can get tremendous

improvements in scalability and run-time. While cache-oblivious algorithms are of

theoretical and practical interest in certain applications, we find that the I/O-model

is suitable for our purpose and will therefore be the primary focus of this thesis.

Using the I/O-model of computation many I/O-efficient algorithms and data

structures have been developed. Trivially, the bound for scanning N elements is

scan(N) = O(N/B) I/Os. Aggarwal and Vitter [7] presented algorithms for sorting,

permuting, fast Fourier transform, and matrix transposition. The sorting bound is

sort(N) = Θ(N
B

logM
B

N
B

). Numerous basic data structures have been developed in

the I/O model including B-trees [28, 35, 56], priority queues [10, 31], kd-B trees [75],

R-trees [53, 18], persistent B-trees [29, 88], union-find [6], and many others. Agarwal

et al. presented a framework [4] for efficiently constructing a number of spatial data

structures using a bulk-loading approach. We use many of these data structures in

this thesis and will describe them in more detail as they are needed.

In addition to the basic data structures and algorithms, a number of other I/O-

efficient algorithms have been developed. Particularly relevant to this thesis are algo-

rithms for planar point location [51, 25, 27, 86, 17], circuit evaluation and processing

of topologically sorted directed acyclic graphs (DAGs) [34, 10], and flow modeling

on grid terrains [14]. Many I/O-efficient algorithms have applications in GIS in-

cluding algorithms for spatial joins [21], contour line extraction [3], algorithms on

gridded terrains [23], algorithms for processing line segments [27] and recent work on

constrained Delaunay triangulations [5]. A common paradigm for developing many

I/O-efficient algorithms for spatial data the use of plane sweep techniques. In several

cases, including flow modeling on gridded terrains [14], pre-sorting the data according

to the sweep order offers tremendous speedup over naive approaches that work well

in internal memory. For a summary of many other I/O-efficient algorithms and data
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structures, refer to extensive surveys by Vitter [91] and Arge [9].

While many problems have I/O-efficient solutions, efficient algorithms on graphs

have been notoriously difficult. On general graphs, even simple problems such as

BFS and DFS do not have simple solutions [34, 33, 61]. On planar graphs, many

algorithms have good theoretical bounds [13, 20, 84, 24], but are impractical to

implement. On trees, many algorithms including DFS, BFS, and Euler tours can be

solved in O(sort(N)) I/Os using list-ranking.

Initial work in the I/O-model was mostly theoretical, but there have been several

efforts to develop experimental libraries for implementing I/O-efficient algorithms

including LEDA-SM [37], TPIE [22, 11], and STXXL [39]. While LEDA-SM is

no longer maintained, STXXL and TPIE are both currently used and updated.

TPIE [89, 22, 12], is a templated, portable I/O environment written in C++ that ab-

stracts away the details of implementing I/O-efficient algorithms and provides users

with a number of built-in algorithms and data structures for managing large data

sets. Primitives for data structures such as streams, stacks, queues, priority-queues,

and B-trees are part of the TPIE code-base. A number of sorting methods are also

provided in TPIE. On top of this core library, a number of applications have been

developed. The TerraFlow [14] project developed by Arge et al. uses TPIE to

efficiently model surface water flow over massive grid DEMs. Experimental results

show that TerraFlow can scale to data sets much larger than previous GIS al-

gorithms. Motivated by the success of TerraFlow, we aim to develop additional

I/O-efficient algorithms for processing massive GIS data sets and demonstrate the

practicality of our approach with experimental results on real-world data.
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1.7 Outline of Thesis

In this thesis, we describe several problems in Geographic Information Systems that

would benefit from modern hi-resolution data sets derived from modern remote sens-

ing methods. For each problem, previous algorithm solutions did not scale well to

massive data sets. We develop scalable solutions to these problems and show that

we can efficiently process data sets orders of magnitude larger than the largest data

sets we could process with previous algorithms. For each application, our empha-

sis is almost equally distributed amongst converting a real-world application to a

computational problem, developing an I/O-efficient solution to the problem, imple-

menting this solution, and demonstrating the scalability of the implementation using

real-world data sets. In this thesis, we focus on hydrographic applications on grid

DEMs.

In Chapter 2 we consider the problem of constructing a grid digital elevation model

(DEM) given a set S of N points sampled from a surface. Our approach [2] is based

on a scalable segmentation of the point set using quad-trees and an approximation

method for evaluating the value of the surface at an arbitrary point. The design

is flexible and can incorporate a number of different interpolation methods. Using

over 390 million lidar points sampled from the Neuse river basin in North Carolina,

we show that we can process extremely large input sets I/O-efficiently, while prior

approaches failed to process more than 25 million points.

Given a grid DEM such as the one we construct in Chapter 2, we discuss previous

methods of detecting and removing sinks from grid digital elevation models (DEMs)

in Chapter 3. As noted earlier, removal of buildings and vegetation from lidar point

sets is often incomplete and artifacts such as bridges often remain in DEMs con-

structed from bare Earth lidar points. Successfully detecting and removing bridges
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and other sources of sinks from DEMs will lead to better hydrologically conditioned

DEMs. This chapter discusses new methods [6] for sink removal based on topological

persistence [45, 44], and reviews the TerraFlow [14] algorithm of Arge et al. for

modeling surface water flow on large grid terrains. We also present new ways of han-

dling some degenerate cases in flow modeling such as how to find water flow paths

across extended flat surfaces where no locally downslope path exists. Under the likely

assumption that a constant number of grid rows fit in memory, our new method is

more practical than other algorithms with the same theoretical I/O-bound.

Given a river network extracted from a hydrologically conditioned DEM, we can

extract hydrological units. Many hydrological modelling tools in GIS work directly

with these hydrological units instead of the original elevation data and it is important

to have scalable techniques for computing such watershed hierarchies. Chapter 4

describes our I/O-efficient method [15] for decomposing a terrain into a hierarchy

of hydrological units or watersheds. We implemented our approach, based on the

Pfafstetter watershed labeling definition [90] recently presented by Verdin and Verdin.

Experimental results demonstrate the scalability of our approach on a number of large

watersheds. Neither of the two GIS packages we used (GRASS and ArcGIS) had

tools for automatically extracting a hierarchy of watersheds. Most previous methods

required users to manually select a number of desired watershed outlets, or could

only produce a single layer of the hierarchy automatically.

Given a partition of a terrain into hydrological units and a query point, we would

like to quickly identify the hydrological unit containing the query point. This is a

specific example of the planar point location problem which is defined as: given a

planar subdivision containing N vertices and a query point q in the plane, report

the face of the subdivision that contains q. In Chapter 5 we describe an I/O-efficient

solution [16] for planar point location based on persistent B-trees [29, 88] and vertical
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ray-shooting. Our approach is practical enough to implement and has better worst-

case performance than a simple heuristic-based bucket approach [86]. We present

a number of experimental results on both real and synthetic data that show the

practicality of our approach.

Finally, in Chapter 6, we show how to combine the individual results of previous

chapters to form an extended geo-processing pipeline that can automatically take

remotely sensed elevation data points and extract the watershed hierarchy of the

terrain with little or no manual intervention. All steps of the pipeline are scalable to

large data sets and we present experimental results on the Neuse basin to support our

claims. The completion of this I/O-efficient pipeline eliminates the need for users to

try to divide their data set into smaller manageable pieces when processing massive

terrain data sets derived from hi-resolution point sets. This allows users to focus

more on modelling issues and less on computational issues.
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Chapter 2

Grid DEM Construction

2.1 Introduction

One of the basic tasks of a geographic information system (GIS) is to store a repre-

sentation of various physical properties of a terrain such as elevation, temperature,

precipitation, or water depth, each of which can be viewed as a real-valued bivariate

function. Because of simplicity and efficacy, the grid or raster representaion is one

of the widely used representations of such data. However, many modern mapping

technologies do no acquire data on a uniform grid. Hence the raw data is a set S of

N (arbitrary) points in R
3, sampled from a function H : R

2 → R. An important task

in GIS is thus to interpolate S on a uniform grid of a prescribed resolution.

In this chapter, we present a scalable algorithm [2] for this interpolation problem.

Although our technique is general to any set of points sampled from a surface, we

focus on constructing a grid digital elevation model (DEM) from a very large set S of

N points in R
3 acquired by modern mapping techniques such as lidar 1. Because these

data sets are much larger than main memory we develop an I/O-efficient algorithm

for constructing a grid DEM of unprecedented size from these massive data sets.

2.1.1 Related Work

A variety of methods for interpolating a surface from a set of points have been

proposed, including inverse distance weighting (IDW), kriging, spline interpolation

and minimum curvature surfaces. Refer to [65] and the references therein for a survey

1In this chapter, we consider lidar data sets that represent the actual terrain and have been pre-
processed by the data providers to remove spikes and errors due to noise.
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of the different methods. However, the computational complexity of these methods

often make it infeasible to use them directly on even moderately large points sets.

Therefore, many practical algorithms use a segmentation scheme that decomposes

the plane (or rather the area of the plane containing the input points) into a set

of non-overlapping areas (or segments), each containing a small number of input

points. One then interpolates the points in each segment independently. Numerous

segmentation schemes have been proposed, including simple regular decompositions

and decompositions based on Voronoi diagrams [78] or quad trees [67, 62]. A few

schemes using overlapping segments have also been proposed [93, 74].

Many Θ(N) time algorithms designed in the RAM model of computation that

do not explicitly consider I/O use Θ(N) I/Os when used in the I/O-model. How-

ever, the “linear” bound, the number of I/Os needed to read N elements, is only

Θ(scan(N)) = Θ(N
B

) in the I/O model. Recalling that I/O-efficient sorting is roughly

three scans, tremendous speedups can often be obtained by developing algorithms

that use O(scan(N)) or O(sort(N)) I/Os rather than Ω(N) I/Os. Agarwal et.

al [4] presented a general top-down layered framework for constructing a certain

class of spatial data structures–including quad trees–I/O-efficiently. Hjaltason and

Samet [54] also presented an I/O-efficient quad-tree construction algorithm. This op-

timal O(sort(N)) I/O algorithm is based on assigning a Morton block index to each

point in S, encoding its location along a Morton-order (Z-order) space-filling curve,

sorting the points by this index, and then constructing the structure in a bottom-up

manner.

2.1.2 Our Approach

In this chapter we describe an I/O-efficient algorithm for constructing a grid DEM

from lidar points using a quad-tree segmentation. Most of the segmentation algo-
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rithms for this problem can be considered as consisting of three separate phases; the

segmentation phase, where the decomposition is computed based on S; the neighbor

finding phase, where for each segment in the decomposition the points in the segment

and the relevant neighboring segments are computed; and the interpolation phase,

where a surface is interpolated in each segment and the interpolated values of the

grid cells in the segment are computed. In this chapter, we are more interested in the

segmentation and neighbor finding phases than the particular interpolation method

used in the interpolation phase. We will focus on the quad tree based segmentation

scheme because of its relative simplicity and because it has been used with several

interpolation methods such as thin plate splines [67] and B-splines [62]. While we

focus on the quad-tree, techniques apply to other segmentation schemes as well.

Our algorithm implements all three phases I/O-efficiently, while allowing the use

of any given interpolation method in the interpolation phase. Given a set S of N

points, a desired output grid specified by a bounding box and a cell resolution, as well

as a threshold parameter kmax, the algorithm uses O(N
B

h
log M

B

+ sort(T )) I/Os, where

h is the height of a quad tree on S with at most kmax points in each leaf, and T is

the number of cells in the desired grid DEM. Note that this is O(sort(N) + sort(T ))

I/Os if h = O(log N
B

), that is, if the points in S are distributed such that the quad

tree is roughly balanced.

The three phases of our algorithm are described in Section 2.2, Section 2.3 and

Section 2.4. In Section 2.2 we describe how to construct a quad tree on S with at most

kmax points in each leaf using O(N
B

h
log M

B

) I/Os. The algorithm is similar to the bulk-

loading framework of Agarwal et. al [4]. Although not as efficient as the algorithm by

Hjaltason and Samet [54] in the worst case, our algorithm is simpler and potentially

more practical; for example, it does not require computation of Morton block indices

or sorting of the input points. Also in most practical cases where S is relatively
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nicely distributed, for example when working with lidar data, the two algorithms

both use O(sort(N)) I/Os. In Section 2.3 we describe how to find the points in

all neighbor leaves of each quad-tree leaf using O(N
B

h
log M

B

) I/Os. The algorithm is

simple and very similar to our quad-tree construction algorithm; it takes advantage

of how the quad tree is naturally stored on disk during the segmentation phase. Note

that while Hjaltason and Samet [54] do not describe a neighbor finding algorithm

based on their Morton block approach, it seems possible to use their approach and

an I/O-efficient priority queue [10] to obtain an O(sort(N)) I/O algorithm for the

problem. However, this algorithm would be quite complex and therefore probably not

of practical interest. Finally, in Section 2.4 we describe how to apply an interpolation

scheme to the points collected for each quad-tree leaf, evaluate the computed function

at the relevant grid cells within the segment corresponding to each leaf, and construct

the final grid using O(scan(N))+O(sort(T )) I/Os. As mentioned earlier, we can use

any given interpolation method within each segment.

To investigate the practical efficiency of our algorithm we implemented it and

experimentally compared it to other interpolation algorithms using lidar data. To

summarize the results of our experiments, we show that, unlike previous algorithms,

our algorithm scales to data sets much larger than the main memory. For example,

using a machine with 1GB of RAM, we were able to construct a grid DEM containing

397 million real grid data cells (occupying 1.2GB of disk space when including 800

million nodata nodes) from a lidar data set of over 390 million points (occupying

20GB) in 53 hours. This data set is an order of magnitude larger than what could be

handled by two popular GIS products–ArcGIS and GRASS. In addition to supporting

large input point sets, we were also able to construct very large high resolution grids;

in one experiment we constructed a one meter resolution grid DEM containing more

than 53 billion cells—storing just a single bit for each grid cell in this DEM requires
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6GB.

In Section 2.5 we describe the details of the implementation of our theoreti-

cally I/O-efficient algorithm that uses a regularized spline with tension interpolation

method [66]. We also describe the details of a prior algorithm implemented in GRASS

using the same interpolation method; this algorithm is similar to ours but it is not

I/O-efficient. In Section 2.6 we describe the results of the experimental comparison

of our algorithm to other implementations. As part of this study, we present a de-

tailed comparison of the quality of the grid DEMs produced by our algorithm and

the similar algorithm in GRASS that show the results are in good agreement.

2.2 Segmentation Phase: Quad-Tree Construction

Given a set S of N points contained in a bounding box [x1, x2]× [y1, y2] in the plane,

and a threshold kmax, we wish to construct a quad tree T [38] on S such that each

quad-tree leaf contains at most kmax points. Note that the leaves of T partition the

bounding box [x1, x2] × [y1, y2] into a set of disjoint areas, which we call segments.

2.2.1 Incremental Construction

T can be constructed incrementally simply by inserting the points of S one at a time

into an initially empty tree. For each point p, we traverse a root-leaf path in T to find

the leaf v containing p. If v contains less than kmax points, we simply insert p in v.

Otherwise, we split v into four new leaves, each representing equally sized quadrants

of v, and re-distribute p and the points in v to the new leaves. If all kmax + 1 points

are distributed to one leaf, we recursively apply the splitting procedure. If h is the

height of T, this algorithm uses O(Nh) time. If the input points in S are relatively

evenly distributed we have h = O(log N), and the algorithm uses O(N log N) time.

If S is so large that T must reside on disk, traversing a path of length h may
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require as many as h I/Os, leading to an I/O cost of O(Nh) in the I/O-model. By

storing (or blocking) the nodes of T on disk intelligently, we may be able to access a

subtree of height log B (size B) in a single I/O and thus reduce the cost to O(N h
log B

)

I/Os. Caching the top-most levels of the tree in internal memory may also reduce

the number of I/Os needed. However, since not all the levels fit in internal memory,

it is hard to avoid spending an I/O to access a leaf during each insertion, or Ω(N)

I/Os in total. Since sort(N) ≪ N in almost all cases, the incremental approach is

very inefficient when the input points do not fit in internal memory.

2.2.2 Level-by-level Construction

A simple I/O-efficient alternative to the incremental construction algorithm is to

construct T level-by-level: We first construct the first level of T, the root v, by

scanning through S and, if N > kmax, distributing each point p to one of four leaf

lists on disk corresponding to the child of v containing p. Once we have scanned

S and constructed one level, we construct the next level by loading each leaf list in

turn and constructing leaf lists for the next level of T. While processing one list

we keep a buffer of size B in memory for each of the four new leaf lists (children

of the constructed node) and write buffers to the leaf lists on disk as they run full.

Since we in total scan S on each level of T, the algorithm uses O(Nh) time, the

same as the incremental algorithm, but only O(Nh/B) I/Os. However, even in the

case of h = log4 N , this approach is still a factor of logM
B

N
B

/ log4 N from the optimal

O(N
B

logM
B

N
B

) I/O bound.

2.2.3 Hybrid Construction

Using the framework of Agarwal et. al [4], we design a hybrid algorithm that combines

the incremental and level-by-level approaches. Instead of constructing a single level
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Figure 2.1: Construction of a quad-tree layer of depth three with kmax = 2. Once a
leaf at depth three is created, no further splitting is done; instead additional points
in the leaf are stored in leaf lists shown below shaded nodes. After processing all
points the shaded leaves with more than two points are processed recursively.

at a time, we can construct a layer containing the top log4
M
B

levels in a single pass

over the data. Because 4log4
M
B = M/B < M , we construct these levels entirely in

internal memory using the incremental approach: We scan through S, inserting points

one at a time while splitting leaves and constructing new nodes, except if the path

from the root of the layer to a leaf of the layer is of height log4
M
B

. In this case, we

write all points contained in such a leaf v to a list Lv on disk. After all points have

been processed and the layer constructed, we write the layer to disk sequentially and

recursively construct layers for each leaf list Li. Refer to Figure 2.1.

Since a layer has at most M/B nodes, we can keep an internal memory buffer

of size B for each leaf list and only write points to disk when a buffer runs full (for

leaves that contain less than B points in total, we write the points in all such leaves

to a single list after constructing the layer). In this way we can construct a layer on

N points in O(N/B) = scan(N) I/Os. Since a tree of height h has h/ log4
M
B

layers,

the total construction cost is O(N
B

h
log M

B

) I/Os. This is sort(N) = O(N
B

logM
B

N
B

) I/Os

when h = O(log N).
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q

Figure 2.2: The segment q associated with a leaf of a quad tree and its six shaded
neighboring segments.

2.3 Neighbor Finding Phase

Let T be a quad tree on S. We say that two leaves are neighbors if their associated

segments share part of an edge or a corner. Refer to Figure 2.2 for an example. If

L is the set of segments associated with the leaves of T, we want to find for each

q ∈ L the set Sq of points contained in q and the neighbor leaves of q. As for the

construction algorithm, we first describe an incremental algorithm and then improve

its efficiency using a layered approach.

2.3.1 Incremental Approach

For each segment q ∈ L, we can find the points in the neighbors of q using a simple

recursive procedure: Starting at the root v of T, we compare q to the segments

associated with the four children of v. If the bounding box of a child u shares a point

or part of an edge with q, then q is a neighbor of at least one leaf in the tree rooted

in u; we therefore recursively visit each child with an associated segment that either

neighbors or contains q. When we reach a leaf we insert all points in the leaf in Sq.

To analyze the algorithm, we first bound the total number of neighbor segments
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found over all segments q ∈ L. Consider the number of neighbor segments that are

at least the same size as a given segment q; at most one segment can share each

of q’s four edges, and at most four more segments can share the four corner points

of q. Thus, there are at most eight such neighbor segments. Because the neighbor

relation is symmetric, the total number of neighbor segments over all segments is at

most twice the total number of neighbor segments which are at least the same size.

Thus the total number of neighbor segments over all segments is at most 16 times

the number of leaves of T. Because the total number of leaves is at most 4N/kmax,

and since the above algorithm traverses a path of height h for each neighbor, it visits

O(Nh) nodes in total. Furthermore, as each leaf contains at most kmax points, the

algorithm reports O(Nkmax) points in total. Thus the total running time of the

algorithm is O((h + kmax)N) = O(hN)). This is also the worst case I/O cost.

2.3.2 Layered approach

To find the points in the neighboring segments of each segment in L using a layered

approach similar to the one used to construct T, we first load the top log4
M
B

levels

of T into memory. We then associate with each leaf u in the layer, a buffer Bu of size

B in internal memory and a list Lu in external memory. For each segment q ∈ L,

we use the incremental algorithm described above to find the leaves of the layer with

an associated segment that completely contains q or share part of a boundary with

q. Suppose u is such a layer leaf. If u is also a leaf of the entire tree T, we add the

pair (q, Su) to a global list Λ, where Su is the set of points stored at u. Otherwise,

we add q to the buffer Bu associated with u, which is written to Lu on disk when Bu

runs full. After processing all segments in L, we recursively process the layers rooted

at each leaf node u and its corresponding list Lu. Finally, after processing all layers,

we sort the global list of neighbor points Λ by the first element q in the pairs (q, Su)
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stored in Λ. After this, the set Sq of points in the neighboring segments of q are in

consecutive pairs of Λ, so we can construct all Sq sets in a simple scan of Λ.

Since we access nodes in T during the above algorithm in the same order they

were produced in the construction of T, we can process each layer of log4
M
B

levels of

T in scan(N) I/Os. Furthermore, since
∑

q |Sq| = O(N), the total number of I/Os

used to sort and scan Λ is O(sort(N)). Thus the algorithm uses O(N
B

h
log M

B

) I/Os in

total, which is O(sort(N)) when h = O(log N).

2.4 Interpolation Phase

Given the set Sq of points in each segment q (quad tree leaf area) and the neighboring

segments of q, we can perform the interpolation phase for each segment q in turn

simply by using any interpolation method we like on the points in Sq, and evaluating

the computed function to interpolate each of the grid cells in q. Typically, |Sq| is

much less than M . If this is not the case, we can choose a maximum number of

points nmax < M and interpolate only on these points. We can do this efficiently

by scanning the points in Sq and keep the nmax points closest to the center of q in

memory. This is easily done with an internal memory priority queue. Keeping both

nmax and kmax small reduces the overall cost of the interpolation phase. Since at most

kmax are in each quad-tree leaf and each leaf has eight neighboring leaves on average,

|Sq| < 8kmax for most segments q and we do not need to worry about keeping only

nmax points.

Since
∑

q |Sq| = O(N), we can read each Sq into main memory and perform the

interpolation in O(scan(N)) I/Os in total. However, we cannot simply write the

interpolated grid cells to an output grid DEM as they are computed, since this could

result in an I/O per cell (or per segment q). Instead we write each interpolated grid

26



cell to a list along with its position (i, j) in the grid; we buffer B cells at a time

in memory and write the buffer to disk when it runs full. After processing each set

Sq, we sort the list of interpolated grid cells by position to obtain the output grid.

If the output grid has size T , computing the T interpolated cells and writing them

to the list takes O(T/B) I/Os. Sorting the cells take O(sort(T )) I/Os. Thus the

interpolation phase is performed in O(scan(N) + sort(T )) I/Os in total.

For our initial experiments for the smooth approximation of data, we used the reg-

ularized spline with tension method described by Mitasova et al. [68]. This method

models the surface as a thin plate spline under tension, and is an example of one of

the many different spline methods that has been proposed for surface approximation.

While seemingly complicated, this method has many advantages over other simpler

approximation schemes. In particular, it can accurately compute secondary surface

properties such as slope, profile curvature, and tangentail curvature, which are im-

portant in landform analysis and landscape process modeling. We present the details

of the regularized spline with tension method here for completeness. The descrip-

tion here also introduces the tension and smoothing parameters whose effects we will

explore experimentally in Chapter 6.

Given N input points {~r1, ~r2, . . . , ~rN}, where ~ri = (xi, yi), each with a value zi,

the surface is defined by

z(~r) = a1 +
N

∑

j=1

λjR(ρj), (2.1)

R(ρj) = −[E1(ρj) + ln ρj + CE],

where z(~r) is the value at a point ~r = (x, y), a1 is a constant trend, λj are a set

of coefficients, and R(ρj) is a radial basis function. In the function R(ρj), ρj =

(ϕ|~r− ~rj|/2)2, where |~r− ~rj| is a Euclidean distance function in R
2, CE = 0.577215 . . .

is the Euler constant, E1(ρj) =
∫

∞

ρj

e−u

u
du is the exponential integral function, and ϕ
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is a tunable tension parameter. As ϕ > 0 is decreased, the approximation surface is

tuned from acting like a rigid metal sheet to a flexible membrane.

The coefficients a1 and λj are found by solving the following linear system of

equations

a1 +
N

∑

j=1

λj[R(ρi) + δijw0/wj] = zi, i = 1, . . . , N (2.2)

N
∑

i=1

λj = 0, (2.3)

where w0/wj are positive weights representing a smoothing parameter for each

point rj. Setting the smooting parameter w0/wj to 0 results in an interpolation

method where the surface must pass through all the input points. Increasing the

smoothing for a particular point ~ri allows the surface to approximate zi at ~ri. A

particular advantage of this method is that in addition to computing an interpolated

surface, high order derivatives of the surface can be computed by direct evaluation

of the derivative of z(~r).

2.5 Implementation

We implemented our methods in C++ using TPIE [22, 12], a library that eases the

implementation of I/O-efficient algorithms and data structures by providing a set

of primitives for processing large data sets. Our algorithm takes as input a set S

of points, a grid size, and a parameter kmax that specifies the maximum number of

points per quad tree segment, and computes the interpolated surface for the grid

using our segmentation algorithm and a regularized spline with tension interpolation

method [66]. We chose this interpolation method because it is used in the open
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source GIS GRASS module v.surf.rst [67]—the only GRASS surface interpolation

method that uses segmentation to handle larger input sizes—and provides a means

to compare our I/O-efficient approach to another segmentation method. Below we

discuss two implementation details of our approach: thinning the input point set,

and supporting a bit mask. Additionally, we highlight the main differences between

our implementation and v.surf.rst.

2.5.1 Thinning Point Sets

Because lidar point sets can be very dense, there are often several cells in the output

grid that contain multiple input points, especially when the grid cell size is large.

Since it is not necessary to interpolate at sub-pixel resolutions, computational effi-

ciency improves if one only includes points that are sufficiently far from other points

in a quad-tree segment. Our implementation only includes points in a segment that

are at least a user-specified distance ε from all other points within the segment. By

default, ε is half the size of a grid cell. We implement this feature with no additional

I/O cost simply by checking the distance between a new point p and all other points

within the quad-tree leaf containing p and discarding p if it is within a distance ε of

another point.

2.5.2 Bit Mask

A common GIS feature is the ability to specify a bit mask that skips computation on

certain grid cells. The bit mask is a grid of the same size as the output grid, where

each cell has a zero or one bit value. We only interpolate grid cell values when the bit

mask for the cell has the value one. Bit masks are particularly useful when the input

data set consists of an irregularly shaped region where the input points are clustered

and large areas of the grid are far from the input points. Skipping the interpolation
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of the surface in these places reduces computation time, especially when many of the

bit mask values are zero.

For high resolution grids, the number of grid cells can be very large, and the

bit mask may be larger than internal memory and must reside on disk. Randomly

querying the bit mask for each output grid cell would be very expensive in terms of

I/O cost. Using the same filtering idea described in Section 2.2 and Section 2.3, we

filter the bit mask bits through the quad-tree layer by layer such that each quad-tree

segment gets a copy of the bit mask bits it needs during interpolation. If a quad-tree

segment spans nr rows and nc columns in the output grid, the segment will store nrnc

bits of the bit mask in the segment. The bit-mask filtering algorithm uses O( T
B

h
log M

B

)

I/Os in total, where T is the number of cells in the output grid, which is O(sort(T ))

when h = O(log N). The bits for a given segment can be accessed sequentially as we

interpolate each quad-tree segment.

2.5.3 GRASS Implementation

The GRASS module v.surf.rst uses a quad-tree segmentation, but is not I/O-

efficient in several key areas which we briefly discuss; constructing the quad tree,

supporting a bit mask, finding neighbors, and evaluating grid cells. All data struc-

tures in the GRASS implementation with the exception of the output grid are stored

in memory and must use considerably slower swap space on disk if internal memory

is exhausted. During construction points are simply inserted into an internal mem-

ory quad tree using the incremental construction approach of Section 2.2. Thinning

of points using the parameter ε during construction is implemented exactly as our

implementation. The bit mask in v.surf.rst is stored as a regular grid entirely

in memory and is accessed randomly during interpolation of segments instead of

sequentially in our approach.
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Figure 2.3: Neuse river basin data set

Points from neighboring quad-tree segment are not found in advance as in our

algorithm, but are found when interpolating a given quad-tree segment q; the algo-

rithm creates a window w by expanding q in all directions by a width δ and querying

the quad tree to find all points within w. The width δ is adjusted by binary search

until the number of points within w is between a user specified range [nmin, nmax].

Once an appropriate number of points is found for a quad-tree segment q, the grid

cells in q are interpolated and written directly to the proper location in the output

grid by randomly seeking to the appropriate file offset and writing the interpolated

results. When each segment has a small number of cells, writing the values of the

T output grid cells uses O(T ) ≫ sort(T ) I/Os. Our approach constructs the output

grid using the significantly better sort(T ) I/Os.
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Figure 2.4: Outer Banks data set, with zoom to very small region.
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2.6 Experiments

We ran a set of experiments using our I/O-efficient implementation of our algorithm

and compared our results to prior GIS tools. We begin by describing the data sets

on which we ran the experiments, then compare the efficiency and accuracy of our

algorithm with other methods. We show that our algorithm is scalable to over 395

million points and over 53 billion output grid cells (where over 51 billion cells were

masked out by the bitmask for the irregularly shaped coastal data set)–well beyond

the limits of other GIS tools we tested.

2.6.1 Experimental Setup

We ran our experiments on an Intel 3.4GHz Pentium 4 hyper-threaded machine with

1GB of internal memory, over 4GB of swap space, and running a Linux 2.6 kernel.

The machine had a pair of 400GB SATA disk drives in a non-RAID configuration.

One disk stored the input and output data sets and the other disk was used for

temporary scratch space.

For our experiments we used two large lidar data sets, freely available from online

sources; one of the Neuse river basin from the North Carolina Floodmaps project [69]

and one of the North Carolina Outer Banks from NOAA’s Coastal Services Center

[71].

Neuse River Basin. This data set contains 500 million points, more than 20 GB of

raw data; see Figure 2.5.3. The data have been pre-processed by the data providers

to remove most points on buildings and vegetation. The average spacing between

points is roughly 20ft.
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Outer Banks. This data set contains 212 million lidar points, 9 GB of raw data;

see Figure 2.5.3. Data points are confined to a narrow strip (a zoom of a very small

portion of the data set is shown in the figure). This data set has not been heavily pre-

processed to remove buildings and vegetation. The average point spacing is roughly

3ft.

2.6.2 Scalability Results

We ran our algorithm on both the Neuse river and Outer Banks data sets at varying

grid cell resolutions. Because we used the default value of ε (half the grid cell size)

increasing the size of grid cells decreased the number of points in the quad tree and

the number of points used for interpolation. Results are summarized in Table 2.1.

In each test, the interpolation phase was the most time-consuming phase; interpo-

lation consumed over 80% of the total running time on the Neuse river basin data

set. For each test we used a bit mask to ignore cells more than 300ft from the input

points. Because of the irregular shape of the Outer Banks data, this bit mask is

very large, but relatively sparse (containing very few “1” bits). Therefore, filtering

the bit mask and writing the output grid for the Outer Banks data were relatively

time-consuming phases when compared to the Neuse river data. Note that the num-

ber of grid cells in the Outer Banks is roughly three orders of magnitude greater

than the number of quad-tree points. As the grid cell size decreases and the total

number of cells increases, bit mask and grid output operations consume a greater

percentage of the total time. At a resolution of 5ft, the bit mask alone for the Outer

Banks data set is over 6GB. Even at such large grid sizes, interpolation—an internal

memory procedure—was the most time-consuming phase, indicating that I/O was

not a bottleneck in our algorithm.

We also tried to test other available interpolation methods, including v.surf.rst
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Dataset Neuse Outer Banks

Resolution (ft) 20 40 5 10

Output grid cells (×106) 1360 340 53160 13402
quad-tree points (×106) 395 236 128 66

Total Time (hrs) 53.0 24.4 17.7 6.9

Time spent to... (%)
Build tree 2.0 3.8 4.5 8.6
Find Neighbors 10.6 15.1 14.5 16.4
Filter Bit mask 0.2 0.3 13.1 8.0
Interpolate 86.4 80.4 52.6 57.8
Write Output 0.8 0.4 15.3 9.2

Table 2.1: Results from the Neuse river basin and the Outer Banks data sets.

in the open source GIS GRASS; kriging, IDW, spline, and topo-to-raster (based on

ANUDEM [57]) tools in ArcGIS 9.1; and QTModeler 4 from Applied Imagery [8].

Only v.surf.rst supported the thinning of data points based on cell size, so for the

other programs we simply used a subset of the data points. None of the ArcGIS tools

could process more than 25 million points from the Neuse river basin at 20ft resolution

and every tool crashed on large input sizes. The topo-to-raster tool processed the

largest set amongst the ArcGIS tools at 21 million points.

The v.surf.rst could not process more than 25 million points either. Using a

resolution of 200ft, v.surf.rst could process the entire Neuse data set in six hours,

but the quad tree only contained 17.4 million points. Our algorithm processed the

same data set at 200ft resolution in 3.2 hours. On a small subset of the Outer Banks

data set containing 48.8 million points, v.surf.rst, built a quad tree on 7.1 million

points and computed the output grid DEM in three hours, compared to 49 minutes

for our algorithm on the same data set.

The QTModeler program processed the largest data set amongst the other meth-

ods we tested, approximately 50 million points, using 1GB of RAM. The documenta-

tion for QTModeler states that their approach is based on an internal memory quad
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tree and can process 200 million points with 4GB of available RAM. We can process

a data set almost twice as large using less than 1GB of RAM.

Overall, we have seen that our algorithm is scalable to very large point sets and

very large grid sizes and we demonstrated that many of the commonly used GIS tools

cannot process such large data sets. Our approach for building the quad tree and

finding points in neighboring segments is efficient and never took more than 25% of

the total time in any of our experiments. The interpolation phase, an internal step

that reads points sequentially from disk and writes grid cells sequentially to disk, was

the most time-consuming phase of the entire algorithm.

2.6.3 Comparison of Constructed Grids

To show that our method constructs correct output grids, we compared our output on

the Neuse river basin to the original input points as well as to grid DEMs created by

v.surf.rst, and DEMs freely available from NC Floodmaps. Because v.surf.rst

cannot process very large data sets, we ran our tests on a small subset of the Neuse

river data set containing 13 million points. The output resolution was 20ft, ε was set

to the default 10ft, and the output grid had 3274 rows and 3537 columns for a total

of 11.6 million cells. Approximately 11 million points were in the quad tree.

The interpolation function we tested used a smoothing parameter and allowed

the input points to deviate slightly from the interpolated surface. We used the same

default smoothing parameter used in the GRASS implementation and compared the

distribution of deviations between the input points and the interpolated surface.

The results were independent of kmax, the maximum number of points per quad-tree

segment. In all tests, at least 79% of the points had no deviation, and over 98% of the

points had a deviation of less than one inch. Results for v.surf.rst were similar.

Since the results were indistinguishable for various kmax parameters, we show only
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Figure 2.5: Distribution of deviations between input points and interpolated surface
(kmax = 35).

one of the cumulative distribution functions (CDF) for kmax = 35 in Figure 2.5.

Next, we computed the absolute deviation between grid values computed using

v.surf.rst and our method. We found that over 98% of the cells agreed within

1 inch, independent of kmax. The methods differ slightly because v.surf.rst uses

a variable size window to find points in neighboring points of a quad-tree segment

q and may not choose all points from immediate neighbors of q when the points

are dense and may expand the window to include points in segments that are not

immediate neighbors of q when the points are sparse. In Figure 2.6.3 we show a plot

of the interpolated surface along with an overlay of cells where the deviation exceeds

3 inches. Notice that most of the bad spots are along the border of the data set where

our method is less likely to get many points from neighboring quad-tree leaves and

near the lake in the upper left corner of the image where lidar signals are absorbed

by the water and there are no input data points.

Finally, we compared both our output and that of v.surf.rst to the 20ft DEM

data available from the NC Floodmaps project. A CDF in Figure 2.8 of the absolute

deviation between the interpolated grids and the “base” grid from NC Floodmaps

shows that both implementations have an identical CDF curve. However, the agree-
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Figure 2.6: Interpolated surface generated by our method. Black dots indicate
cells where the deviation between our method and v.surf.rst is greater than three
inches.

ment between the interpolated surfaces and the base grid is not as strong as the

agreement between the algorithms when compared to each other. An overlay of re-

gions with deviation greater than two feet on base map shown in Figure 2.7(a) reveals

the source of the disagreement. A river network is clearly visible in the figure indicat-

ing that something is very different between the two data sets along the rivers. NC

Floodmaps uses supplemental break-line data that is not part of the lidar point set

to enforce drainage and provide better boundaries of lakes in areas where lidar has

trouble collecting data. Aside from the rivers, the interpolated surface generated by

either our method or the prior GRASS implementation agree reasonably well with

the professionally produced and publicly available base map. Furthermore, it was re-

cently observed by Hodgson et al. [55], that the mean absolute error and the RMSE

of the lidar signals themselves are 8.7 inches and 13.0 inches respectively in smooth

open terrain and these errors can be over two feet in forested or mixed cover terrain.
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(a)

Figure 2.7: Interpolated surface generated by our method. Black dots indicate cells
where the deviation between our method and ncfloodmap data is greater than two
feet.

Figure 2.8: Cumulative distribution of deviation between interpolated surface and
data downloaded from ncfloodmaps.com. Deviation is similar for both our method
and v.surf.rst for all values of kmax.
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Therefore, our deviations are for the most part well within the error bounds of the

the original lidar data.

2.7 Conclusions

In this chapter we describe an I/O-efficient algorithm for constructing a grid DEM

from point cloud data. We implemented our algorithm and, using lidar data, exper-

imentally compared it to other algorithms. The empirical results show that, unlike

prior algorithms, our approach scales to data sets much larger than the size of main

memory. Although we focused on elevation data, our technique is general and can

be used to compute the grid representation of any bivariate function from irregularly

sampled data points.

For future work, we would like to consider a number of related problems. Firstly,

our solution is constructed in such a way that the interpolation phase can be executed

in parallel. A parallel implementation should expedite the interpolation procedure.

Secondly, as seen in Figure 2.7(a), grid DEMs are often constructed from multiple

sources, including lidar points and supplemental break-lines where feature preserva-

tion is important. Future work will examine methods of incorporating multiple data

sources into DEM construction. Finally, the ability to create large scale DEMs effi-

ciently from lidar data could lead to further improvements in topographic analysis

including such problems as modelling surface water flow or detecting topographic

change in time series data.

40



Chapter 3

Flow Modelling on Grid Terrains

3.1 Introduction

Given a grid DEM, one can model the flow of water over the terrain. A typical flow

modelling approach consists of two phases. In the first phase, called flow routing, we

compute for each vertex u in the grid a set of directed edges {(u, v1), (u, v2), . . . , (u, vk)}

where an edge (u, v) means that a portion of water that arrives in vertex u is routed

to the vertex v. The actual means of choosing these edges depends on any one of

many flow routing models available. Typically flow is only routed to neighbors with

a lower elevation. In the second flow accumulation phase, we place an initial amount

of water or flow in each vertex v and route flow along the directed edges created in

the flow routing phase. The flow accumulation of a vertex u is the sum of the initial

amount of flow placed in u plus the sum of any incoming flow routed to u along

edges created during the flow routing phase. Flow routing and flow accumulation are

typically used as input for river network extraction and watershed delineation. By

choosing all edges from the flow routing phase whose endpoints have a flow accumu-

lation above a user-specified threshold, one can extract a river network. Extraction

of watershed hierarchies from a river network is discussed in Chapter 4.

Typical flow-modeling algorithms assume that water flows downhill until it reaches

a local minimum, or sink. The DEMs constructed in Chapter 2 and DEMs from other

data providers may have many such sinks. Some sinks in the DEM are due to noise

in either the elevation data point sample or the construction method. Other sinks are

caused by real features such as bridges appearing as dams in the DEM. Still other
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sinks correspond to real geographic features such as quarries, sinkholes, or closed

water basins with no drainage outlet. Sinks due to noise or bridges are problematic

because they impede the correct flow of water and result in artificially disconnected

river networks. Therefore, it is important to modify DEMs to remove sinks that do

not correspond to significant sinks such as quarries and naturally closed drainage

basins. We call a terrain that has been modified to make the flow routing and flow

accumulation more closely match the real river networks hydrologically conditioned,

or hydrologically correct.

Ideally, only those sinks due to noise should be removed while genuine sinks should

be preserved. Agarwal et al. recently proposed a method [6] based on a topological

persistence technique developed by Edelsbrunner et al. [45, 44] that assigns a nu-

merical persistence value to each sink in a DEM. Sinks that are likely due to noise

or bridges have a lower persistence than significant natural sinks like quarries. This

scoring allows the user to remove sinks below a specified persistence threshold. In

this chapter, we review the definition of topological persistence, show how to compute

the persistence of each sink in a height graph, and describe an efficient method of

removing sinks via flooding. It is important to note that the method of ranking the

sinks is not restricted to a particular sink removal method and it may be possible to

use other methods of sink removal other than those described in this chapter. We

review methods for routing flow in Section 3.4. These methods only work when a

grid vertex has at least one downslope neighbor. On extended flat areas of constant

height where at least one vertex in the area has a downslope neighbor, or spill point,

it is possible to route flow across the flat area towards one or more spill points. We

describe a new method for detecting flat areas in Section 3.4.1 and review previous

methods for routing flow across a single flat area in Section 3.4.2. In Section 3.5 we

review the standard I/O-efficient flow accumulation algorithm which was previously
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implemented by Arge et al. in the software package TerraFlow [14]. Finally, in

Section 3.6, we examine current problems in using previous methods for flow mod-

eling on modern hi-resolution DEMs, and describe potential research directions that

could improve flow modeling on this new generation of DEMs. Before starting the

discussion on topological persistence, we review a few preliminary concepts that will

be helpful throughout the remainder of the chapter.

3.1.1 Height Graph

To put flow modeling in a more theoretical framework, we first introduce the notion

of the height graph of a grid DEM. A height graph G = (V,E) is an undirected graph,

with a height h(v) and an ID id(v) associated with each v ∈ V . The IDs are assumed

to be unique, but the heights may not be. For any two vertices u and v, we say u is

higher than v if h(u) > h(v), or h(u) = h(v) and id(u) > id(v); u is strictly higher

than v if h(u) > h(v). The concepts of lower and strictly lower are defined similarly.

The grid cells of a grid DEM define the vertices of the height graph. The unique ID of

a height graph vertex is the the row, column pair of the grid cell location. The edges

of the height graph in are not uniquely defined, and they depend on the application.

A typical approach is to add all the boundary edges of the grid cells and add one

of the diagonals for each grid cell. This results in a triangulated regular network.

However in some applications, one wishes to connect each grid point to its eight

neighbors, in which case we add both diagonals for each grid cell, thereby resulting

into a non-planar graph. We do not commit to any particular representation and

let the user decide which of the diagonals to add. A grid vertex is on the boundary

of a the DEM if it is either on the boundary of the bounding box of the grid, or is

adjacent to a vertex with a special null or nodata value. We add a vertex ξ with

h(ξ) = −∞, which is connected to all the vertices on the boundary of the DEM.
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3.1.2 Batched Union-Find

Another important data structure for flow modeling is the batched-union find data

structure. In the union-find problem we maintain a partition of a set U = x1, x2, . . . , xN

of N elements during a sequence of Union(xi, xj) and Find(xi) operations. A

Find(xi) operation returns a representative element of the set containing xi and a

Union(xi, xj) joins the two sets containing xi and xj. In the online version of union-

find, the sequence of operations is not known in advance, but in the batched union-find

problem, the entire sequence of Union and Find operations is known. Agarwal et

al. [6] recently developed a theoretically I/O-efficient algorithm for batched union-

find that runs in O(sort(N)) I/Os, where N is the number of mixed Union and

Find operations. The authors also present a practical, O(sort(N) log(N/M))-I/O

algorithm. The algorithm can easily be modified such that if each element xi in the

set has a weight h(xi) then Find(xi) returns the element with the lowest weight in

the set containing xi.

3.1.3 Processing topologically sorted DAGs

Suppose we are given a directed acyclic graph (DAG) that is topologically sorted

by some totally ordered set. We wish to evaluate a function for each vertex v in

the DAG, where the function value depends on the value of vertices whose outgoing

edges terminate at v. For our purposes, we make the assumption that the in-degree

and out-degree of each vertex in the DAG is bounded by some small constant. A

technique called time-forward processing [34, 10] was developed for evaluating such

a function on a topologically sorted DAG I/O-efficiently in O(sort(N) I/Os.

The intuition behind this approach is that if we process vertices according to their

topological order, the function for all inputs to a vertex v will be computed before we

process v. In essence, when we process a vertex, we can send the results forward in
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2−fold saddleminimum maximum saddle

Figure 3.1: Classification of vertices in height graph. Hollow circles are higher neighbors
while filled circles are lower.

“time” to be processed by other vertices that depend on the result. Arge developed

a practical sort(N) algorithm [10] based on a priority queue for solving this problem

that improves an earlier solution by Chiang et al. [34]. The basic idea in the priority

queue approach is that when we compute the value for a vertex u, we insert the result

of the function into the priority queue with priority v for each edge (u, v) in the DAG.

When we need to process vertex v, all smaller elements have been processed, since we

processed the vertices in topological order, and we can extract the inputs for vertex

v from the priority queue.

3.2 Topological Persistence

The notion of topological persistence is introduced in the context of Morse func-

tions [45, 44] but can be extended to the planar height graph described in Section

3.1.1. We define a minimum in the height graph is a vertex with no lower neigh-

bors. If we look at the adjacent neighbors of a height graph vertex v in clockwise

order, we consider a vertex to be a saddle if there are at least two disjoint sequences

of adjacent neighbors of v lower than the height of v (see [42] for the precise def-

inition of a saddle). See Figure 3.1 for the various classifications of height graph

vertices. Topological persistence pairs each minimum and maximum with a saddle

point. The persistence of a minimum or maximum is the height difference between

the minimum or maximum and the saddle with which it is paired. For our purposes,

we are only concerned with the pairing of minima and saddles. The maxima-saddle
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pairing is symmetric. Conceptually, the persistence of minima in a height graph are

computed by sweeping a plane bottom-up over the height graph and maintaining the

set of connected components in the height graph of vertices below the sweep plane.

Each component is represented by an un-paired minimum. When the sweep-plane

encounters a minimum, a new component is created. When the sweep-plane encoun-

ters a k-fold saddle, k + 1 components are merged. The persistence of the k highest

un-paired minima in the merged component are computed at this point, leaving the

lowest minimum u un-paired. The new merged component is represented by u.

Agarwal et al. [6, 95] developed an I/O-efficient algorithm for computing the topo-

logical persistence of a height graph using the batch-union find structure [6] described

in Section 3.1.2 in O(sort(N)) I/Os. In practice, the practical O(sort(N) log
(

N
M

)

)

algorithm [6] for batched union-find is used. Their algorithm computes for each

minimum u, the persistence of u and the representative minimum v that is the repre-

sentative of the merged component when u is paired with a saddle. For the purpose

of sink removal, it will later be helpful to store the results of the persistence compu-

tation as a merge-tree defined as follows. Each vertex v in the tree is a minimum,

and stores the height of the saddle s(v) paired with v. The persistence of each vertex

can easily be computed as the difference in heights h(s(v)) − h(v). We create a di-

rected edge (u, v) between a child vertex u and parent vertex v in the merge-tree to

indicate that when the component represented by u was paired with a saddle, v was

the representative of the merged component. Such a a merge-tree can be constructed

in a scan of the persistence computation results.

We use persistence to measure the importance of sinks on a terrain. For a user-

specified threshold τ , we declare all sinks with persistence greater than τ to be signif-

icant sinks that should be preserved, while other sinks should be removed. The user

can change the threshold to control the smallest feature size to be preserved. Thus we
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get an automated way for marking sinks for removal that preserves major features on

the terrain based on their persistence. A sink removal method that removes all sinks

are equivalent to setting τ = ∞. Once the user specifies an appropriate threshold

that may be application dependent, we can remove sinks below the threshold using

some sink removal algorithm. We next describe a flooding approach [59] that can be

made scalable to large data sets.

3.3 Sink removal

Formally, flooding can be defined as follows [14]. Let G be a height graph with one

or more significant sinks represented by the lowest minima (or an “outside” vertex)

ζ1, . . . , ζk in each significant sink. Let the height of a path be the height of the highest

vertex on the path, and let the raise elevation of a vertex v of G be the minimum

height of all paths from v to ζi for all 1 ≤ i ≤ k. The flooding problem is to find the

raise elevations for all vertices in G, after which the height of each vertex is modified

to its raise elevation. After flooding, it is clear that the each vertex in G has a

path of monotonically non-increasing height to a significant sink. An O(sort(N))-

I/O algorithm for flooding when only one significant sink, represented by ζ exists is

given by Arge et al.[14] and is used in their scalable flow modeling software project

TerraFlow.

In real terrains however, multiple significant sinks exist and a more general ap-

proach than that of Arge et al. is needed to flood the terrain. Figure 3.2(a) shows

an unmodified terrain that is modified via flooding in Figure 3.2(b) to remove all

sinks except the global outside sink. In Figure 3.2(c), only those sinks with a small

persistence have been modified via flooding.

Consider classifying the set of minima in the height graph with topological per-

sistence above a user-specified threshold τ to be the representatives of the set of
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(a) (b) (c)

Figure 3.2: (a) Original terrain. (b) Flooding of all internal sinks (c) Partial flood sinks
with low persistence.

significant sinks. Note this includes the outside sink which has a persistence of ∞.

We can flood the height graph to remove all sinks with persistence less than τ as

defined above in three phases, such that only the sinks marked as significant remain

after flooding. In the first phase we assign a sink label to each vertex in the height

graph. If a vertex u has a sink label v then there is a path of monotonically decreas-

ing height in the height graph G from u to a minimum v. If a vertex u has paths

to multiple minima v1, v2, . . . , vk, the sink label can be any of the vi for which such

a path exits. In the second phase, we compute for each minimum u in the height

graph, the raise elevation of u. We will prove that for any vertex v with sink label u

the raise elevation of v is the maximum of the elevation of v and the raise elevation

of u. In the third phase, we scan the list of vertices and height graph and raise the

elevation of each vertex u to the raise elevation v of its sink label if h(v) > h(u). We

describe each of these phases in detail below.

3.3.1 Computing Sink Labels

To compute sink labels for all vertices in the height graph, we can use the technique

for evaluating a function on a topologically sorted DAG described in Section 3.1.3.

We can consider the height graph G of Section 3.1.1 as a DAG if for each edge (u, v),

we direct the edge from u to v if u is lower than v. Since the lower than relation

in the height graph defines a total order, the vertices in the DAG are topologically

ordered by the lower than relation. Each minimum in the height graph is a source
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in the DAG. We assign an initial sink-label u for each minimum u in the DAG. For

each internal vertex in the DAG, the inputs to the DAG are one or more sink labels.

For each internal vertex v, we chose one of these labels, ui (for completeness, we

choose the smallest such ui), to be the sink label for v and forward ui across all

outgoing edges starting from v. In this way, we can compute a single sink-label for

each vertex in the height graph. To see that the algorithm is correct, note that if

a vertex v receives a label u in the circuit evaluation, then there must be a path of

monotonically non-increasing height from v to u in the height graph since vertices

are processed in topological (height) order and edges only go from vertices of lower

height to vertices of equal or higher height. But this is precisely the definition of a

sink-label for v, so the algorithm is correct. Since each vertex in the height graph

has degree at most eight in the grid case, we can evaluate the DAG on all N vertices

in the height graph in sort(N) I/Os as described in Section 3.1.3.

3.3.2 Computing Raise Elevations

To compute the raise elevation for all sinks in the terrain, we use the merge-tree

produced by the topological persistence algorithm [6]. The merge-tree has the prop-

erty that on any root-to-leaf path the heights of the vertices and increase, while the

heights of the saddles paired with each minimum decrease along any root-to-leaf path.

To see that the heights of vertices increase on any root to leaf path, note that if v

is a parent of u then two components of the height graph represented by minima

u and v must have merged and, by definition of the merge-tree and the persistence

algorithm, the parent of u must be the minima with the lowest height of all merged

minima. Furthermore, since v is not paired with saddle when the component of u

merges with the component of v, v must merge when the sweep-plane is higher than

when e merged with v. Thus the height of the saddle s(v) that is paired with v
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has an elevation higher than the saddle that is paired with u. Since persistence is

the height difference between a minimum and its paired saddle and v is lower than

u, the persistence of v, h(s(v)) − h(v) must be higher than h(s(u)) − h(u) and the

persistence of vertices also decrease along any root-leaf path in the merge-tree.

Lemma 1 Let v be a vertex in the merge tree that is not a significant sink, but

whose parent is a representative of a significant sink. Let s be the saddle with height

h(s) that is paired with v. Let u be any vertex in the sub-tree rooted at v. The raise

elevation r(u) of u is h(s) = r(v).

Proof. All representative minima of significant sinks in the merge tree have per-

sistence above the user-specified persistence threshold τ by definition. Persistence

values of vertices in the merge tree decrease on any root-leaf path as argued above,

and therefore the set of representative minima of significant sinks form a connected

sub-tree in the merge-tree rooted at the root of the merge-tree. Because v is not a

significant sink, it is rooted below the sub-tree of significant sinks and no significant

sinks can be in the sub-tree rooted at v. See Figure 3.3 for an illustration of the

merge-tree structure.

We first show that r(u) ≤ h(s). Consider the bottom-up sweep of the height

graph. The component represented by v merges with the component represented by

the parent of v when the sweep plane is at height h(s) by definition of the minimum-

saddle pairing. Before the merge, all vertices in the component of v have height below

h(s). This includes all vertices in the component of u since u is in the subtree of v

and must have merged into the component of v before the sweep plane was at height

h(s). Therefore there is a path from u to any vertex in the component of v with

height less than h(s). After the component of v merges with the component of the

parent of v at height h(s), there is a path from u to a representative minimum of a
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u

v

Figure 3.3: An example merge tree where the significant sinks marked in black with
persistence greater than a user-specified threshold τ form a sub-tree.

significant sink of height h(s), so r(u) ≤ h(s).

To show that r(u) ≥ h(s), assume that this is not the case and r(u) < h(s). Then

there must be a path of height less than h(s) from u to a representative minimum

w of a significant sink. Therefore, a component containing u must have merged

with a component containing w when the sweep plane was below h(s). Furthermore,

the component containing v must merge with the component containing u when the

sweep plane is below h(s) because u is in the sub-tree of v. By our assumption that

r(u) < h(s), w, u and v are in the same component when the sweep plane is below

h(s). Since w is the representative of a significant sink, it has a higher persistence

than either u or v, and v must therefore be paired with a saddle when the component

containing v merges with the component containing w. Since this occurs when the

sweep plane is below h(s), this saddle must have a height less than h(s), but this

contradicts the definition that h(s) is precisely the height of the saddle paired with v.

Therefore, r(u) ≥ h(s). Because h(s) ≤ r(u) ≤ h(s), we conclude that r(u) = h(s).
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Lemma 1 gives us a simple way to compute the raise elevations of all minima in

the merge-tree. Note that if u is a representative of a significant sink, we do not need

to raise u at all and the raise elevation of u is simply the height of u. We simply

need to compute the raise elevation of minima representing significant sinks. We

process all the edges (u, v) in the tree in increasing order of the height of v. Once

we see an edge (u, v) where v is a representative of a significant sink but u is not,

we propagate r(u) to all vertices in the subtree rooted at u. The whole process can

be easily implemented using BFS if the tree fits in memory. Otherwise, we construct

a topologically sorted DAG by directing edges in the merge tree from a parent v to

a child u. The height of the minima form a topologically sorted order of the tree

because heights increase as we go from a child to a parent. When evaluating the

raise elevation of a vertex v, if v is the representative of a significant sink, we set r(v)

to be the height of v and propagate a null value along all outgoing edges of the DAG

originating at v. If v is not the representative of a significant sink and the incoming

circuit value is null, then the parent of v is the representative of a significant sink and

r(v) is the height h(s) of the saddle s paired with v. The raise elevation of v is then

propagated along all outgoing edges originating at v. If v is not the representative of

a significant sink and the incoming value for a DAG vertex is not null, we set r(v) to

be the incoming raise elevation and propagate this value along the outgoing edges of

the DAG. It is clear that evaluating the DAG in topologically sorted order correctly

computes the raise elevation of each minimum in the merge-tree and can be done

using I/O-efficient processing of topologically sorted DAGs in O(sort(N)) I/Os.

To compute the raise elevation of all vertices in the height graph, we prove the

following lemma.

Lemma 2 The raise elevation of a vertex u in the height graph with elevation h(u)

and sink label v is r(u) = max{h(u), r(v)}.
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Proof. Because u has a sink label v, there is a path of monotonically non-increasing

height from u to v. By definition, there is a path of height r(v) from v to a significant

sink. We consider two cases; h(u) ≥ r(v) and h(u) < r(v). In the first case, where

h(u) ≥ r(v), there is a path of height h(u) from u to a significant sink through v.

Since the raise elevation r(u) of u can be no less than the height of u, r(u) = h(u).

In the second case where h(u) < r(v), note that v cannot be a significant sink

because if v is a significant sink then r(v) = h(v) and because u has a sink label v there

is a path of monotonically non-increasing height from u to v and h(u) ≥ h(v) = r(v).

So there is at least a path of height r(v) from u to a significant sink through v.

Suppose there is a path of height r(u), where h(u) < r(u) < r(v) from u to a

significant sink. Then since there is path from v to u of height h(u), then there is a

path from v to a significant sink of height r(u) through u. And the raise elevation of

v should be no more than r(u). But this contradicts the assumption that r(v) > r(u)

and thus r(u) = r(v).

3.3.3 Flooding the Terrain

The final phase of flooding is quite easy once we have computed sink-labels for each

vertex in the height graph and the raise elevation for each sink in the height graph. We

simply sort the vertices of the height graph by sink-label and sort the raise elevations

of each sink by their sink-label. Then we simultaneously scan both lists and for each

vertex u in the height graph that is below the raise elevation of its corresponding

sink-label v, we raise the elevation of u to the raise elevation of v. By Lemma 2

this computes the correct raise elevation for u. The sort and scan can be done in

O(sort(N)) I/Os. If needed, we can put the terrain back in grid order by sorting the

vertices of the height graph by grid order (row, column) in sort(N) additional I/Os.

An example is shown in Figure 3.4, which shows a portion of the terrain in the
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Neuse River Basin. With a persistence threshold of τ = 30 most sinks, particularly in

the area in the lower part of the figure, have been removed, while the major features

such as the quarry have been preserved. On the other hand, a flooding procedure

that removes all sinks has undesirably eradicated some major features, including the

quarry.

3.4 Flow Routing

In this section we review flow routing models for grid vertices with at least one

downslope neighbor. These models cannot route flow on vertices that are flat and

have no downslope neighbors. However, it is sometimes possible to route flow across

a flat plateau towards a vertex with a downslope neighbor. In Section 3.4.1 we

describe a new and practical way of detecting all flat areas containing vertices with

no downslope neighbors. In Section 3.4.2 we review methods for routing flow across

flat areas.

Given a height graph G = (V,E) of a terrain as described in Section 3.1.1, flow

routing constructs a flow graph F(G) = (V,Er) that is a directed subgraph of G,

i.e., Er ⊆ E. An edge (u, v) in F(G) indicates that water can flow from u to v.

We construct Er from G by looking at each vertex u and its neighbors and applying

a flow direction model. A number of such models have been proposed in the GIS

literature, see e.g., [59, 72, 46, 94, 82]. We describe two commonly used methods; the

single-flow-direction (SFD or D8) model and the multi-flow-direction (MFD) model.

In the SFD model, we select the downslope edge (u, v) which has the steepest non-

zero gradient h(u)−h(v)
d(u,v)

, where h(u) is the height of a vertex u in G and d(u, v) is the

distance between the projection of u and v onto the horizontal plane. This SFD model

is a convergent flow model as flow can never diverge to two downslope neighbors. The

resulting flow graph is a forest of trees. In the MFD model we select all edges (u, vi)
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Figure 3.4: (a) Original terrain. (b) Terrain flooded with persistence threshold
τ = 30. (c) Terrain flooded with τ = ∞.
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with h(vi) < h(u). The MFD model can model divergent flow and the resulting flow

graph is a DAG which may have multiple disconnected components. Depending on

the application, one model may be preferred over another.

In all direction models, flow is routed to neighbors with a lower height. Sinks and

flat areas in the terrain will have no outgoing edges according to these flow direction

models. If the terrain has insignificant sinks that are not significant terrain features,

the flow graph will be broken into a number of disconnected components. In reality,

water flows between two vertices in the DEM in the two disconnected components of

the flow graph. To avoid this situation and have realistic flow graph connectivity, it is

often desirable to remove insignificant sinks. We can use the I/O-efficient algorithm of

Section 3.3 to hydrologically condition the DEM and remove these sinks. However,

using flooding to remove sinks creates flat areas in which the flow routing models

cannot select any edges for the flow graph. To address this issue, we must be able to

route flow across flat areas.

3.4.1 Detecting Flat Areas

We define a vertex u in the height graph G to be flat if either h(u) ≤ h(v) for all

neighbors v of u in G, or if u has a neighbor of the same height that has no downslope

neighbor. A flat area is connected component of flat vertices in the height graph that

have the same height. Flat areas can either be plateaus or sinks. We define a flat

to be a plateau if there is at least one vertex in the flat area with a downslope

neighbor. We call a vertex on a plateau with at least one downslope neighbor a spill

point. Intuitively, as water falls on the interior of a plateau, it will spread out and

eventually run off the plateau at a spill point. A flat area is an extended sink if

there are no spill points on the flat area. In the case of plateaus, we would like to

route flow across the plateau and towards the spill point. Figure 3.5 shows a terrain
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that has been hydrologically conditioned using flooding to remove insignificant sinks.

A bridge on the left side created a sink on the right hand side which was flooded.

Much of the terrain in the center of the figure is one large flat area as a result of the

flooding. There is a spill point in the lower left of the image where water can flow

over a bridge. By routing flow across the flat area and towards the spill point, we

can connect two components of the flow graph that would be disconnected if we did

not route flow across the flat area. In Figure 3.5, if we did not route flow across the

flat area there would be a component of the flow graph to the right of the bridge

near the flat area that would be disconnected from a component downstream to the

left of the bridge. Routing flow across the flat area will connect these two flow graph

components and create flow connectivity similar to the actual river network in the

terrain. In this section we describe a new algorithm for detecting flat areas on grid

DEMs and assigning a unique connected components label to all vertices in the same

flat area. This algorithm is more practical than an previous theoretically optimal

scan(N) algorithm [23] if a constant number of grid rows fit in memory. For general

height graphs from other DEMs besides grids, we can use the I/O-efficient batched

union-find structure [6] described in Section 3.1.2 to detect flat areas in O(sort(N))

I/Os.

Before we can assign connected component labels to flat areas, we must first

identify all flat cells in a grid. This can be done in a simple scan over the grid while

maintaining a 5× 5 window of a grid cell and its neighbors in memory. If the vertex

in the center of the window has no lower neighbors, we mark it as flat. Otherwise we

check if it is adjacent to a cell of the same height with no lower neighbors.

Given a grid DEM in which all flat vertices have been marked, computing con-

nected components can theoretically be done in scan(N) I/Os using an tiling approach

by Arge et al. [23], but this algorithm is rather complicated to implement. We have

57



Figure 3.5: A flat plateau created by flooding.

implemented a simple scan(N) algorithm for computing connected component labels

of each flat area in the case where a constant number of lines (rows or columns) of

the grid fits in memory. Assume without loss of generality that a single row has a

fewer cells than a single column. Otherwise we just rotate the grid. A row of the grid

fits in memory when
√

N ≤ M . This assumption seems reasonable because if M is

222 ≈ 4×106 and we need less than 64 bytes of information for each vertex in a given

row, we can handle terrains up to 244 cells which occupy more than a 128 TB of space

using only 256 MB of memory. Our algorithm consists of two sweeps over the the grid

rows. In the first sweep, we sweep down over the rows and assign a temporary labels

to connected components. After the down-sweep, a single connected component can

have multiple labels, but we then sweep up the rows from bottom to top and assign

a single label to all cells in a connected component. For both sweeps, we use an
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internal memory union-find data structure that maintains connected components of

flat area labels. We discuss the details of our sweeps below.

Algorithm Description. In the down-sweep, we process rows top-down and keep

two rows of the terrain in memory; the current row we are processing and the row

immediately above it. For each grid vertex in memory we maintain the elevation

of the cell, a flag to indicate if the cell is flat, and a possibly undefined connected

component label. For each row r, we scan from left to right and for each flat cell

u in the row we do the following. We create a new unique label l(u) for u. Each

label consists of an unique ID and the row number r at which this label was created.

After defining a label for u, we check if u has more than one flat neighbor. If

so, for each neighbor v where l(v) 6= l(u), we union l(u) and l(v). After we scan

the row from left to right and assign labels to each flat cell in the row, we scan

through the row a second time and for each flat cell u we update the label of u

by setting l(u) = Find(l(u)). For the algorithm to work correctly, we require that

the representative of a component in the union-find data structure to be the label

that was created first in the component and thus has the lowest row number. If two

separate labels in a union-find component were created on the same row and unioned,

the label with the lowest ID is the representative. We refer to the representative label

of a union-find component as the top-most label of the component. The Find(l(u))

operation returns the representative of the union-find component containing l(u). See

Algorithm 1 for pseudo-code for the down-sweep.

In the up-sweep, we process rows bottom-up and keep two rows of the terrain in

memory; the current row we are processing and the row immediately below it. For

each row r, we scan from left to right and for each flat cell u in the row we do the

following. We check if u has any flat neighbor v in the row below u. If such a neighbor
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Algorithm 1 Downsweep

1: for all rows r in top-down order do
2: for all flat cells u in row do
3: Create new unique label l(u)
4: for all flat neighbors v with a label l(v) 6= l(u) do
5: Union(l(u), l(v))
6: end for
7: end for
8: for all flat cells u in row do
9: l(v) = Find(l(v))
10: end for
11: end for

exists, and l(u) 6= l(v), we union the two labels. After scanning this row once we

scan through the row a second time and for each flat cell u we update the label of u

by setting l(u) = Find(l(u)). See Algorithm 2 for pseudo-code for the up-sweep.

Algorithm 2 Upsweep

1: for all rows r in bottom-up order do
2: for all flat cells u in row do
3: if u has a flat neighbor v in row below u then
4: Union(l(u), l(v))
5: end if
6: end for
7: for all flat cells u in row do
8: l(v) = Find(l(v))
9: end for
10: end for

Correctness. To prove the correctness of this algorithm, we must show that after

the up-sweep, all cells in the same flat area have the same unique label. To prove

this, we first show that the down-sweep satisfies the following lemma.

Lemma 3 After processing row r in the down-sweep, if any two cells u and v are

on row r, are in the same flat area, and there exists a path from u to v completely

contained in the flat area where each cell on the path is on or above row r, then u

and v have the same label.

Proof. First consider two adjacent cells u and v on the same row. If u and v are

assigned different labels in the first scan of the row during the down-sweep, then
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Figure 3.6: (a) Two anchors of contiguous cells on the sweep-line. (b) Anchors on
the sweep line with arcs above sweep-line connecting anchors.

the two labels will be unioned. After the second scan, the labels will be set to

Find(l(u)) = Find(l(v)) because the labels were merged. Figure 3.6(a) shows this

case on the left hand side. This case can easily be extended to the case of two cells

u′ and v′ in the same flat area that are in contiguous block of cells on the sweep-line

(see Figure 3.6(a)) to show that l(u′) = l(v′). We call a contiguous block of cells on

the sweep line in the same flat area an anchor.

We can prove the lemma by induction on the rows, using the anchors in the

first row as the base case. Because there are no lines above the first row and each

anchor on the first row has the same label as just described, we conclude that the

lemma holds after processing the first row. Now assume that the lemma holds after

processing row r and consider row r + 1. Using the analysis above, we can show that

each anchor on row r + 1 will have a single label after processing row r + 1. We next

show that if two cells u and v are in two distinct anchors and are connected via a

path of cells that are on or above the the sweep-line, then u and v will be assigned

the same label. Since there exists a path from u to v, there must be two cells u′ and

v′ along this path above the sweep-line and adjacent to a cell in the anchor of u and

v respectively. Suppose the path from u′ to v′ is completely above the sweep-line as

shown in Figure 3.6(b). We call such a path entirely above the sweep-line an arc. An

arc is adjacent to two anchors on the sweep-line. By the inductive hypothesis, u′ and
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l0l

Figure 3.7: Proof of Lemma 4. The sweep-line shown is at the last occurrence of
l0 and some other label l in the same connected component is propagated below the
sweep-line. l0 is connected to l by a path on or above the sweep-line.

v′ have the same label l′ because they are connected via a path on or above row r.

Therefore when we scan row r + 1, we will union the label l′ with the label of some

cell in both the anchors of u and v. When we scan the line again, u and v will get

the same label Find(l(u)) = Find(l(v)).

In the most general case, the path from a cell u to a cell w can pass through

multiple arcs and anchors (see Figure 3.6(b)), but the first scan of row r + 1 will

merge all distinct labels in rows r and r + 1 that are on the path from u to w into

a single component through a series of unions equivalent to the repeated application

of two cases above. On the second scan of row r +1, Find(l(u)) and Find(l(w)) will

return the same label, and the proof is complete.

To show that the up-sweep generates a single label for each flat area, we need to

prove the following lemma regarding the down-sweep.

Lemma 4 Consider all the labels in a flat area C after the down-sweep. All cells on

the bottom-most row of C have the same label as the top-most label in C.

Proof. Assume this is not the case and that the top-most label l0 in C is not the

same as the label of cells in the bottom-most row rb of C. The labels of all cells in C
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in the bottom-most row must have the same label by the lemma on the down-sweep.

Consider the bottom-most row r < rb in which the label l0 appears in the flat area

C. Because l0 does not appear on row r + 1 we know there are no cells in C that

are in row r + 1 and adjacent to cells labeled l0. Otherwise, these cells on row r + 1

would have merged in the down-sweep with label l0 and been replaced with the label

l0 during the second scan of row r+1 during the down-sweep. Furthermore, we know

that some cell u with label l 6= l0 on row r is in the same flat area as cells labeled

l0 and has a flat neighbor in row r + 1. Otherwise, a label different from l0 could

not propagate below row r. Let v be a cell with label l0 on row r. Since v and u

are in the same flat area, and no path between v and u can extend below row r + 1

without propagating label l0 below row r, all cells on the path connecting u and v

must be on or above row r. See Figure 3.7 for an illustration of this situation. But

by the lemma above, u and v must have the same label and the label of both cells

must be the representative in the connected component of the union-find, which is

precisely l0. Since l(u) = l 6= l0 and l(u) = l(v) = l0 is a contradiction, our earlier

assumption that l0, the top-most label in C is not the same as the label of cells in

the bottom-most row rb of C is wrong, and the proof is complete.

For the up-sweep we prove the following lemma.

Lemma 5 After processing row r in the up-sweep, all cells in the same flat area that

are on or below r have the same label. This label is the top-most label in the flat

area.

If we can prove the lemma holds for all rows, the correctness of the algorithm

immediately follows because when we are finished with the sweep, the lemma states

that all cells in the same connected component have the same label.
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Figure 3.8: Two anchors on the sweep-line during up-sweep. The anchor containing
u is connected to flat neighbor below the sweep-line. The anchor containing v is
connected via a path on or above the sweep-line to the anchor containing u.

Proof. We proceed inductively. After processing the bottom row, all cells in the

same flat area on the bottom row have the same label by the down-sweep lemma.

Furthermore, the labels of any components on the bottom row are top-most label in

their corresponding components by Lemma 4. Therefore, the lemma is true for the

base case. Assume the lemma holds for row r. We want to show that after processing

row r − 1 above row r that the lemma still holds. Consider the set of anchors on

row r − 1 that are in the same flat area. If a cell u is in an anchor that has at least

one cell w with a flat neighbor w′ in row r, then all labels in cells in the anchor of u

will be merged with the label of w′. Since l(w′) it the top-most label of the flat area

containing u by the up-sweep lemma, all cells in the anchor of u will be assigned the

label l(w′) in the second scan of row r − 1 during the up-sweep. Thus in the case

where u is in an anchor connected to a cell w′ in row r, the lemma holds for row r−1.

If a cell v is in an anchor on row r− 1 that does not have any cell adjacent to flat

neighbor on row r then the anchor containing v is either in the bottom-most row of a

newly encountered flat area in the up-sweep or there is a path of cells on or above the

sweep-line connecting the anchor containing v to an anchor that has a cell with flat

neighbors in row r. In the case that the anchor is in the bottom-most row of a flat
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area, the cells in this anchor have the minimum label of all cells in the component

by Lemma 4 and the lemma holds. Otherwise, v in an anchor connected by a path

of cells on or above the sweep-line to an anchor that has a cell u with flat neighbors

in row r. See Figure 3.8 for an example. Because of the down-sweep lemma we know

that u and v had the same labels after the down-sweep. Furthermore, since u merges

its down-sweep label with the label of a vertex w′ on row r, cells in both the anchor

of u and the anchor of v which are in the same flat area as w′ will have the same

label as w′ after the second scan of r − 1. The label of w′ is correct by the up-sweep

lemma and thus the lemma holds for row r − 1.

Analysis. We have shown that the algorithm correctly assigns the same unique

label to all flat cells in the same connected component. We now show that the

I/O-complexity of our algorithm is scan(N), where N is the number of grid cells.

Identifying flat cells is done in one scan of the grid. Visiting each cell in the grid during

the down-sweep and up-sweep is also done in scan(N) I/Os. The only remaining part

of the algorithm to analyze is how the union-find structure is implemented. In the

description of the down-sweep algorithm, we say that a unique ID is generated for

each new label. In the worst case, this could generate O(N) unique ID labels. Since

we only assume that a O(1) rows of at most
√

N cells, fit in memory, we cannot

maintain a union-find structure on O(N) unique labels in memory. Note however

that during any point of the down-sweep or up-sweep, only two rows are in memory.

The number of unique labels that can appear on these rows is at most 2
√

N . We

say that a label ID is active during the sweep if it appears in one of the two rows

currently in memory. If we maintain a union-find structure only on these active

labels, the structure will fit in memory. We can do this by building a new union-find
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structure when processing each row and deleting the structure after processing the

row. In the up-sweep we initialize the union-find structure with all active labels. In

the down-sweep, we may generate up to
√

N new labels. We therefore initialize the

union-find structure with all labels that are currently active and a set of
√

N new

labels that will be used if a new label is needed on the current sweep-line. Because

the union-find structure on 2
√

N labels fits in memory, it does not require any I/Os.

Therefore the total I/O-cost of the algorithm is scan(N).

3.4.2 Routing on a Single Flat Area

Once we have a unique flat area label for all vertices in each flat area, we sort all flat

vertices in the height graph by their label so that vertices in each flat area are stored

consecutively on disk. We can then route flow across each flat area by applying a flat

routing model to each flat area.

In TerraFlow [14], flow routing on plateaus is performed using a breadth-first

traversal of the area. The source vertices for the BFS are all spill-points of a given

plateau. Since these vertices have a downslope neighbor, there exists an edge in the

flow graph that routes flow from a spill point to a downslope neighbor. These spill-

points are marked as visited in the BFS and the BFS algorithm visits other vertices

in the flat area. We add an edge (u, v) to G if u has not been previously visited

by the BFS but v has been visited and thus has a path towards the spill point. In

this way, each cell on the flat area is routed towards the nearest (in the number of

vertices) spill point.

Flat areas without spill points are different from plateaus in that incoming flow

cannot leave. TerraFlow does not address this issue because TerraFlow re-

moves all sinks in the terrain, regardless of importance. Because the persistence

algorithm may preserve some sinks, our approach on sink flat areas is to detect ver-

66



tices of the flat area that have at least one neighbor vertex with higher elevation.

These vertices are then used as the initial sources in the BFS traversal. Direction are

assigned as we visit vertices in the BFS, except that flow is routed away from pre-

viously visited vertices instead of towards them. In this way, we route flow towards

the middle of the flat sink.

To analyze the complexity of this flow routing phase, note that if the vertices of

a flat area fit in memory we can do the BFS routing internally, and create edges in

Er as outlined above. In our experience with high resolution floating point elevation

data, each flat area is small and fits in memory. In the case where the flat areas are

larger than memory, a O(sort(N)) algorithm for grids are described in [23]. The total

I/O cost of flow routing on flat areas is O(sort(N)).

Alternative methods. While BFS is a commonly used method of routing flow on

flat surfaces, it can create artificially looking parallel flow lines. See for example

Figure 3.9(b) where the meanders of the river in the adjacent figure are gone after

hydrologically conditioning the DEM using flooding. A number of parallel flow lines

also appear in the conditioned terrain, especially in the lower right of the figure.

Garbrecht and Martz developed an algorithm for flow routing on flat surfaces [49]

that does two BFS traversals. The first BFS starts from all flat vertices that have a

higher neighbor and computes the minimum distance d+(u) in length of the BFS path

from a cell u to a cell with a higher neighbor. The second BFS starts from all flat

vertices with a spill point and computes the minimum distance d−(u) in length of the

BFS path from a cell u to a vertex with a spill point. The algorithm then computes

d(u) = d−(u)− d+(u) for all vertices in the flat area and creates and edge in the flow

graph from a vertex u to a vertex v if d(v) < d(u) where v has the minimum value

of d for all neighbors of u. Intuitively this method routes flow away from high areas
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and towards spill points and in practice generates fewer parallel streams. However,

some vertex u may not have any neighbor v with d(v) < d(u) and the approach must

be iterated over remaining flat vertices with no outgoing edge.

The approach of Garbrecht and Martz was later improved by Soille [80] using the

concept of geodesic distance functions. Soille’s approach does not need to iterate over

the flat area multiple times. Both of these methods tend to reduce the number of

parallel flow lines and create more realistic looking networks. These methods could

be used as replacements to the BFS approach described above in the case where

the flat areas fit in memory, but it is not known if these algorithms can be made

I/O-efficient.

In summary, we can construct the flow graph from G for grid DEMs including

routing flow on flat areas using O(sort(N)) I/Os. In practice, we use the simpler

O(scan(N)) algorithm described in the previous section for the common case in which

a constant number of lines of the grid fits in memory, instead of the I/O-efficient but

impractical O(scan(N)) algorithm for computing connected components [23].

3.5 Flow Accumulation

Given a flow graph G computed as described above and an initial amount of flow for

each vertex v in G, the flow accumulation algorithm is described as follows. For each

vertex v in G, we compute the sum of the initial flow of v and flow along incoming

edges (ui, v) in G, and partition this sum across all outgoing edges (v, wi). In the

SFD model, all flow is distributed to the single outgoing edge. In the MFD model

flow is distributed proportional to the vertical gradient along an edge, where edges

with a steeper gradient receive more flow.

In the case of SFD or MFD flow routing, the flow graph is a tree or a DAG,

respectively. Temporarily ignoring flat areas, the elevation of the source vertex in a
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flow graph edges defines a topological order of G. In the case of flat areas, auxiliary

information must be used to topologically order the flat edges of G that are the

same height. Because we assume the flat areas fit in memory, any topological sort

algorithm can be used to create this auxiliary information. Arge et al. [23] describe

an I/O-efficient algorithm that processes the vertices of the flow graph in topological

order to compute the flow accumulation of each vertex in a flow graph. Their method

sweeps a plane top-down over the terrain and process each vertex as it appears in the

topological order. At each vertex u, the input flow from each incoming edge to u is

known by extracting data from a priority queue, and flow for edges leaving u can be

computed and pushed along the edges of a DAG. The flow accumulation for a flow

graph with N vertices can be computed in O(sort(N)) I/Os. As a post processing

step, we can extract edges (u, v) in the flow graph for which the flow accumulation

of u and v exceed a user-specified threshold. These edges form a river network that

can be used for various additional studies.

3.6 Issues on Modeling High Resolution Terrains

The most common method of sink removal used in most GIS software is the method

described above that floods the terrain. This method is used in both TerraFlow

and the new persistence sink removal method described in this chapter. However,

flooding is not an ideal sink removal in certain situations. Consider the terrain is

shown in Figure 3.9(a) that contains a number of bridges. Because the actual terrain

is modeled as a surface we cannot assign multiple elevations to a single height graph

vertex. Thus these bridges act as barriers that impede water flow when in reality,

water flows under the bridge along the surface of the river. If we we consider the

persistence of sinks in the terrain, bridges create sinks upstream of the bridges with

high persistence values. If a user specifies a small persistence threshold for removing
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Figure 3.9: (a) Terrain and flow graph edges shown in blue with flooding of only
low persistence sinks (b) Terrain and flow graph edges with flooding of all sinks.
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sinks and then computes the flow graph G, the graph becomes disconnected at the

bridges. Removing sinks with a high persistence threshold using flooding will raise the

heights of terrain in the sink to the lowest height on or near the bridge. An example

of such extensive flooding of the terrain shown in Figure 3.9(b). The flow graph is

more connected and has fewer components, but the terrain has been significantly

modified, especially in the lower right corner where river valleys have been flooded

extensively to flow over the bridge. Furthermore, since the flooded sinks create large

flat areas, the breadth-first search flat routing method as described above creates a

number of artificially looking parallel streams and deviates from the flow graph edges

in the original terrain which has much more meandering paths.

Because digital elevation models derived from modern remote sensing methods

frequently resolve hi-resolution features such as bridges, we would like to modify

DEMs in such a way that water can flow across bridge features but we do not sig-

nificantly change the elevations in the DEM. We have already seen that flooding of

sinks created behind bridges is not an ideal solution as flooding results in unrealistic

flow graphs. An interesting open problem is how to accurately and efficiently identify

sinks blocked by bridges bridges and how to make minimal modifications to the ter-

rain so that the connectivity of flow graph is similar to the connectivity of river in the

real terrain. This problem can be divided into two sub-problems; identifying sinks

that are created by a bridge blocking a downslope path, and modifying the terrain to

allow water to flow through the bridge. We consider some methods below that may

lead to improved methods of detecting minima blocked by bridges and modifying the

terrain to allow flow routing across the bridge. While we did not implement these

algorithms in this thesis, we consider them potential directions for future work.
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Figure 3.10: A sink u blocked by a bridge. u is close to the sharp upstream edge of
the bridge. A vertex v close to the downstream edge of the bridge is lower than u.

3.6.1 Detecting Sinks Blocked by Bridges

Persistence can provide an initial hint as to which sinks are blocked by bridges as

such sinks typically have a high persistence value. However, persistence alone cannot

distinguish between a sinks that is blocked by a bridge and a quarry or other natural

sink such as the one depicted in Figure 3.4. Flow should not be routed from inside

a quarry to the outside, but flow should be routed across the bridge. Two sources

of auxiliary information may be able to help detect sinks blocked by bridges and

distinguish these sinks from significant sinks with high persistence that should not

be removed.

For the first source of auxiliary information, we observe that water in the actual

terrain will flow downhill and the lowest point on a river upstream of a bridge will

be near that bridge. Also, the elevation of terrain along the river downstream of

bridge will be lower than elevations along the river upstream of the bridge. Thus

sinks blocked by bridges in the DEM will typically be located close to an edge of

the bridge. Furthermore, because these DEMs are of high resolution, there will

be sharp edges in the terrain on the edges of the bridge. By extracting a small

neighborhood of the terrain from around each sinks with high persistence, we can

look for these features described above and illustrated in Figure 3.10 using standard

image processing techniques to help identify sinks blocked by bridges.

A second source of auxiliary information that can help detect sinks blocked by
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bridges is the flow direction and flow accumulation derived from DEM that has had

noise below a small persistence threshold τ0 removed. Remaining sinks in this DEM

will have a persistence above τ0. We run the flow routing and flow accumulation on

this terrain. Then, in addition to looking at the elevation in the neighborhood of

sinks with high persistence, we could also consider the flow accumulation and flow

directions in this neighborhood. While the true flow graph will still be disconnected

by the bridges, partial information about the general direction and amount of flow

in the area around bridges. can provide hints that could indicate the existence of

bridges. A river that is blocked by a bridge is likely to have a path of flow directions

with high flow accumulations flowing perpendicular to the upstream edge of a bridge.

A similar path flowing perpendicularly away from the bridge on a downstream edge

is a good indication that the flow graph should be connected across the bridge.

3.6.2 Removing Minima Blocked by Bridges

By combining persistence and auxiliary information, we may be able to identify those

sinks which are blocked by bridges. Next, we must determine a way to modify the

terrain that removes the sinks and allows the flow modeling algorithms to route flow

through the bridge. As we have seen in Figure 3.9(b), flooding provides one possible

solution, but makes extensive modifications to the terrain. One possible alternative

is to modify the terrain by lowering the elevation across vertices on the bridge instead

of raising the elevation of the vertices in the sink upstream of the bridge. We describe

two approaches described in the GIS literature.

Martz and Garbrecht [64] describe an algorithm that partitions a height graph

into watersheds where each watershed is represented by a local minimum. A vertex

u is the watershed of a sink v if there is a path of non-decreasing height from u to v.

A vertex u is on the boundary of watersheds v and w if u is in both watersheds. For
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Figure 3.11: The Martz and Garbrecht approach lowers the spill point u of a sink
represented by v by lowering vertices along a sub-path from u to v the lowest height
vertex w adjacent to u and not in the watershed of v. The breaching length, or
maximum length of the sub-path is two in this example. Original terrain is shown
on the left and the modified terrain is shown on the right.

each watershed v, the algorithm finds the vertex u on the boundary of v that has the

lowest elevation. Since u is on the boundary of two or more watersheds, there must

be a vertex w that is not in the watershed of v and is adjacent to u. If multiple such

vertices exist, w is the lowest such vertex. The algorithm of Garbrecht and Martz

lowers the elevation of vertices along a sub-path of a path from u to v to the height

of w. The sub-path is a path that starts at u and travels along the path of steepest

descent towards v and stops when either the path reaches a vertex with height less

than the height of w, or when the path reaches a user-specified breaching length.

Figure 3.11 shows the result of lowering the elevations in the watershed of v when

the breaching length is two. Note that the algorithm may not remove all sinks, but it

can significantly reduces the topological persistence of v and will reduce the amount

of flooding needed to remove the sink containing v.

Soille developed an algorithm [81] that uses a morphological approach called carv-

ing to modify the terrain so that no flooding of sinks is needed. The algorithm marks

a sub-set of sinks as being real, and all other sinks as being spurious. The algorithm

then does a bottom-up sweep while maintaining the components of all sinks. When

a component of a significant sinks merges with a spurious component, the algorithm

carves a path from the sinks of the spurious component towards the sink of the real

component. The height of vertices along this path is the minimum of the vertices’
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original height or the height of the sink in the spurious component. The merged

component is considered a component of the significant sink. In a related paper,

Soille presents a sink removal method [80] that computes a cost for partially carving

a sink and partially flooding a sink and minimizes the cost of terrain modifications

for each sink. While methods similar to the ones above could possibly be suitable for

modifying terrain near sinks blocked by bridges, all of these alternatives to flooding

were developed in the RAM model of computation. Similar ideas could potentially

be modified to develop I/O-efficient alternatives to flooding for sink removal on grid

DEMs.

For modern hi-resolution grid DEMs, it is clear that flooding all sinks regardless

of importance can produce unrealistic looking terrains and can significantly alter the

original terrain. In this Chapter we described how persistence can be used to decide

which sinks to remove and how it may be possible to use persistence to identify sinks

blocked by bridges. By developing improved I/O-efficient methods for noise removal,

one could create much more realistic terrain models that accurately model the true

course of water over the terrain.
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Chapter 4

Watershed Decomposition

4.1 Introduction

Over millions of years, rainfall has been slowly etching networks of rivers into the ter-

rain. Today, studying these river networks is important for managing drinking water

supplies, tracking pollutants, creating flood maps, and more. Hydrologists can use

large-scale digital elevation models of the terrain along with a Geographic Informa-

tion System to automate much of such studies. Often it is not necessary to study the

entire terrain or river network at once; frequently one is only interested in regions that

are downstream of a particular river, or the upstream areas that contribute flow to a

particular river. By decomposing the terrain into a set of disjoint hydrologic units—

regions where all water within the region flows towards a single, common outlet—one

can quickly identify areas of interest without having to examine the entire terrain.

The Pfafstetter labeling scheme described by Verdin and Verdin [90] defines a hi-

erarchical decomposition of a terrain into arbitrarily small hydrological units, each

with a unique label. These Pfafstetter labels also encode topological properties such

as upstream and downstream neighbors, making it possible to automatically identify

hydrological units of interest based on the Pfafstetter label alone.

In this chapter, we describe an efficient algorithm [15] for computing Pfafstetter

labels efficiently on grid DEMs. Our algorithm is capable of handling massive high-

resolution DEMs that are too large to fit in main memory of even a high-end machine.

With the recent progress in remote sensing technology, such as lidar, such DEMs

are increasingly becoming available. A method of constructing such DEMs from
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lidar point clouds was presented in Chapter 2. Existing methods for determining

hydrological units on grid DEMs use either manual methods [77], local topological

filters [73, 59] or complete modelling of water flow over a terrain [72] to identify

terrain features and extract watersheds. While the manual methods are often very

ad-hoc, some of the main disadvantages of the current automatic methods is that

they do not naturally define a hierarchical decomposition or a hierarchy that encodes

topological properties such as upstream and downstream neighbors. Furthermore,

the existing algorithms cannot handle massive grid DEMs.

4.1.1 USGS Hydrologic Unit System

An example of a frequently used hydrological unit terrain decomposition is the Hydro-

logic Unit System developed by the Water Resources Division of the United States

Geological Survey (USGS) [77]. The Hydrologic Unit System is a hierarchical de-

composition of the terrain in the United States. At the top level, the US is divided

into 21 regions which are further divided into 222 sub-regions. Each sub-region is

completely contained within exactly one larger region. Sub-regions are further di-

vided into basins, sub-basins, watersheds and sub-watersheds, offering a total of six

levels of decomposition. The USGS assigns a hydrologic unit code (HUC) to each

hydrologic unit. A HUC is a two to twelve digit code where each pair of successive

digits indicate the region, sub-region, basin, sub-basin, watershed, and sub-watershed

ids, respectively. For example, HUC 03020201 corresponds to sub-basin 01 (Upper

Neuse River) in basin 02 (Neuse River) of sub-region 02 (Neuse-Pamlico) in Region 03

(South Atlantic-Gulf). Refer to Figure 4.1. Maps with HUC labels at the sub-basin,

or eight-digit level, are currently available and ten to twelve digit HUC maps are in

development.

While the USGS Hydrologic Unit System provides a hierarchical decomposition
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(a) 03 South Atlantic-Gulf (b) 0302 Neuse-Pamlico

(c) 03020201 Upper Neuse (d) 030202 Neuse

Figure 4.1: A region, sub-region, basin and sub-basin in the USGS Hydrologic Unit
System.

of the terrain in the United States, it has some disadvantages. First, while the HUC

boundaries are available for download, there is no automatic way to compute the

USGS hydrological units given a digital elevation model. As the quality and resolution

of digital elevation models improve, the published HUC boundaries may not exactly

match the boundaries suggested by the data. Second, HUCs at the sub-basin level

may be too large for a particular application. Further sub-levels are in development

but are not complete at this time. Third, HUCs are only available for the United

States. Other countries and organizations have other coding methods [90]. Finally,

the digits chosen for a particular HUC are, for the most part, arbitrary. Given two

HUCs, it is often difficult or impossible to determine if water from one HUC flows

into the other based on their numbering alone. Because finding the hydrological units

upstream and downstream from a given location is a common task, a numbering

scheme that allows a computer or user to relate hydrological units, without the need

for visual inspection, would be helpful.
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4.1.2 Introduction to Pfafstetter labels

The Pfafstetter labeling method described by Verdin and Verdin [90] addresses sev-

eral disadvantages of the USGS Hydrologic Unit System. As mentioned earlier, the

method can automatically divide a terrain into a hierarchy of arbitrarily small hy-

drological units, each with a unique label. Furthermore, Pfafstetter labels encode the

basic topological connectivity of the hydrological units, allowing users to determine

if one basin is upstream or downstream of another by examining the labels.

We present a conceptual definition of Pfafstetter labels here and will give a more

formal definition in the context of grid DEMs in Section 4.2. Before defining Pfafstet-

ter labels, we define a river R to be a directed path of monotonically non-increasing

height over a terrain. The highest and lowest points on the river are the source and

mouth (or outlet), respectively. The basin of R consists of the contiguous area of

the terrain whose water flows, or drains, into the given river at a point between the

source and mouth. All water in R eventually flows through the outlet. Within a

basin corresponding to a river R, other rivers exist that flow into R. These rivers are

called tributaries of R, and the confluence of a river R and a tributary is the mouth

of the tributary of R, that is, the point where the tributary joins R. Each tributary

has a corresponding basin that is a sub-region of the basin of R.

Given a river R along with its corresponding basin and tributaries, the Pfafstetter

method [90] divides the basin into nine disjoint hydrological units: four basins and

five interbasins. As we trace the river R upstream from the mouth to the source, we

encounter multiple confluences with tributaries. Of all the tributaries that flow into

R, we identify the four that have the largest tributary basin area and assign the basin

labels 2, 4, 6, and 8 to these basins, in the order in which we encounter the tributaries

when moving upstream along R. Thus, the furthest downstream tributary basin is
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Figure 4.2: A division of a river basin into nine basin/interbasins and recursive
subdivision of interbasin 7.

assigned the label 2, and the furthest upstream tributary basin is assigned the label 8.

Refer to Figure 4.2. The locations of the mouths of these four largest tributary basins

divide the main river R into five distinct segments: the segment between the mouth

of R and the confluence of the first tributary basin, the segments between the first

and second, second and third, and third and fourth tributary basins, and the segment

above the fourth tributary basin up to the source of R. Regions in the basin of R

that do not drain into one of the four largest tributary basins must drain into one

of these five segments along R. Starting from the mouth and proceeding upstream,

these regions are assigned the interbasin labels 1, 3, 5, 7, and 9, respectively. In the

case where we have k < 4 tributaries, we divide the basin into 2k + 1 pieces labeled

1 through 2k + 1, and do not assign labels 2k + 2 through 9.

To get a hierarchy of hydrological units, we apply the above definition recursively

to each of the four largest tributaries with their corresponding basins, and to each of

the five segments of R with their corresponding interbasins. In the interbasin case,

we reuse the portion of main river that intersects the interbasin and was computed

in the previous level of the recursion. The recursive labels of the subdivided regions
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are appended to the existing label of the original region. Thus, subdivisions further

down the hierarchy have longer labels. Refer to Figure 4.2.

4.1.3 Our results

In this chapter we present an I/O-efficient algorithm for computing the Pfafstetter

label of each cell of a grid DEM in O(sort(T )) I/Os, where T is the total length of

the cell labels. To our knowledge, our algorithm is the first efficient algorithm for the

problem. If each Pfafstetter label consist of a constant number of digits, e.g. if we

truncate them, our algorithm only uses O(sort(N)) I/Os, where N is the number of

grid cells. If the DEM and the labels fit in main memory, the algorithm uses O(T )

time. The overall algorithm, as well as a formal definition of Pfafstetter labels in grid

DEMs, is given in Section 4.2; details are then given in Section 4.3 and Section 4.4.

We have implemented our algorithm, and in Section 4.5 we present the results of a

preliminary experimental study using massive real life terrain data that shows that

our algorithm is practically as well as theoretically efficient.

4.2 Pfafstetter labeling of grid DEM

In Section 4.1.2 we discussed the conceptual hydrological definition of Pfafstetter

labeling [90], which is independent of the actual terrain representation (DEM format).

In this section we define Pfafstetter labels on grid DEMs more formally in terms of

the so-called flow tree, which can be obtained from a DEM in O(sort(N)) I/Os using

existing software tools (algorithms). We then discuss the overall idea in our algorithm

for computing the Pfafstetter labels of a given flow tree.
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4.2.1 Pfafstetter labeling of flow tree

Several different methods for modeling water flow on grid DEMs have been proposed;

refer to [59, 46, 72, 82] for a discussion of the different methods. To model the

direction water naturally flows from each cell s in the grid, most of these methods

assign one or more flow directions from s to one or more of its (at most) eight

neighboring cells. In the most common method [59], each cell s is assigned a single

flow direction to the lowest of the lower neighboring cells. To model water flow off

the terrain, we first identify cells on the boundary of the terrain without any lower

neighbors. We then assign the flow direction of these cells to an imaginary cell ρ

outside the terrain. We refer to ρ as the global outside sink. The cells and flow

directions naturally form a graph with a directed edge from cell s to cell t if s is

assigned a flow direction to t. Assuming that the DEM does not contain any cells

without lower neighbors other than the boundary cells, this graph is indeed a tree T

since it contains N−1 edges (each cell except ρ has one downslope edge to a neighbor

cell) and does not have cycles (flow directions go to lower cells). If we root T at ρ,

each cell s is connected to ρ through a unique path of cells s = s1, s2, s3, . . . , sk = ρ,

where cell si is assigned a flow direction to si+1. Thus water can flow from s to

outside sink ρ through s2, s3, . . . sk−1. Water from cells in the subtree rooted in s

drains through s on its way to (the outside) ρ. In the notation of Section 4.1.2, such

a path in T corresponds to a river R with mouth ρ (and source s). If the DEM does

contain cells without lower neighbors other than the boundary cells, assigning flow

directions as above to cells with a lower neighbor leads to a forest of trees where

water in each tree can flow from a cell through parent cells to the root of a tree [14].

We define Pfafstetter labels of a DEM in terms of a forest of trees. For simplicity,

we temporarily consider a single binary flow tree T with root ρ. In Section 4.4 we

discuss how our algorithms can easily be extended to the general case of a forest of not
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necessarily binary trees. Furthermore, we assume that each leaf l in T is augmented

with a drainage area d(l) ≥ 1, and that each internal node v in T is augmented with a

drainage area d(v) that is one plus the sum of the drainage areas of v’s children. Note

that if d(l) = 1 for every leaf l, then d(v) is the size of the subtree rooted in v. In

section Section 4.5 we discuss how flow directions can also be assigned to (some) cells

without lower neighbors to obtain a flow tree/forest that yield practically realistic

watershed hierarchies (Pfafstetter labels).

Pfafstetter labels of a binary flow tree T augmented with drainage areas are defined

as follows. Let the main river R of T be the root-leaf path obtained by starting at

the root ρ of T and in each node continuing to the child with the largest drainage

area. The subtrees obtained if R is removed from T are called tributary basins and

the root of one of these subtrees a tributary mouth. First consider the case where at

least four tributary mouths are obtained if R is removed. In this case, let v2, v4, v6, v8

be the four tributary mouths with largest drainage area, numbered in the order they

are met when traversing R from ρ towards a leaf. Let pi and si denote the parent

and the sibling of vi, respectively; both pi and si are on R. If we remove the eight

edges incident to p2, p4, p6 and p8 (i.e. edges (vi, pi) and (si, pi), for i ∈ {2, 4, 6, 8}),

T is decomposed into four tributary basins rooted in v2, v4, v6, and v8, as well as five

interbasins rooted at s0 = ρ, s2, s4, s6 and s8. The Pfafstetter label of a node in the

tributary basin rooted in vi is i followed by the label obtained by recursively labeling

the basin. The label of the nodes in the interbasin rooted in si (which includes nodes

on R) is i + 1 followed by the label obtained by recursively labeling the basin. In

the case where 1 ≤ k < 4 tributary mouths are obtained when R is removed from

T, labels 1 through 2k + 1 are assigned as above, while labels 2k + 2 through 9 are

not assigned. Finally, no labels are assigned when no tributary mouths are obtained,

that is, when all nodes of T are on R. Refer to Figure 4.3.
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Figure 4.3: Left figure: A flow tree T with the main river shown as white circles
and tributary mouths as black circles (circle nodes constitute an augmented river).
Removing the eight bold edges decomposes T into four tributary basins and five
interbasins, each with the first digit in their Pfafstetter label shown in bold type.
The remaining digits in the Pfafstetter label of the nodes in each basin (subtree)
are computed recursively. Two right figures: First level of recursion for interbasin
labeled 5 and tributary basin labeled 2.
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4.2.2 Computing Pfafstetter labels of flow tree

The recursive definition of Pfafstetter labels of a binary flow tree T naturally leads

to a recursive algorithm to compute the labels: Compute the main river R and four

largest tributary mouths, break the tree into nine subtrees, and recurse. Unfortu-

nately, because it is difficult to predict the node access pattern and layout the tree

efficiently in memory so that nodes are accessed sequentially, it seems hard to make

such a direct algorithm I/O-efficient (or time-efficient). Instead our algorithm works

by decomposing T into a set of rivers (augmented with tributary mouths), Pfaf-

stetter labeling them individually, and finally combining the labels of the individual

augmented rivers to obtain the Pfafstetter labels for all nodes of T.

Our decomposition of the flow tree T into augmented rivers is defined by a trib-

utary tree Tt, where each node l in Tt stores an augmented river Rt
l and where m

is a child of l if and only if the parent of the mouth of Rt
m is on Rt

l , that is, if Rt
m

flows directly into Rt
l . More precisely, the root r of Tt contains the path obtained by

starting at the root ρ of T and in each node continue to the child with the largest

drainage area; for each node v on the path we also include the (possible) child of

v not on the path (called a tributary mouth node) in Rt
l . Note that Rt

r is the main

river R in the above definition of Pfafstetter labels of the flow tree T augmented with

its tributary mouths. The root r has a child for each tributary basin of R, that is,

for each subtree of T obtained if R is removed from T; the rivers in these children

are obtained recursively. Note that this means that each tributary mouth is stored

exactly twice, namely in Rt
r and as the mouth of the main river Rt

l in a child l of r.

Refer to Figure 4.4.

Given a Pfafstetter labeling of each individual augmented river Rt
l in the tributary

tree Tt, we can combine these labels to obtain the Pfafstetter labeling of the whole
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flow tree T as follows. Consider the augmented river Rt
r stored in the root of r.

As mentioned, Rt
r is the main river R in the definition of Pfafstetter labels of T,

augmented with its tributary mouths. Since in the definition of Pfafstetter labels

of T, the labeling of R only depends on the drainage area of its tributary mouths

(first digit is determined by the four tributary mouths with largest drainage areas,

and the rest recursively determined in each interbasin), the labels of the common

nodes in main river R and the individually labeled augmented river Rt
r are indeed

the same. Furthermore, the labels of the nodes in a tributary basin of R consists of

some prefix determined by the labeling of the nodes on R (a digit for each recursive

labeling step where the tributary basin is part of one of the four interbasins, followed

by a digit determined in the recursive call where the tributary mouth has one of the

four largest drainage areas), followed by the label obtained by recursively labeling

the basin. The prefix is exactly the label assigned to the mouth of the tributary

basin in the augmented river Rt
r. Thus we can obtain the Pfafstetter labels for all

nodes in T from a labeling of the augmented rivers in Tt, simply by assigning the

nodes in the main river R the labels of the corresponding nodes in Rt
r in the root r

of Tt, and recursively label the nodes in each subtree of r while prefixing the labels

in the subtree rooted in child l with the label of the tributary mouth node in Rt
r

corresponding to the mouth of the main river Rt
l .

Intuitively, computing the tributary tree Tt from the flow tree T is easier than

r

Figure 4.4: The root r of the tributary tree Tt and five subtrees. The augmented
river Rt

r is stored in the root, and for each tributary mouth node in Rt
r, there is one

subtree of r.
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computing Pfafstetter labels directly on T. The definition of Tt suggest a natural

algorithm based on a DFS-traversal of T, where in each step the child with largest

drainage area is chosen. By modifying the known O(sort(N)) I/O algorithm for

DFS-numbering nodes in a tree [34], it seems possible to obtain a O(sort(N)) I/O

algorithm for our special DFS-traversal problem. However, while the know general

DFS-numbering algorithm is quite complicated (and therefore not of practical inter-

est), the special structure of flow trees allows us to develop a simple and practical

O(sort(N)) I/O algorithm. We describe this algorithm in Section 4.4. Similarly, once

each individual augmented river in the tributary tree Tt has been labeled, an algo-

rithm based on DFS-traversal (or a BFS-traversal) can be used to combine the labels

from the augmented rivers to obtain the Pfafstetter labels of T in O(scan(T )) I/Os,

where T is the total length of the labels. We also describe such a simple and practical

algorithm in Section 4.4. The remaining part of our algorithm, a O(scan(T )) I/O

algorithm for computing Pfafstetter labels on a single augmented river, is described

in Section 4.3.

4.3 Labeling single river

In this section we describe a simple and I/O-efficient algorithm for computing the

Pfafstetter labels of a single augmented river Rt
l , that is, a simple flow tree consisting

of one path (river) where each node possibly has a tributary mouth node child. Our

algorithm is described in Section 4.3.3; in Section 4.3.1 and Section 4.3.2 we first

discuss a data structure, the Cartesian tree, used in the algorithm.

4.3.1 Cartesian Tree

Let A = (a1, a2, . . . , aN) be a sequence of N elements, each with an associated weight,

and let Ai denote the prefix (a1, a2, . . . , ai) of A. The Cartesian tree C(A) of A is a
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binary tree defined as follows [92]: If A is empty, C(A) is empty. Otherwise, let ai

be the element with the largest weight in A; if there is more than one occurrence of

the largest weight, ai is the element that appears first in A. C(A) consists of a root

v containing an element with weight a(v) = ai, with a left subtree C((a1, ..., ai−1)) (a

Cartesian tree on the elements before ai in A) and a right subtree C((ai+1, ..., aN )) (a

Cartesian tree on the elements after ai in A). Note that the weights of elements on

a root-leaf path in C(A) are nondecreasing.

The Cartesian tree C(A) of a sequence A can be constructed in O(N) time using

an algorithm that iteratively constructs C(Ai) from C(Ai−1) as follows [92]: Let the

rightmost path P of C(Ai−1) be the path traversed by starting at the root r and

repeatedly continue to the right child until a node l without a right child is reached;

note that this is not necessarily the path from the root to the rightmost leaf of C(Ai−1).

We construct C(Ai) by first traversing P from l towards r, until two adjacent nodes

u and v such that a(u) ≥ ai > a(v) are located; if a(l) ≥ ai, u = l and v is non-

existing, and if a(r) < ai, v = r and u is non-existing. We then construct a new node

w containing an element with weight a(w) = ai, and make w the right child of u and

v the left child of w. Refer to Figure 4.5. The correctness of the algorithm follows

from the fact that the weights of the elements along P are non-decreasing and that w

is inserted as a right child without a left child; Refer to [92, 48, 30]. The linear time

bound follows from the fact that all nodes on P traversed to find u and v (except u)

are removed from P by the insertion of w (that is, they are not on the rightmost path

of C(Ai)) and therefore they are not traversed in later iterations; thus we traverse

O(N) nodes in total.

Given the sequence A stored as a list in external memory, we can implement

the above algorithm such that we compute C(A) and store it as a sorted list C of

post-order numbered nodes in external memory using O(scan(N)) I/Os; a post-order
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numbering of the nodes in C(A) is the numbering consisting of a recursive numbering

of nodes in the left subtree of the root r, followed by a recursive numbering of nodes

in the right subtree of r, followed by the numbering of r, and where each node stores

the post-order numbers of each of its children. Note that the nodes on the rightmost

path of C(A) have the highest post-order numbers.

To implement the algorithm I/O-efficiently, we maintain the following two invari-

ants for C(Ai−1): (1) Except for the nodes on the rightmost path P of C(Ai−1), all

nodes have been post-order numbered and stored in sorted order in a list C in exter-

nal memory: (2) Nodes on P are stored on a stack S in the order they appear on P

(with the leaf l on top of S), and each node stores the correct number of its left child

(stored in C, if existing).

Initially C and S are empty. To compute C(Ai) from C(Ai−1) while maintaining

the invariants, we implement the traversal of P from l towards r used to find u and

v as follows. Until u is on the top of S (or S is empty), we repeatedly pop a node

s from S and insert it after the last element t in C; we number s with the number

following the number of t and (except for l) we set its right child number equal to

the number of t. Then we set the left child number of the new node w equal to the

number of the last element v inserted in C (if existing), and push w on S. After

(a) (b) (c)

u w

u

w

v

w

v

Figure 4.5: Inserting w to obtain C(Ai) from C(Ai−1); dotted lines indicate inserted
edges. (a) a(u) ≥ a(w) > a(v) (b) a(l) ≥ a(w) (c) a(r) = a(v) < a(w).
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computing C(AN) = C(A), we pop each node s from S in turn and insert it in C,

while updating numbers and right child numbers as above.

That the above procedure maintains the first invariant can be seen as follows.

Before the procedure, the nodes on the rightmost path of C(Ai−1) stored on S have

the largest numbers in the post-order numbering of C(Ai−1), and by the first invariant

the remaining nodes of C(Ai−1) are stored in post-order number order in C. Since

nodes are popped from S and inserted in C in post-order, the nodes of C(Ai) in C

are also in post-order number order. The left and right child numbers of each node s

inserted in C are also correct, since by the second invariant the left child number was

already correct before the insertion, and the right child number is explicitly set to

the last inserted node t (or left empty in the case of the first inserted node l), which

also by the second invariant is the right child of s. That the procedure also maintains

the second invariant can be seen as follows. By the second invariant the nodes on

P are stored in order on S before the procedure. Since the nodes that are not on P

in C(Ai) are popped from S, and since the only node pushed on S is the new leaf

w on P in C(Ai), the nodes on P are also stored in order on S after the procedure;

each node stores the correct left child number, since the left child number of the only

new node w is explicitly set to v. After computing C(AN) = C(A), the first invariant

implies that all but the nodes on P have been correctly numbered and stored in C.

Since by the second invariant, the nodes on P are stored in post-order number order

on S, the list C correctly contains all nodes in C(A) in post-order number order after

popping each element from S and inserting it in C.

Overall, the algorithm perform one scan of A and one scan of C, as well as O(N)

stack operations. Since a stack can easily be implemented such that each operation

takes O(1/B) I/Os (by keeping the top B elements in an internal memory buffer

and only reading/writing to disk when the buffer is empty/full), the algorithm uses
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O(scan(N)) I/Os in total.

Lemma 6 Given a sequence A of N weights, the Cartesian tree C(A) can be com-

puted and stored on disk as a sorted list of post-order numbered nodes using O(scan(N))

I/Os.

4.3.2 Augmented Cartesian Tree

For the assigning Pfafstetter labels, we extend the Cartesian tree to an augmented

Cartesian tree Ca(A) of a sequence A = (a1, a2, . . . , aN) of N elements. We simply

augment each node v of the standard Cartesian tree with copies of the four nodes

(post-order number, drainage area, and post-order numbers of children) with the

largest weight in the subtree rooted in v. If two nodes have the same weight, the

node with the weight that appear first in A is chosen. Note that one of these largest

weight nodes is v itself.

We can easily modify our I/O-efficient Cartesian tree construction algorithm de-

scribed in Section 4.3.1 to compute an augmented Cartesian tree. During the con-

struction we simply maintain two additional invariants for C(Ai−1): (3) Each node t

in C stores copies of the four nodes with the largest weights in the subtree of C(Ai−1)

rooted in t. (4) Each node s on P stored on S store copies of the four nodes with

largest weights in the subtree of C(Ai−1) rooted in the left child of s.

When we during our algorithm pop a node s from S and insert it after the last

element t in C, we know from the invariants that s already contains copies of the four

largest weight node in its left subtree and that t contains copies of the four largest

weight nodes stored in the subtree rooted in t. Since t is the right child of s, we can

easily update s to store copies of the four largest weight nodes in its subtree, that is,

fulfill the third invariant, using only the information in s and t. When a new node w

is pushed on S, we can easily update it to contain copies of the four largest weight
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nodes in its left subtree using only the information in the last element t in C, since

t is the left child of w. Since the Cartesian tree construction algorithm described in

Section 4.3.1 already uses information in the last node t in C when pushing a node

on S or popping a node from S, the modification of the algorithm to construct an

augmented Cartesian tree can be done without performing any extra I/Os.

Lemma 7 Given a sequence A of N elements, each with a weight, the augmented

Cartesian tree Ca(A) can be computed and stored as a sorted list of post-order num-

bered nodes using O(scan(N)) I/Os.

Observation 1 The four largest weight nodes stored in the root r of an augmented

Cartesian tree Ca(A) constitute a connected subtree of Ca(A) rooted in r.

Proof. The four nodes containing the elements with largest weights trivially include

r. Assume that they do not form a connected subtree. Then one of them is a node

v, other than r, whose parent u is not one of the four nodes; therefore the weight of

u is smaller than the weight of v. This contradicts that the weights of nodes on any

root-leaf path in Ca(A) are nondecreasing.

4.3.3 Labeling a river

We are now ready to describe how to compute the Pfafstetter labels of an augmented

river Rt
l with mouth (root) s0 and source t. Recall that by the definition of Pfafstetter

labels in Section 4.2, the labels of Rt
l are obtained by first identifying the four tributary

mouth nodes v2, v4, v6 and v8 with largest drainage area, numbered in the order they

appear along Rt
l , and labeling them 2, 4, 6, 8. Then all edges incident to their parents

p2, p4, p6 and p8 are removed, that is, Rt
i is decomposed into five interbasins rooted

in s0 and the siblings s2, s4, s6 and s8 of v2, v4, v6 and v8. Finally, each interbasin is

labeled recursively, and the label of each node in the interbasin rooted in si is prefixed
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Figure 4.6: Bottom figure: An augmented river with drainage areas (as it is stored
in L); the weight of river nodes (white circles) is zero and the weight of tributary
mouth nodes (black circles) is equal to their drainage area. Top figure: Cartesian
tree C(L) with the four tributary mouth nodes v2, v4, v6 and v8 with largest drainage
areas (weight), and the five Cartesian trees C(L0),C(L2),C(L4),C(L6) and C(L8) for
the five interbasins obtained when removing edges incident to their parents p2, p4, p6

and p8 in L (removing v2, v4, v6 and v8 from C(L)).

by i + 1. In the case where Rt
l only has 1 ≤ k < 4 tributary mouth nodes, labels

2k + 2 through 9 are not assigned; when there are no tributary mouth nodes (when

k = 0) no label (other than the possible prefix) is assigned.

The augmented Cartesian tree provides us with an easy way of computing the

Pfafstetter labels of Rt
l . Consider constructing an augmented Cartesian tree Ca(L)

on the sequence L consisting of the nodes along Rt
l ordered from mouth to source,

where each tributary mouth node v is stored between its parent p and sibling s, and

where each river node has weight zero and each tributary mouth node v has weight

equal to its drainage area d(v). Refer to Figure 4.6. Note that if Rt
l has at least one

tributary mouth node, then the root r of Ca(L) corresponds to the tributary mouth

node v with largest drainage area. Splitting L at v (while removing v) corresponds

to removing the two edges incident to the parent p of v, and results in two sequences

Ll = (s0, . . . , p) and Lr = (s, . . . , t) corresponding to two interbasins rooted in s0

and the sibling s of v. The augmented Cartesian trees rooted in the children of r

are exactly Ca(Ll) and Ca(Lr). Similarly, if the weights of the four largest weight

nodes in L stored in r are all non-zero, they corresponds to the four tributary mouth
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nodes v2, v4, v6 and v8 of Rt
l with largest drainage areas. Splitting L at v2, v4, v6

and v8 (while removing these nodes) corresponds to removing the edges incident to

their parents p2, p4, p6 and p8, and results in five sequences L0 = (s0, . . . , p2), L2 =

(s2, . . . , p4), L4 = (s4, . . . , p6), L6 = (s6, . . . , p8) and L8 = (s8, . . . , t) corresponding

to the five interbasins rooted in siblings s0, s2, s4, s6 and s8. By Observation 1, the

nodes in Ca(L) corresponding to v2, v4, v6 and v8 form a connected subtree rooted

in r, and if this subtree is removed, Ca(L) is decomposed into five subtrees (since

it is binary) that are augmented Cartesian trees Ca(L0),Ca(L2),Ca(L4),Ca(L6) and

Ca(L8) for the five interbasins. Thus the Pfafstetter labels of Rt
l can be obtained

by labeling v2, v2, v4 and v6 with 2, 4, 6 and 8, respectively, and recursively labeling

Ca(L0),Ca(L2),Ca(L4),Ca(L6) and Ca(L8) while prefixing all labels in Ca(Li) with

i + 1. In the case where only 1 ≤ k < 4 of the weights of the largest weight nodes in

L stored in r are non-zero, that is, if Rt
l only has k tributary mouth nodes v2, . . . , v2k,

removal of the subtree corresponding to v2, . . . , v2k decomposes Ca(L) into k + 1

augmented Cartesian trees Ca(L0), . . . ,Ca(L2k) that can be labeled recursively (that

is, labels 2k+2 through 9 are not assigned). Finally, if the weights of all nodes stored

in r are zero, Rt
l does not have any tributary mouth nodes and no labels (other than

the possible prefix) should be assigned to Ca(L).

Based on the above observations, we can design an I/O-efficient algorithm for

Pfafstetter labeling an augmented river Rt
l . We assume that Rt

l is given as a list Ll of

N nodes along Rt
l ordered from mouth to source, where each node also store a copy

of its (possible) tributary mouth child; each node/child has a unique number and

contains a drainage area value. In a single scan of Ll we first produce the sequence L

consisting of the nodes along Rt
l ordered from mouth to source, where each tributary

mouth node v is stored between its parent p and sibling s, and where each river node

has weight zero and each tributary mouth node v has weight equal to its drainage
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area d(v). Then we construct an augmented Cartesian tree Ca(L) on L, stored as a

sorted list C of post-order numbered nodes.

Next we label each node in C (storing all labels in a list Cp) using a recursive

traversal of Ca(L) as outlined above, where we always recursively visit the right

subtree of a node v before recursively visiting the left subtree of v, and where we

explicitly implement the recursion stack S. The stack S can contain two types of

elements, namely label and recursion elements, both consisting of (the number of) a

node v of Ca(L) and a Pfafstetter label (prefix) P . Initially, S contains a recursion

element for the root r of Ca(L) (that is, an element with number N) and an empty

label. We repeatedly pop an element from S and access the corresponding node v in

C. If the element is a label element, we simply label v with P and insert it at the end

of Cp. If it is a recursion element, we want to label the subtree of Ca(L) rooted in v,

while prefixing all labels with P . To do so, we consider the four largest weight nodes

v2, v4, v6 and v8 stored with v in C. Assume first that their weights are all non-zero.

In this case we label v2, v4, v6 and v8 by pushing a label element for each vi on S with

the label P followed by i; we also recursively label Ca(L0),Ca(L2),Ca(L4),Ca(L6)

and Ca(L8) by pushing a recursion element for each of their roots (obtained from

v2, v4, v6 and v8) with labels P followed by 1, 3, 5, 7 and 9, respectively, on S. We

push the elements in the order they appear in a post-order traversal of the subtree

rooted in v, where left subtrees are visited before right subtrees; note that this means

that they appear in reverse post-order traversal order on S. In the case where only

1 ≤ k < 4 of the largest weight nodes stored with v in C are non-zero, we only

push label elements corresponding to these nodes v2, . . . , v2k and recursion elements

corresponding to Ca(L0), . . . ,Ca(L2k). Finally, if the weights of all the largest weight

nodes stored with v in C are zero, we simply label v with P and insert it at the end of

Cp, and push two recursion elements with label P on S; first an elements for the left
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child of v and then an elements for the right child of v (note that this will eventually

label the whole subtree rooted in v with P ).

That the above algorithm correctly computes the Pfafstetter label of Rt
l follows

from the above discussion. The sequence L is constructed from Ll in a single scan

using O(scan(N)) I/Os, and C is also constructed in O(scan(N)) I/Os (Lemma 7).

Since we visit the nodes in Ca(L) in reverse post-order, the N accesses to C correspond

to a backwards scan of C, and are therefore performed in O(scan(N)) I/Os. If T

is the total size of the computed Pfafstetter labels, the labels are written to Cp in

O(scan(T )) I/Os, and the O(N) stack operations can also be performed in O(scan(T ))

I/Os (since the combined size of the labels pushed on S is O(T )). Thus Rt
l is labeled

in O(scan(T )) I/Os in total.

After computing the labels of the nodes in C (stored in Cp), we can easily label the

corresponding nodes in Ll in a single sorting step. However, by essentially reversing

the way C was produced from L, we can also easily do so in O(scan(T )) I/Os.

Lemma 8 Given an augmented river Rt
l as a ordered list Ll of N numbered nodes

along Rt
l , where each node also store its (possible) tributary mouth child and each

node/child contains a drainage area value, the Pfafstetter labels of Rt
l can be com-

puted and stored with the nodes in Ll in O(scan(T )) I/Os, where T is the total size

of the labels of all nodes in Rt
l .

Remarks. (i) Our algorithm can easily be modified to handle augmented rivers

where each river node can have more than one tributary mouth child (non-binary

flow trees) in the same I/O-bound. (ii) If each Pfafstetter label consists of a con-

stant number of digits (elements), e.g. if we truncate them, our algorithm only uses

O(scan(N)) I/Os. (iii) Our algorithm runs in O(T ) time.

96



4.4 Labeling flow tree

In this section, we describe simple and I/O-efficient algorithms for computing the

tributary tree Tt from a binary flow tree T, and for computing the Pfafstetter labels

of T given labels for the individual augmented rivers in the nodes of Tt.

4.4.1 Computing tributary tree

Recall that the root r of the tributary tree Tt for the flow tree T contains the aug-

mented river Rt
r obtained by starting at the root ρ of T and in each node continue to

the child with the largest drainage area, while also including the (possible) tributary

mouth child of each node. The root r has a child for each tributary mouth node in

Rt
r, which contain recursively defined tributary trees for each of the tributary basins

obtained if the river nodes of Rt
r are removed from T. In other words, Tt defines a

decomposition of T.

We assume that T is given as an (unordered) list of nodes numbered from 1 to

N , where each node v contains a drainage area value d(v) and the numbers of its

(at most two) children. Since each node in Tt contains a potentially long augmented

river, we want to compute a somewhat different pre-order list representation of Tt:

The augmented river Rt
l in a node l of Tt is represented as a list Ll of each river

node along Rt
l ordered from mouth to source, where each node also stores a copy

of its (possible) tributary mouth child. The lists Ll for all nodes l in Tt are stored

consecutively in one list Lt in the order corresponding to a pre-order traversal of Tt,

where the children of node l are visited in the order that the corresponding river

mouths appear along the augmented river Rt
l from mouth to source.

As discussed in Section 4.2, the definition of Tt suggests a natural algorithm for

computing Tt from T based on a DFS-traversal of T, where in each step the child with

97



largest drainage area is chosen. Our algorithm for computing Tt in O(sort(N)) I/Os

and O(N) time is based on this idea, where we also utilize an important property

of the flow tree T, namely that the drainage area of nodes on any root-leaf path in

T is strictly increasing (since the drainage area d(v) of a node v in T is equal to

the size of the subtree rooted in v). We do not actually perform a DFS-traversal

of T, constructing one augmented river at a time, but traverse the nodes of T in

drainage area order, while at any given time being in the process of constructing

several augmented rivers in parallel. We can do so since a visit in drainage area order

ensures that when visiting a node w in T, its parent v has already been visited; thus

we have already determined if w is the mouth of a new augmented river or the next

node on the augmented river through v.

To perform the traversal we first create a list L of the nodes in T sorted primarily

by decreasing drainage area and secondarily by node number. With each node in L

we also store a copy of the weights of each of its (at most two) children in T. Note

that the root ρ of T will be the first node in L. Next we assign all nodes in each

augmented river Rt
l in Tt a unique river id number between 1 and the drainage area

d(ρ) of ρ. Note that we have enough river id’s since the number of augmented rivers

in Tt obviously is smaller than d(ρ) = N ; in general, if the river id of an augmented

river Rt
l of node l of Tt is i, then the augmented rivers in the subtree rooted in

l have river id’s between i and i − 1 plus the drainage area of the mouth of Rt
l .

Conceptually, we want to assign river id’s by initially assigning ρ river id r(ρ) = 1,

and then scan through L and when processing a node v assign river id’s to v’s children

based on the river id r(v) of v. However, a straightforward implementation of this

idea where we directly access v’s children in L to assign them river id’s would lead

to scattered accesses and thus an Ω(N) I/O-algorithm. Instead, we implement the

idea by maintaining an I/O-efficient priority queue P with the river id’s of nodes
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that have not yet been processed but has been assigned a river id because their

parents were processed. The priority of a node w in P is equal to w’s position in

L, that is, primarily its drainage area d(w) and secondarily its node number; with

w in P we also store the river id to be assigned to the next tributary mouth along

the augmented river containing w. Initially, P contains ρ with r(ρ) = 1 and and

next river id n(ρ) = 2. This way we know that when processing a node v in the

scan through L, the maximal priority element in P is v. Therefore, to process v

we simply first extract the maximal element from P to obtain the river id r(v) of

v and augment v in L with r(v). Unless v is a leaf, we then assign river id’s to

the children of v as follows: If v has one child w, it must be the next node on the

augmented river containing v. Therefore we insert an element in P for w with river

id r(w) = r(v) and next river id n(w) = n(v); the priority of w (drainage area d(w)

and node number of w) is obtained from the child information stored with v in L. If v

has two children, the child w with the largest drainage area d(w) is by definition the

next node on the augmented river containing v, and the other child u is the mouth

of another augmented river in one of the tributary basins of the river containing v.

To start numbering the augmented river with mouth u, we insert an element for u in

P with river id r(u) = n(v) and next id n(u) = n(v) + 1. We also insert an element

in P for w with river id r(w) = r(v) and next river id n(w) = n(v) + d(u). For both

new elements in P , the priority (drainage area and node number) is obtained from

the child information stored with v in L. After this, we continue with the next node

in L.

After having processed all nodes in L, all nodes in each augmented river have the

same river id, since a node on a augmented river is always assigned the same river id

as its parent river-node (if existing). To prove that all augmented rivers have unique

river id’s, we show that our algorithm assign id’s such that for each node v (except the
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source) on augmented river Rt
l , the augmented rivers in tributary basins from v and

upstream on Rt
l have unique river id’s in the range from n(v) to n(v) + d(v)− 2; this

obviously means that all rivers have unique river id’s in the range from r(ρ) = 1 to

n(ρ)+d(ρ)−2 = 2+N−2 = N . We do so by induction on drainage area values. The

statement obviously holds for the base case of a node v with d(v) = 2, since the single

child of v is assigned river id r(v) (as v). Consider then a node v on Rt
l and assume

that our algorithm correctly assigns river id’s to nodes with drainage area less than

d(v). If v has one child w, it is assigned river id r(w) = r(v) and n(w) = n(v), and by

induction tributary basins from w and upstream along Rt
l are assigned unique river

id’s in the range between n(w) = n(v) and n(w) + d(w) − 2 = n(v) + d(v) − 3; thus

augmented rivers in tributary basins upstream from v also have river id’s in the range

between n(v) and n(v)+d(v)−3 < n(v)+d(v)−2 as required. If v has two children,

we by induction assign the augmented rivers in the tributary basin with mouth in

the lowest drainage area child u unique river id’s in the range between r(u) = n(v)

and n(u) + d(u) − 2 = n(v) + d(u) − 1 (by inserting u in P with r(u) = n(v) and

n(u) = n(v) + 1); by induction, we assign the augmented rivers in tributary basins

from the other child w and upstream along Rt
l unique river id’s in the range between

n(w) = n(v) + d(u) and n(w) + d(w) − 2 = n(v) + d(u) + d(w) − 2 (by inserting

w in P with n(w) = n(v) + d(u)). In total, augmented rivers in tributary basins

from v and upstream in Tt
l have unique river id’s in the range between n(v) and

n(v) + d(u) + d(w) − 2 = n(v) + d(v) − 3 < n(v) + d(v) − 2 as required, since

d(v) = 1 + d(u) + d(w).

After assigning unique river id’s to augmented rivers, the list Ll for a node l in Tt

(consisting of an ordered list of river node along Rt
l , where each node also store a copy

of its (possible) tributary mouth child), simply consists of the nodes in L with the

corresponding augmented river id sorted by drainage area (where we for each node v
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have removed the copy of the river child of v). Furthermore, since we assign river

id’s such that the id of a river Rt
l is lower than the id’s of all rivers corresponding

to nodes in the subtree of Tt rooted at l, and such that the id’s of all rivers in a

tributary basin of l whose mouth is closer to the mouth of Rt
l (further downstream)

are smaller than the id’s of all rivers in a tributary basin of l whose mouth is further

away (upstream) from the mouth of Rt
l , the lists Ll can be ordered according to

the required pre-order traversal of Tt simply by sorting them by river id. Thus we

can produce list Lt consisting of the lists Ll for all nodes l in Tt corresponding to a

pre-order traversal of Tt, simply by sorting L by river id and secondarily by drainage

area.

All that remain is to analyze how many I/Os the above algorithm use. The list L

can easily be constructed in O(sort(N)) I/Os using a constant number of O(sort(N))

sorting and O(scan(N)) scanning steps on the input list I of nodes in T: We simply

first make a copy L of I and sort it by the number of the first child of each node. Then

we sort I, and scan L and I simultaneously to add a copy if the first child of each

node v in L (if existing) to v. Then we add a copy of second children (if existing) in a

similar way using a sort and a scan step. Finally, we sort L primarily by drainage area

and secondarily by node numbers. In the assignment of river labels we scan L and

perform O(N) priority queue operations. Using an I/O-efficient priority queue, all

the priority queue operations can be performed in O(sort(N)) I/Os [10, 31]. Finally,

we use O(sort(N)) I/Os to sort L to obtain Tt.

Lemma 9 Given flow tree T as an unordered list of nodes (with drainage area and

child numbers), a pre-order list representation of the tributary tree Tt for T can

constructed in O(sort(N)) I/Os.
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4.4.2 Labeling flow tree using tributary tree labels

Next we describe how to compute the Pfafstetter labels of a flow tree T, represented

as an (unordered) list of labeled nodes, given Pfafstetter labels of the individual

augmented rivers in the tributary tree Tt of T. As above, let the augmented river Rt
l

in a node l of Tt be represented as a list Ll of each river node along Rt
l ordered from

mouth to source, where each node also stores a copy of its (possible) tributary mouth

child (tributary mouths). Assume that Rt
l has been labeled, that is, that each node

in Ll, as well as its (possible) tributary mouth child, has been assigned a Pfafstetter

label. Assume that we are given the lists Ll for all nodes l in Tt stored consecutively

in one list Lt in the order corresponding to a pre-order traversal of Tt, where the

children of node l are visited in the order the corresponding tributary mouths appear

along the augmented river Rt
l from mouth to source.

As discussed in Section 4.2, we can obtain the Pfafstetter labels of all nodes in the

flow tree T from a labeling of the augmented rivers in the tributary tree Tt, simply by

keeping the labels of the river-nodes on the augmented river Rt
r (the main river) in the

root r of Tt, and recursively labeling the nodes in each subtree of r, while prefixing

the labels in the subtree rooted in child or r with the label of the corresponding

tributary mouth. Since we are given Tt in pre-order list representation in Lt, we can

easily implement this procedure I/O-efficiently using a stack S of Pfafstetter label

prefixes. Initially, S contains an empty prefix. We scan through Lt, labeling the

river-nodes in each augmented river Rt
l when scanning Ll. To process Ll, we first

pop a prefix from S; then we scan through Ll and add this prefix to the Pfafstetter

labels of all nodes (river-nodes as well as copies of tributary mouth children). During

the scan we also push the Pfafstetter label of each tributary mouth child (that is,

tributary mouth stored with river-nodes in Ll) on an auxiliary stack S ′ as they are

meet in Ll. Finally, we pop each element from S ′ in turn and push it on S; note that
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this means that the tributary mouth labels are pushed on S in the reverse order the

tributaries appear on Rt
l , from source to mouth. This means the tributary mouth

label of the tributary closest to the mouth of l is on the top of S. After finishing

the scan of Lt, all river-nodes have been labeled, and in another scan of Lt we can

produce a list of labeled nodes in T (without all the extra information stored with

each node in Lt).

To prove the correctness of the above algorithm, we show that it maintains the

following invariant: Just before processing Ll, that is, node l in Tt, the correct prefix

to be added to all Pfafstetter labels in the subtree rooted in l is on top of S, and

except for this prefix S is maintained during the labeling of the subtree. The invariant

obviously is true before labeling of the root r of Tt, that is, scan of Lr. Consider the

processing of node l. To label Ll the algorithm pops a prefix from S and adds it to all

labels in Ll; it also pushes the labels of the tributary mouths on S in the order they

appear on Rt
l from mouth to source. By the invariant, this means that all river-nodes

in Rt
l are now labeled correctly. It also means that the prefixes that need to be added

to the labels of each of the subtrees rooted in the children of l are stored on top

of S in the order the corresponding tributary mouths appear on Rt
l from mouth to

source. This is exactly the order the children are visited in the pre-order traversal of

Tt. Thus in particular the top prefix on S is the correct prefix for the next node m

to be visited as required by the invariant. The invariant also implies that except for

this top prefix, S is intact after processing m and its ancestors. Thus at that time

the correct prefix for the next child of l is on the top of S as required. This process

continues until all the children of l have been processed. After that we have correctly

labeled the subtree rooted in l, and except for the top prefix, the stack S contains

the same prefixes as before we started labeling l as required.

If the total size of the Pfafstetter labels of all nodes in T is T , the two scans

103



of Lt takes O(scan(T )) I/Os. Apart from the scans of Lt, we push and pop the

Pfafstetter label of each of the tributary mouths of the O(N) augmented rivers in

Tt a constant number of times on S. Since a stack can easily be implemented such

that each operation takes O(1/B) I/Os, we use O(scan(T )) I/Os in total on the stack

operations. Thus the algorithm use O(scan(T )) I/Os in total.

Lemma 10 Given a pre-order list representation of the tributary tree Tt for a flow

tree T, where each river has been assigned a Pfafstetter label individually, the Pfaf-

stetter labels of T, represented as an (unordered) list of nodes, can be constructed in

O(scan(T )) I/Os. Here T is the total size of the labels of all nodes in T.

Altogether we have now shown how to compute Pfafstetter labels of a flow tree

T: We first compute a pre-order list representation of the tributary tree Tt for T in

O(sort(N)) I/Os (Lemma 9). Then we compute the labels for each of the augmented

rivers Rt
l in Tt. The number of I/Os needed to compute the labels for an augmented

river Rt
l is O(Tl/B)), where Tl is the total size of the labels of Rt

l (Lemma 8). Note

that if Tl < B, the computation can be performed without any I/Os other than the

ones needed to load Ll into main memory. Thus in total the labels for all augmented

rivers are computed in O(scan(N)) + O(scan(T )) = O(scan(T )) I/Os. Finally, we

compute the labels of T from the labeling of the individual augmented rivers in Tt

using O(scan(T )) I/Os (Lemma 10).

Theorem 1 The Pfafstetter labels of a flow tree T can be constructed in O(sort(N)+

scan(T )) I/Os, where T is the total size of the labels of all nodes in T.

Remarks. (i) Our algorithm can easily be modified to handle non-binary flow trees in

the same I/O-bound. (ii) Our algorithm can also easily be modified to handle forests

rather than trees in the same I/O-bound. (iii) If each Pfafstetter label consists of a
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constant number of digits (elements), e.g. if we truncate them, our algorithm only

uses O(sort(N)) I/Os. (iiii) If T, Tt and all labels fit in memory, we can easily design

a Pfafstetter labeling algorithm that uses O(T ) time, since the sorting and priority

queue steps can then easily be avoided.

4.5 Implementation and experimental results

In this section, we present the results of an experimental study of our Pfafstetter la-

beling algorithm. We first in Section 4.5.1 discuss how we implemented our algorithm

to be able to handle general grid DEMs (as opposed to the simplified case considered

in the previous sections). In Section 4.5.2 and Section 4.5.3 we then discuss the data

used and experimental results, respectively.

4.5.1 Implementation

In Section 4.2 we discussed how we can obtain a flow tree T from a grid DEM that

(other than the boundary cells) does not contain any cells without a lower neighbor,

simply by assigning each cell a flow direction to the lowest of its lower neighbors and

from each boundary cell without a lower neighbor to a special cell ρ (the outside

sink). Given the grid DEM with N cells in row (or column) major order, we can

easily in O(scan(N)) I/Os construct a representation of T consisting of an unordered

list of numbered nodes, where each node contains the numbers of its children, simply

by scanning through the grid three rows at a time, while for each cell looking at cells

in a 3 × 3 neighborhood.

In the common case where the initial grid DEM does contain cells other than

boundary cells without lower neighbors, often parts of sinks due to noise or plateaus

of flat cells, the above procedure leads to a forest of trees, since each cell without a

lower neighbor becomes the root of a separate flow tree. Simply computing Pfafstetter
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labels for such a forest does not lead to very realistic watersheds, because treating

each flat cell as a sink does not model global water flow very well. We can remove

noise and route flow on flat cells using the methods and algorithms described in

Chapter 3. In particular we can use TerraFlow [14] to remove noise and produce

drainage area and flow direction grids from noisy input DEMs. After that we can

compute Pfafstetter labels in O(sort(T )) I/Os using our algorithm described in the

previous sections, modified to work on a flow forest rather than a flow tree and to

handle flow trees that are not binary.

To obtain the most realistic watershed hierarchy (Pfafstetter labels), we imple-

mented our algorithm to work on hydrologically conditioned grid DEM models, where

all cells, including flat cells on plateaus, have already been assigned a flow direction,

as well as had their drainage area computed. Our implementation takes two input

grids corresponding to a flooded DEM, namely the corresponding flow directions and

the corresponding drainage areas. From these inputs, we obtain the unordered list

representation of T used in our Pfafstetter algorithm by a simple simultaneous scan

of the two grids using O(scan(N)) I/Os; in the same scan we also augment each

node with the grid position of the corresponding cell. After that our implementa-

tion follows the algorithm described in the previous sections (modified to handle a

non-binary flow tree), and after computing Pfafstetter labels of all nodes, we sort

the nodes by grid position using O(sort(T )) I/Os to obtain an output Pfafstetter

label grid. (Optionally, we allow the user to truncate labels to a maximum length, so

that each label fits in O(1) log N -bit words and the sorting of labels can be done in

O(sort(N)) I/Os). We implemented our algorithm in C++ using tpie [11], a library

that provides support for implementing I/O-efficient algorithms and data structures.

The implementation work was greatly simplified by the fact that all main primi-

tives of our algorithm—scanning, sorting, stacks and priority queues—are already
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implemented I/O-efficiently in tpie.

4.5.2 Datasets

To investigate the practical performance of our algorithms, as well as the realism of

the computed watersheds, we conducted a set of experiments with five grid DEMs

of varying size. The largest DEM covered the Neuse river basin in North Carolina

at a resolution of 20 feet. It contained 396.5 million cells (such that the flow direc-

tions and drainage areas occupied 5.8Gbytes), and is publicly available from ncflood-

maps.com. The other four DEMs covered sub-basins of the upper Tennessee river

basin at a resolution of one arc second (approximately 100 feet) and contained 2.7,

21.7, 30.8 and 147 million cells, respectively; these datasets are from the National El-

evation Dataset (NED) from the United States Geological Survey, publicly available

at seamless.usgs.gov.

4.5.3 Experimental results

For each of the five input DEMs we used Terraflow to compute hydrologically

conditioned DEMs which removes local minima from the terrain using flooding. With

Terraflow, we also compute flow directions and drainage area, and then we used

our implementation to compute Pfafstetter labels, truncated to nine digits. The

experiments were run on a Dell Precision Server 370 (Pentium 4 3.40 GHz processor)

with hyperthreading enabled and running Linux 2.6.11. The machine had 1 GB of

physical memory, but we made sure that our implementation never used more than

256 MB by setting a kernel flag to limit memory to 256 MB and instructing tpie to

abort if more memory than this limit was allocated. All data was stored on a single

400 GB SATA disk drive.

Table 4.1 shows the time used to label each of the five input DEMs, not counting
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Dataset Ten 1 Ten 2 Ten 3 Ten 4 Neuse

Input size (MB) 17 116 150 713 5,819
Size (mln cells) 2.7 21.7 30.8 147.0 396.5
Running time 0m30 6m51 10m29 58m10 187m43

Table 4.1: Size and Pfafstetter labeling time for the five DEMs.

the time used by Terraflow. In all cases, the time taken by Terraflow was more

than five times the time taken by the Pfafstetter labeling routine. Table 4.2 shows

how much time is spent in the various phases of the algorithm, as a percentage of

total time. Decomposing T into a set of augmented rivers is the most time consuming

phase of the algorithm. This is not unexpected, since this phase uses a priority queue

and performs O(sort(N)) I/Os. The other sorting phases (also using O(sort(N))

I/Os) consume significant portions of the overall time as well. Interestingly, labeling

T and Tt (using the augmented Cartesian tree) is a small fraction of the total time

(this is somewhat expected, since O(scan(N)) < O(sort(N))). It is also interesting

to note that reading and importing the initial grids (constructing T) and exporting

the final results is not an insignificant portion of the total time. Overall, we conclude

that our algorithm is practically, as well as theoretically, efficient.

To investigate how Pfafstetter label watersheds computed using our algorithm

align with the published digital USGS 8-digit HUCs, we compared the two for a

Dataset Ten 1 Ten 2 Ten 3 Ten 4 Neuse

Constructing T 16% 9% 8% 7% 16%
Sorting nodes in T 12% 16% 16% 15% 13%
Decomp. T into aug. rivers 43% 30% 31% 34% 30%
Sorting to obtain Tt 9% 19% 19% 20% 19%
Labeling Tt and T 5% 8% 7% 6% 6%
Sorting labeled cells 8% 13% 14% 13% 12%
Exporting data 6% 4% 5% 4% 5%

Table 4.2: Breakdown of labeling time for each of the five DEMs.
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portion of the French Broad–Holston river basin (Ten 3 in the Tables and USGS HUC

060101). USGS 8-digit HUCs are freely available online as part of the USGS National

Elevation Data (NED) set. Both the USGS boundaries and the Pfafstetter boundaries

were derived from 30 meter NED grids, the the exact method of producing the USGS

boundaries is not known. As can be seen on Figure 4.7, the watershed boundaries

agree well. The Pfafstetter method always divides the basin into nine sub-basins,

whereas the USGS HUC only has four sub-basins in the area. Pfafstetter basins are

defined by the location and size of the four largest tributaries, and these basins can

vary widely in size. Note in Figure 4.7 that interbasin 5 is rather small because basins

4 and 6 are close to eachother along the main river. In situations where this variation

in size is undesirable, Pfafstetter basins can easily be combined to form basins that

are of approximately the same extent as the USGS basins (e.g., Pfafstetter basins

7,8, and 9 can be combined to approximate USGS sub-basin 05). This is easy in the

Pfafstetter case, because the labels encode the topology and basins can be merged

and split in an intellegent and automatic way to construct basins of similar size. It

would be much more difficult to split or combine USGS HUCs automatically as there

are no fixed rules regarding the numbering of USGS HUCs. A close inspection of

the overlay of the two watershed decompositions show minor discrepancies between

Pfafstetter and USGS HUC watersheds, but our Pfafstetter labels are consistent with

the underlying elevation, flow direction and flow accumulation data. This consistency

across multiple data layers is desirable in many GIS applications and avoids the need

to rely on multiple heterogeneous data sets.

4.6 Conclusion

In this chapter we presented an I/O-efficient algorithm for computing the Pfafstetter

label of each cell of a grid terrain model. We also presented the results of a pre-
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liminary experimental study that showed that our algorithm is practically as well

as theoretically efficient. This algorithm can be used for automated computation of

watershed hierarchies and has the added advantage that the Pfafstetter labels encode

upstream and downstream relationships of hydrological units. For example, one can

tell that basin 92 is upstream of interbasin 35 because basin 9 is upstream of inter-

basin 3 by definition, 92 is a sub basin of basin 9, and 35 is an interbasin inside basin

3 that is along the main river of basin 3 into which basin 9 flows. Similar logic can

be applied to no water from basin 93 flows into basin 36. The automated method,

topological encoding, and scalability to large data sets are three major advantages of

our approach over existing watershed decomposition methods.
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(a) Pfafstetter

(b) USGS

(c) Overlay

Figure 4.7: Comparison of Pfafstetter label watersheds to USGS HUCs in the French
Broad–Holston river basin (HUC 060101). Common boundaries are generally in good
agreement.
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Chapter 5

Planar Point Location

5.1 Problem Definition

The planar point location problem is the problem of storing a planar subdivision

defined by N line segments such that the region containing a query point p can

be computed efficiently. Planar point location has many applications in, e.g., Ge-

ographic Information Systems (GIS), spatial databases, and graphics. In many of

these applications, the datasets are larger than the size of physical memory and must

reside on disk. Therefore, we are interested in planar point location structures that

minimize the number of I/Os needed to answer a query.

While several theoretically I/O-efficient planar point location structures have been

developed, e.g., [51, 1, 25], they are all relatively complicated and consequently

none of them have been implemented. Based on a bucket approach, Vahrenhold and

Hinrichs developed a simple and practically efficient, but theoretically non-optimal,

heuristic structure [86]. In this chapter, we show that a point location structure based

on a persistent B-tree is efficient both in theory and practice; the structure obtains

the theoretical optimal bounds and our experimental investigation shows that, for

a wide range of real-world GIS data, it uses a similar number of I/Os to answer a

query as the structure of Vahrenhold and Hinrichs. For a synthetically generated

worst-case dataset the structure uses significantly less I/Os to answer a query.
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5.1.1 Previous Results

In the RAM model, several linear space planar point location structures that can

answer a query in optimal O(log2 N) time have been developed, e.g., [43, 76, 60].

One of these structures, due to Sarnak and Tarjan [76], is based on a persistent

search tree. A persistent data structure maintains a history of all updates performed

on it, such that queries can be answered on any of the previous versions of the

structure, while updates can be performed on the most recent version thus creating

a new version.1 See the recent survey by Snoeyink [79] for a full list of RAM model

results.

In the I/O model, Goodrich et al. [51] developed an optimal static point location

structure using linear space and answering a query in O(logB N) I/Os. Agarwal et

al. [1] and Arge and Vahrenhold [25] developed dynamic structures. Several structures

for answering a batch of queries have also been developed [51, 26, 36, 86]. Refer to [9]

for a survey.

While these structures are all theoretically I/O-efficient, they are all relatively

complicated and consequently none of them have been implemented. Based on an

internal memory bucket approach [41], Vahrenhold and Hinrichs therefore developed

a simple but non-optimal heuristic structure, which performs well in practice [86].

The main idea in this structure is to impose a grid on the segments that defines a

subdivision and store each segment in a “bucket” corresponding to each grid cell it

intersects. The grid is constructed such that for certain kinds of “nice data”, each

segment is stored in O(1) buckets such that the structure requires linear space, and

each bucket contains O(B) segments such that a query can be answered in O(1) I/Os.

In the worst case however, each segment may be stored in Θ(
√

N/B) buckets and

1The type of persistence we describe here is often called partial persistence as opposed to full
persistence where updates can be performed on any previous version.
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consequently the structure may use Θ(N
B

√

N/B) space. In this and some other cases,

there may be a buckets containing O(N) segments such that a query takes O(N/B)

I/Os.

Most of the structures in the above results actually solve a slightly generalized

version of the planar point location problem, namely the vertical ray-shooting prob-

lem: Given a set of N non-intersecting segments in the plane, the problem is to

construct a data structure such that the segment directly above a query point p can

be found efficiently. This is also the problem we consider in this chapter.

Using a general technique by Driscoll et al. [40], persistent versions of the B-tree

have also been developed [29, 88]. A persistent B-tree uses O(N/B) space, where N is

the number of updates performed, and updates and range queries can be performed in

O(logB N) and O(logB N + T/B) I/Os, respectively [29, 88]; note that the structure

requires that all elements stored in it during its entire lifespan are comparable, that

is, that the elements are totally ordered. In Sarnak and Targan’s application of

persistence, not all elements (segments) stored in the structure over its lifespan are

comparable; thus a similar I/O-efficient structure cannot directly be obtained using

a persistent B-tree.

5.1.2 Our Results

Our main result [17] is an external data structure for vertical ray-shooting (and thus

planar point location) that is I/O-efficient both in theory and practice. The structure,

described in Section 5.2, uses linear space and answers a query in optimal O(logB N)

I/Os. It is based on the persistent search tree idea of Sarnak and Tarjan [76]. As a

theoretical contribution of independent interest, we show how to modify the known

persistent B-tree such that only elements present in the same version of the structure

need to be comparable, that is, so no total order is needed. In Section 5.3, we then
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present an extensive experimental evaluation of our structure’s practical performance

compared to the heuristic grid structure of Vahrenhold and Hinrichs using both real-

world and artificial (worst-case) datasets. In their original experimental evaluation,

Vahrenhold and Hinrichs [86] used hydrology and road feature data extracted from

the U.S. Geological Survey Digital Line Graph dataset [85]. On similar “nicely”

distributed sets of relatively short segments, our structure answers queries in a similar

number of I/Os as the grid structure but requires about twice as much space. On

less “nice” data, our structure performs significantly better than the grid structure;

we present one example where our structure answers queries using 90% fewer I/Os

and requires 94% less space.

5.2 Ray-shooting using persistent B-trees

l

p

Figure 5.1: Vertical ray-shooting using sweep and persistent search tree.

Our structure for answering vertical ray-shooting queries among a set of non-

intersecting segments in the plane is based on the persistent search tree idea of

Sarnak and Tarjan [76]. This idea utilizes the fact that any vertical line l in the

plane naturally introduces an “above-below” order on the segments it intersects.

This means that if we conceptually sweep the plane from left to right (−∞ to ∞)
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with a vertical line, inserting a segment in a persistent search tree when its left

endpoint is encountered and deleting it when its right endpoint is encountered, we

can answer a ray-shooting query p = (x, y) by searching for the segment directly

above y in the version of the search tree we had when l was at x. Refer to Figure 5.1.

Note that two segments that cannot be intersected with the same vertical line are

not “above-below” comparable. This means that not all elements (segments) stored

in the persistent structure over its lifespan are comparable and thus an I/O-efficient

structure cannot directly be obtained using a persistent B-tree. To make the structure

I/O-efficient, we need a persistent B-tree that only requires elements present in the

same version of the structure to be comparable. In Section 5.2.1, we first describe the

persistent B-tree of [29, 88] and then in Section 5.2.2 we describe the modifications

needed to use the tree in a vertical ray-shooting structure.

5.2.1 Persistent B-tree

A B-tree, or more generally an (a, b)-tree [56], is a balanced search tree with all leaves

on the same level, and with all internal nodes except possibly the root having Θ(B)

children (typically between B/2 and B). Normally, elements are stored in the leaves

and the internal nodes contain “routing elements” used to guide searches (sometimes

called a B+-tree). Since a node or leaf contains Θ(B) elements it can be stored

in O(1) blocks, which in turn means that the tree uses linear space (O(N/B) disk

blocks). Since the tree has height O(logB N), a range search can be performed in

O(logB N +T/B) I/Os. Insertions and deletions can be performed in O(logB N) I/Os

using split, merge, and share operations on the nodes on a root-leaf path [56, 28, 35].

A persistent (or multiversion) B-tree as described in [29, 88] is a directed acyclic

graph (DAG) with elements in the sinks (leaves) and “routing elements” in internal

nodes. Each element is augmented with an insert and a delete version (or time),
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defining the existence interval of the element. An element is alive at time t (version

t) if t is in the element’s existence interval and dead otherwise. Similarly, an existence

interval is associated with each node, and it is required that the nodes and elements

alive at any time t (version t) form a B-tree with fanout between αB and B for some

constant 0 < α < 1/2. Given the appropriate root (in-degree 0 node), we can thus

perform a range search in any version of the structure in O(logB N + T/B) I/Os. To

be able to find the appropriate root at time t in O(logB N) I/Os, the roots are stored

in a standard B-tree, called the root B-tree.

An update in the current version of a persistent B-tree (and thus the creation

of a new version) may require structural changes and creation of new nodes. To

control these changes and obtain linear space use, an additional invariant is imposed

on the structure; whenever a new node is created, it must contain between (α + γ)B

and (1 − γ)B alive elements (and no dead elements). For reasons that will become

clear shortly, we require that γ > 2/B, α − γ ≥ 1/B, and 2α + 3γ ≤ 1 − 3/B.

Note that the second constraint implies that α > γ, and that the last implies that

⌈B/2⌉ < (1 − γ)B, ⌊1
2
(1 − γ)B⌋ > (α + γ)B, and ⌈1

2
((α + γ)B + B)⌉ < (1 − γ)B.

To insert a new element x in the current version of a persistent B-tree we first

perform a search for the relevant leaf l using O(logB N) I/Os. Then we insert x in

l. If l now contains more than B elements, we have a block overflow. In this case

we perform a version-split ; we copy all, say k, alive elements from l and mark l as

deleted, i.e, we update its existence interval to end at the current time. Depending

on the number, k, of alive elements, we create one or two new leaves and recursively

update the parent of l. If (α + γ)B ≤ k ≤ (1− γ)B, we create one new leaf with the

k elements and recursively update parent(l) by persistently deleting the reference to

l and inserting a reference to the new node. If on the other hand k < (α + γ)B or

k > (1 − γ)B, we have a strong underflow or strong overflow, respectively, violating
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our additional invariant. The strong overflow case is handled using a split ; we simply

create two new nodes with approximately half of the k elements each, and update

parent(l) recursively in the appropriate way. The two new nodes both contains at

most ⌈B
2
⌉ < (1 − γ)B elements and at least ⌊1

2
(1 − γ)B⌋ > (α + γ)B elements.

Like a strong overflow is handled with a split similar to a normal B-tree, the strong

underflow case is handled with operations similar to merge and share rebalancing

operations on normal B-trees; we perform a version-split on a sibling l′ of l to obtain

k′ (αB ≤ k′ ≤ B) other alive elements. Since k + k′ ≥ 2αB and α > γ we have

more than (α + γ)B elements. If k + k′ ≤ (1 − γ)B, we simply create a new leaf

with the k + k′ elements. If on the other hand k + k′ > (1 − γ)B, we perform a

split in order to create two new leaves. The two new nodes both contain at least

⌊1
2
(1 − γ)B⌋ > (α + γ)B elements and at most ⌈1

2
((α + γ)B + B)⌉ < (1 − γ)B

elements. The first case corresponds to a merge and the second to a share. Finally,

we recursively update parent(l) appropriately.

A deletion is handled similarly to an insertion; first the relevant element x in a

leaf l is found and marked as deleted. This may result in l containing k < αB alive

elements, violating the invariant that the live elements form a B-tree with fanout

between αB and B. We call this condition a block underflow. Note that a node with

a block underflow also has a strong underflow since k < (α + γ)B. To reestablish the

invariants, we perform a merge or share as previously; we first perform a version-split

on a sibling node to obtain a total of k + k′ ≥ 2αB − 1 elements, which is at least

(α+γ)B by the requirement α−γ ≥ 1/B. We then either create a new leaf with the

obtained elements, or split them and create two new leaves precisely as previously.

Once we have performed the merge or share, we recursively update the parent of l.

Figure 5.2 illustrates the “rebalance operations” needed as a result of an insertion or

a deletion.
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Insert Delete

Done
Version−splitVersion−split

Done
MergeSplit

Str. Underflow

Block Overflow Block Underflow

Str. Overflow

Done

Figure 5.2: Illustration of “rebalancing operations” needed when updating a per-
sistent B-tree.

Both insertions and deletions are performed in O(logB N) I/Os, since the changes

(rebalancing) needed on any level of the tree can be performed in O(1) I/Os, and

since the rebalancing at most propagates from l to the root of the current version.

To see that a persistent B-tree uses O(N/B) blocks after N updates, first note that

a rebalance operation on a leaf creates at most two new leaves. Once a new leaf

l is created, at least γB updates are performed on l before a rebalance operation

is needed on it again. Thus at most 2 N
γB

= O(N/B) leaves are created during N

updates. Each time a leaf is created or marked dead, a corresponding insertion or

deletion is performed recursively one level up the tree. Since at most 4 N
γB

leaves

are created or deleted during the N operations, it follows by the same argument

as above that the number of nodes created one level up the tree is bounded by

22 N
(γB)2

. By induction, the number of nodes created h levels up the tree is bounded

by 2h+1 N
(γB)h+1 . The total number of nodes (blocks used) over N updates is therefore

bounded by 2N
γB

∑logB N
h=0 (2/γB)h, which is O(N

B
) since γB > 2.

Theorem 2 ([29, 88]) After N insertions and deletions of elements with a total

order into an initially empty persistent B-tree, the structure uses O(N/B) space and

supports range queries in any version in O(logB N + T/B) I/Os. An update can be
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performed on the newest version in O(logB N) I/Os.

5.2.2 Modified Persistent B-tree

In the persistent B-tree as described above, elements were stored in the leaves only.

To search efficiently, internal nodes also contain elements (“routing elements”). In

our discussion of the persistent B-tree so far we did not discuss precisely how these el-

ements are obtained, that is, we did not discuss what element is inserted in parent(v)

when a new node (or leaf) v is created and a new reference is inserted in parent(v).

As in standard, non-persistent B-trees, the persistent B-trees described above use a

copy of the maximal element in v as a routing element in parent(v) when v is cre-

ated. Therefore, when an element is deleted, that is, marked as dead in a leaf, live

copies of the element can still exist as routing elements in the internal nodes. Thus,

even though when searching for a given element e at time t we only compare e with

elements considered alive at time t, we may compare e to an internal routing copy

of an element long after the original leaf element is marked dead. If not all elements

stored in the persistent B-tree during its entire lifespan are comparable, that is, if

they are not totally ordered, we cannot evaluate the comparisons needed to perform

the search. In the vertical ray shooting problem, segments are only partially or-

dered (only segments intersecting a give vertical line can be compared) and therefore

the standard persistent B-tree cannot be used to design an I/O-efficient vertical ray

shooting structure.

To obtain an I/O-efficient vertical ray-shooting structure, we construct a persis-

tent B-tree structure that only requires elements present in the same version to be

comparable. To do so, we modify the existing persistent B-tree to store actual data

elements in both leaf nodes and internal nodes, and impose the new invariant that

the alive elements at any time t form a B-tree with data elements in internal as well
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as leaf nodes. Thus, the main difference between our modified structure and the

previous structure is that at any given time t, at most one live copy of an element

exists in the structure; we do not create multiple live copies of the same element to

use as routing elements. Except for slight modifications to the version-split, split,

merge, and share operations, the insert algorithm remains unchanged. In the delete

algorithm we need to be careful when deleting an element x in an internal node u.

Since x is the only live copy, we must mark it as dead, but x is also associated with a

reference to a child uc of u that is still alive. Therefore, instead of immediately mark-

ing x dead, we first find x’s predecessor y in a leaf below u and persistently delete it.

Then we delete x from u, insert a live copy of y with a reference to the child uc, and

perform the relevant rebalancing. What remains is to describe the modifications to

the rebalance operations.

Version-split

Recall that a version-split (not leading to a strong underflow or overflow) consists of

copying all alive elements in a node u, using them to create a new node v, deleting

the reference to u, and recursively inserting a reference to v in parent(u). Since the

reference to u has an element x associated with it, we cannot simply mark it deleted

by updating its existence interval. However, since we are also inserting a reference to

the new node v, and since the elements in v are a subset of the elements in u, we can

use x as the element associated with the reference to v. Thus we can perform the

version-split almost exactly as before, while maintaining the new invariant, by simply

using x as the element associated with the reference to v as shown in Figure 5.3.
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Figure 5.3: Illustration of a version-split. Partially shaded regions correspond to
alive elements, black to dead elements, and white regions to unused space. (Individual
elements use this same shading convention to indicate their status.)

Split

When a strong overflow occurs after a version-split of u, a split is needed; two new

nodes v and v′ are created and two references inserted in parent(u). As in the version-

split case, the element x associated with u in parent(u) can be used as the element

associated with the reference to v′. To maintain the new invariant we then “promote”

the maximal element y in v to be used as the element associated with the reference

to v in parent(u), that is, instead of storing y in v, we store it in parent(u). Refer

to Figure 5.4. Note that, because of the promotion of y, the new node v has one less

element than it would have had using the split procedure described in the previous

section. However, the previous space arguments still applies since Ω(γB) updates are

still required on v before further structural changes are needed. Otherwise a split

remains unchanged.

Split
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Figure 5.4: Illustration of a split.

Merge

When a strong underflow occurs after a version-split of u, we perform a version-

split of u’s sibling u′ and create a new node v with the obtained elements. We then
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delete the references to u and u′ in parent(u) by marking the two elements x and

y associated with the references to u and u′ as deleted. We can reuse the maximal

of these elements, say y, as the reference to the new node v. To maintain the new

invariant (preserve all elements) we then “demote” x and store it in the new node

v. Otherwise a merge remains unchanged. Refer to Figure 5.5. The demotion of x

leaves the new node v with one more element than it would have had using the merge

procedure described in the previous section. However, as in the previous case, Ω(γB)

updates are still needed on v before further structural changes are needed.
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Figure 5.5: Illustration of a merge.

Share

When a merge would result in a new node with a strong overflow, we instead perform

a share; we first perform a version-split on the two sibling nodes u and u′ and create

two new nodes v and v′ with the obtained elements. As in the merge case, we then

delete the references to u and u′ in parent(u) by marking two elements x and y

associated with u and u′ as deleted. We can reuse the maximal element y as the

reference to v′ but x cannot be used as a reference to v. Instead, we demote x to v

and promote the maximal element z in v to parent(u). Refer to Figure 5.6. Since

we have both a demotion and promotion in this case, the number of elements in the

new node v is identical to the number of elements we would have if we used the share

procedure described in the previous section.

Theorem 3 After N updates on an initially empty modified persistent B-tree, the
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Figure 5.6: Illustration of a share.

structure uses O(N/B) space and supports range queries in any version in O(logB N+

T/B) I/Os. An update can be performed on the newest version in O(logB N) I/Os.

Corollary 1 A set of N non-intersecting segments in the plane can be pre-processed

into a data structure of size O(N/B) in O(N logB N) I/Os such that a vertical ray-

shooting query can be answered in O(logB N) I/Os.

While trivially performing a sequence of N given updates on a (modified as well

as unmodified) persistent B-tree takes O(N logB N) I/Os, it has been shown how

the N updates can be performed in O(N
B

logM/B
N
B

) I/Os (the sorting bound) on a

normal (unmodified) persistent B-tree [87, 10, 19]. In the modified B-tree case, the

lack of a total order seems to prevent us from performing the updates in this much

smaller number of I/Os. It remains a challenging open problem to construct the

ray-shooting structure (the modified persistent B-tree) in O(N
B

logM/B
N
B

) I/Os. Such

a fast algorithm would immediately lead to a semi-dynamic (insert-efficient) vertical

ray-shooting structure using the external version of the logarithmic method [25].

5.3 Experimental results

In this section we describe the results of an extensive set of experiments designed

to evaluate the performance of the (modified) persistent B-tree when used to answer

vertical ray-shooting queries, compared to the performance of the grid structure of

Vahrenhold and Hinrichs [86].
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5.3.1 Implementations

Both the persistent B-tree [16, 17] and the grid structure [86] were implemented using

TPIE [11, 22]. Below we discuss the two implementations separately.

Persistent B-tree Implementation

When using the persistent B-tree to answer vertical ray-shooting queries the elements

(segments) already implicitly contain their existence interval (the x-coordinates of the

endpoints). Thus we implemented the structure without explicitly storing existence

intervals.2 This way each element occupied 28 bytes. To implement the root B-tree

we used the standard B-tree implementation in the TPIE distribution [22]. In this

implementation each element occupies 16 bytes.

Two parameters α and γ are used in the definition of the persistent B-tree. Since

we are working with large datasets, we choose these parameters to optimize for space.

Space is minimized when γ (and thus the number of updates needed between creation

of nodes) is maximized, and the constraints on α and γ require that we choose

γ ≤ min{α − 1/B, 1/3 − 2/3α − 1/B}. The maximal value of γ is when α = 1
5
,

so we chose α = 1
5

and γ = 1
5
− 1

B
accordingly. If we wanted to optimize for query

performance, we should choose a larger value of α—leading to a smaller tree height—

but a few initial experiments indicated that increasing α had relatively little impact

on query performance.

Grid structure Implementation

The idea in the structure of Vahrenhold and Hinrichs [86] is to impose a grid on

(the minimal bounding box of) the segments and store each segment in a bucket

2We have also implemented a general persistent B-tree with existence intervals. Both implemen-
tations will be made available in TPIE.
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corresponding to each grid cell it intersects. The grid is designed to have N/B cells

and ideally each bucket is of size B. To adapt to the distribution of segments, a

slightly different grid than the natural
√

N/B ×
√

N/B grid is used; for a bounding

box of width xd and height yd, two parameters, Fx = 1
N ·xd

∑N
i=1 |xi2 − xi1| and Fy =

1
N ·yd

∑N
i=1 |yi2−yi1|, where the i’th segment is given by ((xi1, yi1), (xi2, yi2)), are used to

estimate the amount of overlap of the x-projections and y-projections of the segments,

respectively. Then the number of rows and columns in the grid is calculated as

Nx = αx

√

N/B and Ny = αy

√

N/B, where αx/αy = Fy/Fx and αxαy = 1.

In the TPIE implementation of the grid structure [86], the segments are first

scanned to compute Nx and Ny. Then they are scanned again and a copy of each

segment is made for each cell it crosses. Each segment copy is also augmented with

a bucket ID, such that each copy occupies 32 bytes. Finally, the new set of segments

is sorted by bucket ID using TPIE’s I/O-optimal merge sort algorithm [7, 11]. The

buckets are stored sequentially on disk and a bucket index is constructed in order to

be able to locate the position of the segments in a given bucket efficiently. The index

is simply a Nx ×Ny array with entry (i, j) containing the position on disk of the first

segment in the bucket corresponding to cell (i, j) (as well as the number of segments

in the bucket). Each index entry is 16 bytes.

If L is the the number of segment copies produced during the grid structure

construction, O( L
B

logM/B
L
B

) I/Os is the number of I/Os used by the algorithm.

Ideally, this would be O(N
B

logM/B
N
B

) I/Os, but in the worst case each segment can

cross
√

N/B buckets and the algorithm requires O(N
B

√

N/B logM/B
N
B

) I/Os. Refer

to Figure 5.7 for an example of such a dataset.

Answering a query using the grid method simply involves looking up the position

of the relevant bucket (the cell containing the query point) using the bucket index
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Figure 5.7: Worst-case dataset for the grid method.

and then scanning the segments in the bucket to answer the query. In the ideal case

each bucket contains O(B) segments, and the query can be performed in O(1) I/Os.

However, in the worst case, a query takes O(N/B) I/Os.

5.3.2 Data

To investigate the efficiency of our vertical ray-shooting data structure, we used road

data from the US Census TIGER/Line dataset containing all roads in the United

States [83]. In this dataset, one curved road is represented as a series of short lin-

ear segments. Roads (segments) are also broken at intersections, such that no two

segments intersect other than at endpoints. Because of various errors, the dataset

actually contains a few intersection segments, which we removed in a preprocessing

step.

Our first 6 datasets, containing between 16 million segments (374 MB) and 80

million segments (1852 MB), consist of the roads in connected parts of the US (corre-

sponding to the six CD’s on which the data is distributed). A summary of the number

of segments in each dataset is given in Table 5.1, and images of the datasets appear

in Figure 5.8. In addition to these large datasets, we also used four smaller datasets

with disjoint data regions; dataset CL1 consists of the four US states Washington,
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Minnesota, Maine and Florida, and CL2 excludes Minnesota. The bounding boxes

of CL1 and CL2 are relatively empty with the exception of three or four “hot spots”

where the states are located. These datasets were included to investigate the effect of

non-uniform data distributions. The dataset DST spans a sparsely populated region

of the United States and was included to investigate the effect of longer but more

uniformly distributed segments (we expect that the segments are longer and more

uniformly distributed in the desert than in metropolitan areas). The dataset ATL,

on the other hand, was chosen as a dense, but maybe less uniform, dataset. Finally,

in addition to the real world data, we also generated a dataset LONG, corresponding

to Figure 5.7, designed to illustrate the worst-case behavior of the grid method.

For query point sets, we generated a list of 100000 randomly sampled points from

inside each of the datasets; for each query point p, we made sure that segments are

hit by vertical rays emanating from p in both the positive and negative y-directions.

5.3.3 Experimental Setup

We ran our experiments on an Intel PIII - 500MHz machine running FreeBSD 4.5.

All code and data resided on a local 10000 RPM 36GB SCSI disk. The disk block

size was 8KB, so each leaf of the persistent B-tree could store 290 elements and each

internal node (also containing references) 225 elements. In the root B-tree, each

leaf could hold 510 elements and each internal node 681 elements. The grid method

bucket index had N/256 entries of 16 bytes each.

We were interested in investigating the I/O performance when the data sets are

much larger than the available internal memory. Because extremely large data sets

are not readily available and would prohibit extensive testing, we limited the RAM

of the machine to 128 MB and, since the OS was observed to use 60 MB, we limited

the amount of memory available to TPIE to 12 MB. Constraining the memory also

128



provides insight into how the structures would perform if the system had more total

memory but was under heavy load.

TPIE is flexible with regards to how I/Os are actually performed; for implementa-

tions where scanning and reading large contiguous portions of the data are common,

it is often preferable to use the UNIX read() and write() system calls to take ad-

vantage of OS features such as prefetching. For data structure implementations that

perform random I/O, memory-mapped I/O is often preferable. Therefore we imple-

mented the grid method using streams and read()/write() system calls exclusively,

while we implemented the persistent B-tree using memory-mapped I/O (except that

read()/write() system calls were used to process sweep events during construction).

To increase realism in our experiments, we used TPIE’s built-in (8-way set asso-

ciative LRU-style) cache mechanism to cache parts of the data structures. Since a

query on the persistent B-tree always begins with a search in the relatively small root

B-tree, we used a 72 block cache (8 internal nodes and 64 leaf nodes) for the root

B-tree—enough to cache the entire structure in all our experiments. We also used a

separate 16 block cache for the internal persistent B-tree nodes and a 32 block cache

for the leaf nodes. Separate caches were used for internal nodes and leaves to ensure

that accesses to the many leaves did not result in eviction of the few internal nodes

from the cache. In total, the caches used for the entire persistent structure were of

size 120 blocks or 960KB. For the grid structure, we (in analogy with the root B-tree

in the persistent case) cached the entire bucket index—of size 2.41 MB for the largest

dataset (D1-6).
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5.3.4 Experimental Results

Structure Size

Figure 5.9 shows the size of the grid and persistent B-tree data structures constructed

on the 11 datasets. For the real life (TIGER) data, the grid method uses about

1.4 times the space of the raw data, whereas the persistent B-tree sometimes uses

almost 3 times the raw data size. The low overhead of the grid method is a result of

relatively low segment duplication (around 1.02 average copies per segment) due to

the very short segments. The rest of the space is used to store the bucket index. The

larger overhead of the persistent B-tree is mainly due to structural changes (rebalance

operations) resulting in the creation of multiple copies of each segment; we found that

there are roughly 2.4 copies of each segment in a persistent B-tree structure.

Analyzing the numbers for the real datasets in more detail reveals that for the

first six datasets and ATL the space utilization is quite uniform. For datasets DST,

CL1, and CL2 the grid structure uses slightly less space while the persistent B-tree

uses more space. The persistent B-tree method uses more space because the relatively

small datasets are sparsely populated with segments; at any given time during the

construction sweep, the sweep line intersects relatively few segments. As a result,

many transitions are made between a height one (one leaf) and height two (with a

low-degree root) tree, resulting in relatively low block utilization.

For the artificially generated dataset LONG, the space usage of both structures

increases dramatically. As expected, the cause of the enormous space use of the grid

structure is a high number of segment copies (93 per segment on the average). The

persistent B-tree also has a significant increase in space, but not nearly as much as

the grid structure—the structure is 94% smaller than the grid structure. The reason

for increased space usage in the persistent B-tree is that all the segments are long and
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thus they stay in the persistent structure for a long time (in many versions), resulting

in a high tree. Furthermore, most of the structural changes in the beginning of the

construction algorithm are splits, leading to many copies of alive elements. Similarly,

most of the structural changes at the end of the execution are merges, again leading

to a large redundancy.

Construction Efficiency

Figure 5.10 shows construction results in terms of I/O and physical time. The nu-

merical data used for the graphs can be found in Table 5.2 in the Appendix. For all

the real-world datasets the persistent B-tree structure uses around 1.5 times more

I/Os than the grid structure. This is rather surprising since the theoretical construc-

tion bound for the persistent B-tree is O(N logB N) I/Os, compared to the (good

case) O(N
B

logM/B
N
B

) bound for the grid structure. Theory thus predicts that the

tree construction algorithm should perform about B times as many I/Os as the grid

method. The reason for this discrepancy between theory and practice is that during

the construction sweep the average number of segments intersecting the sweep line

is relatively small. For the D1-6 dataset, it is less than 2500 segments (Refer to

Figure 5.11). Thus the size of the persistent B-tree accessed during each update is

small and as a result the caches can store most of the nodes in the tree.

While it only takes about 50% more I/Os to construct the persistent B-tree struc-

ture than to construct the grid structure, it takes nearly 17 times more physical time.

One reason for this is that most of the I/Os performed by the grid construction al-

gorithm are sequential, while the I/Os performed by the persistent B-tree algorithm

are more random. Thus the grid algorithm takes advantage of the optimization of

the disk controller and the OS file system for sequential I/O. Another reason is that

construction of the persistent B-tree structure is more computationally intensive than
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construction of the grid. Our trace logs show that over 95% of the construction time

for the persistent B-tree is spent in internal memory compared to only 50% for the

grid method.

While the grid construction algorithm outperforms the persistent B-tree algorithm

on the real-life datasets the worst-case dataset, LONG, causes it significant problems.

For this dataset, the grid construction takes 48 minutes compared to 53 minutes for

the 80 times bigger dataset D1-6, and compared to 10 minutes for the persistent

B-tree. The reason is that the large size of the structure results in a high I/O

construction cost. The persistent B-tree construction also takes relatively more I/Os

(and time), mainly due to the high average number of segments intersecting the

sweep-line (500000 at the peak).

Query Efficiency

Our query experiments illustrate the advantage of the persistent B-tree structure over

the grid structure; Figure 5.12 shows that a query is consistently answered in less

than two I/Os on the average, while the grid structure uses between approximately

2.6 and 28 I/Os on the average for the real-world datasets, and 126 I/Os for the

LONG dataset. The numerical data used for the graphs can be found in Table 5.3 in

the Appendix.

Analyzing the grid structure results for the real-world datasets in more detail

reveals that the performance is mostly a function of the distribution of segments

within their bounding box. The bounding boxes become more full as we move from

D1 to D1-6, and as a result the average number of I/Os per query drops from 3.76

to 2.65. The dataset ATL overlaps with a significant portion of D1, but because of

the better distribution of segments within the bounding box the I/O performance

is better for ATL. Datasets CL1 and CL2 exacerbate the problem with non-uniform
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distributions; for these datasets, most grid cells, more than 90%, are completely

empty. As a result, a query within a non-empty cell is very expensive. Finally, as

expected the LONG data set shows the grid structures vulnerability to long segments;

on average a query takes 126 I/Os.

Analyzing the persistent B-tree results in detail reveals that its performance is

mostly a function of the average number of segments intersecting the sweepline;

datasets D1 through D1-6 and ATL have higher average I/O cost than DST, CL1

and CL2. Similarly, dataset D1 has a lower average cost than ATL, since the region

of D1 not in ATL has a smaller number of sweepline-segment intersections. This is

the opposite of the behavior of the grid method whose query performance is worse

for D1 than ATL. Finally, even though the average number of sweepline-segment

intersections for the LONG dataset is more than half a million, the height of the tree

is no more than three at any time (version), and as a result the query efficiency is

maintained.

Further Experiments

In our experiments with the TIGER data we noticed that non-empty buckets in the

grid structure often occupied three or more disk blocks of segments. Therefore we

expected that by reducing the grid spacing in both the x and y-direction by a factor

of two—creating four times as many buckets—each bucket would likely occupy only

one disk block, leading to an improved query performance. Such an improvement

is of course highly data dependent. It would also come at the cost of space, since

we must index four times as many buckets, and the denser grid may result in more

segment duplication. To investigate this we ran our tests again using such a modified

grid; we found that for the real-life datasets the number of segment copies did not

increase significantly (from 1.02 to 1.04 copies per segment). Thus the construction
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performance was maintained. In terms of query performance, we found that the four-

fold increase in the number of buckets leads to a factor of two to three improvement

in the query performance. Refer to Figure 5.13. In these experiments we cached the

entire bucket index, which is four times larger than in the regular grid method. For

D1 the index is 2 MB, and for D1-6 the index is 10 MB, ten times larger than the

cache used in the persistent B-tree. For the LONG dataset, the modified grid uses

twice the space of the standard grid and still has poor query performance compared

to the persistent B-tree.

Finally, to investigate the influence of caches we ran a series of experiments with-

out caching. In these experiments we found that one additional I/O is used per query

in the grid structure in order to access the bucket index. In the persistent B-tree

structure one or two extra I/Os are used depending on the height of the root B-tree.

This can immediately be reduced by one I/O per query by just caching the block

containing the root of the root B-tree. Thus we conclude that the query performance

does not depend critically on the existence of caches.

5.4 Summary

In this chapter, we have presented an external point location data structure based

on a persistent B-tree that is efficient both in theory and practice. One major open

problem is to construct the structure in O(N
B

logM/B
N
B

) I/Os, as compared to the

(trivial) O(N logB N) algorithm discussed here.
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Data Segments Size
Set (in Millions) (MB)

D1 16.36 374

D1-2 31.22 714

D1-3 41.78 956

D1-4 57.33 1312

D1-5 69.82 1598

D1-6 80.91 1852

CL1 6.69 153

CL2 5.09 116

ATL 10.84 248

DST 6.40 146

LONG 1.00 23

Table 5.1: Number of segments and raw dataset size (assuming 24 bytes per seg-
ment) of the experimental datasets.

Data Relative Size I/Os (Thousands) Time (Minutes)
Set Grid Tree Grid Tree Grid Tree

D1 1.377 2.669 334 513 10 174

D1-2 1.370 2.668 637 977 20 341

D1-3 1.371 2.660 854 1309 27 436

D1-4 1.374 2.673 1174 1798 38 607

D1-5 1.374 2.662 1430 2187 46 727

D1-6 1.374 2.657 1657 2533 53 892

CL1 1.354 2.816 129 203 3.8 63

CL2 1.352 2.834 103 162 3.0 51

ATL 1.377 2.684 223 331 6.7 116

DST 1.368 2.902 136 214 4.2 68

LONG 124.013 7.168 1816 58 48 10

Table 5.2: Data structure size, construction I/Os, and construction time for grid
and persistent B-tree. See also Figures 5.9 and 5.10.
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Figure 5.8: Illustration of the real-world datasets used in our experiments. Black
regions indicate areas in the dataset. The outline of the continental US serves as a
visualization guide and is not part of the actual data set.
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Figure 5.9: Space utilization of grid and persistent B-tree based structures. Size is
relative to the raw dataset size.

Data I/Os per Query Time per Query (ms)
Set Grid 1/2 Grid Tree Grid 1/2 Grid Tree

D1 3.76 1.70 1.86 7.22 5.60 5.07

D1-2 3.26 1.58 1.94 6.61 5.20 5.08

D1-3 3.39 1.62 1.96 8.41 6.93 5.86

D1-4 2.84 1.47 1.97 8.40 7.49 7.14

D1-5 2.70 1.44 1.96 8.25 7.43 7.17

D1-6 2.65 1.43 1.98 8.62 7.76 7.72

CL1 18.55 5.50 1.51 18.31 7.24 3.00

CL2 28.40 8.16 1.41 24.81 9.75 3.40

ATL 2.74 1.45 1.91 5.78 4.81 3.44

DST 2.65 1.42 1.58 4.32 3.20 3.77

LONG 126.00 64.22 1.74 1067.11 506.11 0.77

Table 5.3: Query performance of grid, half-grid, and persistent B-tree structures.
See also Figures 5.12 and 5.13.
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Figure 5.10: Construction performance: (a) Number of I/Os per 100 segments. (b)
Construction time per segment.
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Figure 5.11: The number of segments intersecting the sweep line as a function
of sweep line position during the construction of the persistent B-tree for the D1-6
dataset.
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Figure 5.12: Query performance: (a) Number of I/Os per query. (b) Time per
query in milliseconds.

140



0

2

4

6

8

10

D1 D1−2 D1−3 D1−4 D1−5 D1−6 CL1 CL2 ATL DST LONG

I/O
s 

pe
r 

Q
ue

ry

Data Set

Grid
1/2 Grid

Persistent B−tree

18.6 28.4

126

64.2

(a)

0

2

4

6

8

10

D1 D1−2 D1−3 D1−4 D1−5 D1−6 CL1 CL2 ATL DST LONG

T
im

e 
pe

r 
Q

ue
ry

 (
m

s)

Data Set

Grid
1/2 Grid

Persistent B−tree

18.3 24.8

1070

506

(b)

Figure 5.13: Query performance of the grid method using four times as many buck-
ets (1/2 Grid): (a) Number of I/Os per query. (b) Time per query in milliseconds.
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Chapter 6

A Geoprocessing Pipeline

6.1 Introduction

The previous chapters discussed several algorithmic challenges in GIS for processing

large data sets and presented scalable solutions to the problems described. While our

algorithms were designed to solve individual tasks, our solutions can be combined to

form a geo-processing pipeline that takes as initial input a set of remotely sensed

elevation points and produces as a final output a watershed hierarchy. This pipeline

consists of four major stages shown in Figure 6.1. In the first stage, we construct

a grid DEM from a set of elevation points using the scalable quad-tree construction

method [2] we developed in Chapter 2. In the second stage, we remove sink from our

constructed DEM using previously-known methods for topological persistence [45, 44]

and flooding [14] as described in Chapter 3. The third stage extracts river networks

from the terrain using the flow routing and upslope contributing area algorithms

described in Sections 3.4 and 3.5. The fourth and final stage computes the Pfafstetter

watershed hierarchy using the methods developed in Chapter 4.
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Figure 6.1: Algorithms in this thesis form a geo-processing pipeline from points to
watersheds.
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This pipeline provides an extremely scalable and powerful tool for GIS users to

analyze very large terrain data sets. Our approach has a number of key advantages

over other algorithms. First, because out solutions scale to massive data sets, users

do not need to worry about the size of their input data sets and do not need pre-

process their data or break the data into tiles. In many pipeline stages, tiling is not

even possible because we are computing a global function. A second advantage of our

pipeline approach is that it is scalable from end to end. There is no bottleneck in the

middle of the pipeline that limits overall scalability. A scalable watershed algorithm

would be of limited use if earlier stages in the pipeline, such as grid construction and

flow routing, were not scalable. A final advantage of our pipeline approach is that

each stage seamlessly integrates with the other pipeline stages, while still remaining

loosely coupled to other stages. The seamless integration means output from a single

stage in the pipeline can be immediately used as input for the next pipeline stage

without manual pre- or post-processing of intermediated data sets. Furthermore,

each stage is loosely coupled in the sense that no stage depends on a particular

implementation of another stage. For example, in the grid-construction stage, we

could use a variety of point interpolation methods or even a segmentation scheme

that uses a kd-B-tree instead of a quad-tree. None of the other stages rely on a

particular interpolation method to work properly and individual pipeline stages can

be tuned for a particular user’s needs.

In addition to being scalable our pipeline features a modular design in which

additional components and models can be added easily. We expose a number of tuning

parameters to the user so they can choose between a number of models and option,

e.g., grid resolution, flow model, or persistence threshold. Because our approach is

scalable, users can run the pipeline multiple times while changing parameters to find

optimal settings for their data and their needs. In the hands of the GIS community

143



these tools can be an extremely valuable aid in modeling and analyzing large hi-

resolution terrain data sets acquired by modern mapping methods. Ultimately, we

hope to distribute many of the methods described, implemented, and tested in this

thesis to the GIS community for the benefit of others.

In this chapter, we demonstrate the power of our geo-processing pipeline by show-

ing the results of a case study on the Neuse river basin in North Carolina. We describe

our experimental setup, including which data, software, and hardware we used, in

Section 6.2. To verify the scalability of our algorithms, we present experimental re-

sults that show our algorithms can process grids with over 1,590 million data cells

that were derived from over 415 million lidar input points in Section 6.3. While the

emphasis of the thesis work was scalability, we also show how we can tune various

parameters in various pipeline stages. Tuning parameters in one pipeline stage can

influence results in later pipeline stages. We show how tuning grid construction pa-

rameters offers a trade-off between construction computation time and DEM quality

in Section 6.5. In Section 6.6, we conduct experiments on grids with different res-

olutions and show how different grid resolutions can result in different watershed

boundaries. Finally, we show in Section 6.7 how changing the persistence threshold

during the sink removal stage changes the river network and the watershed bound-

aries.

6.2 Experimental Setup

For our experiments, we chose the Neuse river basin of North Carolina as our case

study. We chose this particular data set because it included a large set of publicly

available lidar points that covered a large regional watershed. The Neuse data set is

a collection of 477 million lidar points (over 20GB of raw data) publicly available for

download from the North Carolina flood mapping project [69]. The data cover an
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Figure 6.2: Sample bare Earth lidar data still shows some man-made features in-
cluding the bridge in the center left and eight baseball fields grouped into the two
circles shown in the foreground.

area of roughly 6200 square miles with an average point spacing of approximately 20

feet. However, the point spacing is rather heterogeneous, ranging from nine feet in

open areas to more than 50 feet in densely vegetated regions. Because lidar pulses

are absorbed over water, there are few data points over large bodies of open water.

The data have been pre-processed by the data providers to remove large amount of

vegetation and many buildings from the terrain. However, many man-made features

still exist, including bridges, as shown in Figure 6.2. Because this lidar data was

collected for the purposes of flood mapping, some bridges like the one shown in

Figure 6.3 have been cut during pre-processing to allow the flow of water under the

bridge. While many bridges across major waterways have been cut, Figure 6.2 shows

that this is not always the case.
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Figure 6.3: In this lidar example, the bridges have been cut by the data providers
to allow water to flow through. Many bridges across major waterways have been cut,
but many bridges across smaller streams have not.

6.2.1 Software and Hardware

We implemented our algorithms using the C++ programming language and the

Linux operating system. We built our code on a number of external software li-

braries, primarily TPIE, GRASS, and GDAL. As mentioned in the introduction,

TPIE [11], is a templated, portable, I/O environment written in C++ that provides

support for implementing I/O-efficient algorithms and data structures. Our imple-

mentation work was greatly simplified by the fact that all main primitives of our

algorithms—scanning, sorting, stacks and priority queues—are already implemented

I/O-efficiently in tpie. For data visualization and basic data manipulation, we used

the open-source GIS GRASS [52], written primarily in C. In particular, for our grid

DEM construction algorithm, we used the regularized spline with tension interpo-

lation code that exists in the GRASS module s.surf.rst. Because of scalability

problems with the new vector engine in GRASS 6.2, we used GRASS 5.4 for our
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grid construction algorithm, and GRASS 6.2 for everything else. Finally we used the

Geospatial Data Abstraction Library (GDAL) [50], to read and write a number of

raster and vector formats.

While developing our own software, we also contributed several bug fixes and

improvements to both the TPIE and GRASS code, including writing an improved

sorting algorithm for TPIE, updating and maintaining the TPIE code in general,

submitting patches to GRASS to support large raster files, and fixing a few bugs in

the GRASS modules s.surf.rst and r.terraflow.

All of our experiments in this chapter were run on a Dell Precision Server 370

(Pentium 4 3.40 GHz processor) running the Linux 2.6.11 kernel. The machine had

1 GB of physical memory. All test data were stored on a single 400 GB SATA disk

drive. We set the memory limit of TPIE to 640MB and instructed TPIE to alert

the user if the memory limit was exceeded. Setting the memory limit lower than the

amount of physical memory allows the operating system to use the remaining memory

for other system processes without competing with our application for memory.

6.3 Scalability

For the scalability results, we constructed grids of 40, 20, and 10 foot resolution,

removed sinks, computed the river network, and extracted the watershed boundaries.

For these experiments, we used the regularized spline with tension approximation

method for the grid construction. The following approximation parameters described

in Section 2.2 and Section 2.4 were used: The maximum number of points in a quad-

tree leaf was kmax = 15. The maximum number of points used in the interpolation of

any quad-tree leaf was nmax = 135 = 9kmax. The tension parameter ϕ was set to 40

and the smoothing parameter w0/wj was set to be a constant 0.1 for all points. The

minimum distance ε between any two points in a quad tree segment was set to be half
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Figure 6.4: DEM of Neuse river basin derived from lidar points
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(a)

(b)

Figure 6.5: (a) First level of Pfafstetter watershed labels for largest basin in Neuse.
(b) Recursive decomposition of basin four.
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Resolution (feet) 40 20 10

# of quad-tree points (millions) 205 340 415
# of grid cells (millions) 99 397 1590

Pipeline stage

DEM Construction 14h 19m 19h 56m 27h 12m

Hydrological conditioning 16m 1h 24m 7h 55m

Flow Modeling
Flow Routing 15m 1h 26m 6h 34m
Flow Accumulation 19m 1h 40m 7h 35m

Watershed extraction 46m 2h 28m 14h 39m

Total 15h 55m 25h 54m 63h 34m

Table 6.1: Running times for various pipeline stages on the Neuse river basin data
set.

of the grid cell resolution. The persistent threshold was set to 55ft. These parame-

ters were determined to produce good DEMs after experimenting with a number of

parameters. In particular we found that for all three grid resolutions, only 15 minima

remained after hydrological conditioning with a persistence over 50 feet. All but two

of these minima were quarries, while the last two were small watershed blocked by

bridges. A persistence threshold of 55 feet preserved the quarries while connecting

the areas blocked by bridges to the rest of the Neuse river network. A visual overview

of the output is shown in Figure 6.4 and Figure 6.5 for the 20ft grid case. Data at

other resolutions look similar. Running times of our pipeline stages are shown in

Table 6.1.

Looking at the results of Table 6.1 in more detail, we first consider the grid

construction stage at multiple resolutions. Because the point thinning parameter ε is

one half the grid resolution by default, we note that there are fewer points in the quad

tree for the 40 foot resolution grid than for the 20 foot or 10 foot grid. In changing

the resolution from 40ft to 20ft, the number of points in the quad tree increases 65%

while the 10ft DEM contains only 22% more points than the 20ft case. The number
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of grid cells in the output DEM is inversely proportional to the grid resolution. Note

that many cells in the bounding box containing the Neuse data set have no value

assigned to them because they are outside of the study area. In Table 6.1, we do not

count these so called no-data or null value cells in our cell count. At 20ft resolution,

the number of quad-tree points and grid cells are similar indicating that with roughly

one lidar point per 20×20 sq.ft, the average lidar point spacing is close to 20ft. Note

for the 10ft DEM the number of grid cells is almost four times the amount of lidar

points in the grid. One of the benefits of using an interpolation method over a simple

binning approach is that we can reconstruct a terrain surface given a sparse point

sample. Thus, even though the we cannot have a point sample for every 10ft grid

cell, interpolation can compute the elevation of grid cells with no data points using

nearby points, and can construct grids with more cells than the number of original

points.

The most expensive of any of the pipeline phases is the DEM construction, con-

suming over 40% of the the total run time in the 10ft case and over 95% of the total

run time in the 40ft case. As noted in Chapter 2 this is primarily due to the inter-

polation code, which is CPU bound and not I/O-bound. While still a time intensive

stage, we improved the performance of the construction over previous experiments [2]

by tuning the interpolation parameters. We found that a kmax of 15 and npmin of

135 led to improved run time performance. We also verified that the resulting river

networks and watershed boundaries were similar to a grid computed using a much

higher kmax, so we could optimize kmax for faster speed. Whereas the interpolation

phase of grid construction represented over 80% of the total run time in the experi-

ments describe previously in Chapter 2, interpolation represented slightly over 50%

of the run time when using a smaller kmax.

The memory usage of our algorithms is typically very low, while we set the TPIE
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limit to 640MB, we never needed more than 20MB of memory for the grid construc-

tion, hydrological conditioning, flow accumulation, or watershed extraction. The

extra memory was used only occasionally for sorting steps or for maintaining a por-

tion of an I/O-efficient priority queue in memory. Flow routing on flat surfaces was

the only part of the pipeline that required large amounts of memory and only in

extreme circumstances. In our current implementation, we load each flat area sep-

arately into memory and then compute flow directions across each flat area. While

running on the 10ft grid, we detected one large flat area containing 9.4 million grid

cells, representing a total area of 21,600 acres (8,740 hectares) or 33.7 square miles

(87.25 km2). This is the area containing Falls Lake, a man-made reservoir between

Raleigh and Durham, North Carolina, and depicted in Figure 6.6. A dam 30ft above

the water surface creates a sink with a persistence of 30ft behind the dam. This sink

is flooded when the persistence threshold is 55ft and this flooding creates the a very

large flat area. For this experiment, we temporarily needed over 571MB of memory

to process this single flat area. This is only slightly below the 640MB memory limit

we used for TPIE on our 1GB machine. All other flat areas were less than 100MB

in size and easily fit within our 640MB memory limit. Using our current implemen-

tation, we would be unable to process the flat area at 5 foot resolution using only

1GB of memory. Given 2GB of memory, we could handle this flat area even at 5ft

resolution, but we may need to consider implementing an I/O efficient method for

computing shortest paths [23] that can route flow across very large flat areas.

The final stage of our pipeline, watershed hierarchy extraction, takes roughly

twice the amount of time as the hydrological conditioning, flow routing, and flow

accumulation stages, and is still considerably faster than the grid construction stage.

The primary reason for the longer run-time is that the Pfafstetter algorithm performs

four O(sort(N)) I/O steps and two scanning steps, with both the flow routing and
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Figure 6.6: Falls lake, with a dam located near the Southeast corner of the figure.
The boundary of the Falls lake flat is outlined in black while blue lines show rivers
entering the reservoir and routed across the flat area.
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flow accumulation perform half as many sorting steps in addition to two scans. Since

O(sort(N)) is approximately three scans for most data set sizes, we expect Pfafstetter

to be roughly twice as slow as routing and accumulation. The slowest stage of our

pipeline—DEM construction—is still quite I/O-efficient, but is simply CPU bound

by a number of computationally intensive calculations. None of our other algorithms

execute code internally that has a run time worse than O(n lg n), while interpolation

is using an O(n3) interpolation routine.

Overall, we consider our approach scalable to massive data sets. In direct com-

parisons to other interpolation methods or flow routing methods, out approach is

faster and more scalable. As noted in previous chapters, many previous methods

simply crash on extremely large data sets. One example of an I/O-efficient algorithm

for terrain modeling that is designed to scale large data sets is TerraFlow, but we

also outperform this algorithm.

6.4 Comparison to TerraFlow

Much of our initial work was inspired by TerraFlow [14], the only other I/O-

efficient algorithm for hydrological modeling on grid DEMs. Since the TerraFlow

program only worked on grids, it could not benefit from new lidar point data sets

without a scalable grid construction algorithm. Our implementation improves on

TerraFlow in a number of ways. First, we provide a I/O-efficient grid DEM

construction algorithm. Second, we add a new hydrological conditioning algorithm

based on topological persistence. Whereas TerraFlow removes all sinks except for

a single global minimum, we can preserve multiple sinks above a given persistence

threshold. We also implemented a simple way for detecting flat areas under the

realistic assumption that a constant number of grid rows fit in memory. Furthermore,

we extended the geo-processing beyond flow modeling to include computation of
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watershed hierarchies. Finally, much of the work in this thesis was combined with

recent work on TINs DEMs by Ke Yi [95] into a common framework that was simply

not possible with TerraFlow. Because our new pipeline is significantly different

from TerraFlow, we found it easier to implement our new modeling methods from

scratch rather than modifying the existing TerraFlow code.

Because our new implementation constructs many of the same gridded outputs

that TerraFlow constructs, it is natural to compare the performance of the two

implementations. We compared our new implementation to the TerraFlow im-

plementation for the 20ft grid case. Due to bugs in the TerraFlow code related

to handling rasters with over 2 billion grid cells (including no-data values), we were

unable to run TerraFlow on the 10ft Neuse data set. While flow routing times

were almost equal for both implementations as shown in Table 6.2, our approach is

considerably faster in the other two stages and overall run time. TerraFlow also

pre-processes the terrain to distinguish between interior no-data completely sur-

rounded by real data values and boundary no-data cells that have a path of no-data

cells that is connected to the boundary of the grid. In TerraFlow, no-data values

in the interior are treated as infinitely high walls and flow is routed around these no-

data values while boundary no-data values are considered infinitely deep sinks and

flow is routed into these boundary no-data cells. We do not make this distinction

because we can construct grid DEMs that interpolate data values in regions where

no point sample exists. Most modern terrain data sets either have filled in internal

no-data values, or a GIS module can fill in these no-data values as a pre-processing

step.

Even ignoring the pre-processing of no-data step, TerraFlow still takes consid-

erably longer than our new approach on the same machine. There are two primary

reasons for our speedup over TerraFlow. First, TerraFlow uses a different al-
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Method Ours TerraFlow

Pipeline stage

Pre-processing NA 1h 33m
Noise removal 1h 24m 6h 10m
Flow routing 1h 26m 1h 22m
Flow accumulation 1h 40m 3h 12m

Total 4h 30m 12h 17m

Table 6.2: Running times for our pipeline stages that overlap with TerraFlow.

gorithm that, while still has a O(sort(N)) I/O bound, performs more scanning and

sorting steps to hydrologically condition the terrain. Second, in the case of flow rout-

ing and accumulation, we use a compact edge-based representation for flow directions.

In the single flow direction model, we only store information about a single downs-

lope neighbor cell for each cell in the grid DEM. On the other hand, TerraFlow

keeps a copy of all eight neighbors with each grid cell, effectively multiplying the

original input size by eight. While our compact representation is only a constant

factor reduction in the size of the flow direction files, this constant factor can have a

large impact on the real running time of the algorithm.

6.5 Sensitivity to Construction Parameters

In our implementation, we expose a number of interpolation parameters to the user,

including kmax, ε, and a constant smoothing parameter. Tuning these parameters

can significantly improve the run-time of the grid construction while still generating

high quality grid DEMs suitable for hydrologic modeling. We conducted a number of

experiment, starting with kmax that examined the influence of these three parameters.

For each of the experiments in this section, we used a subset of 16.6 million points,

covering approximately 163 square miles (11.4 million grid cells), extracted from a

small portion of the Neuse river basin. We set the grid resolution to 20ft, and set the
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tension to the default of 40 and the persistence threshold to 30ft.

The maximum number of points per quad-tree leaf, kmax, is a very influential

parameter in the grid construction algorithm of Chapter 2. As kmax increases, fewer

quad-tree leaves are created, but the quad-tree leaves contain more grid points and

there are more points in neighboring leaves. Fewer quad-tree leaves leads to a faster

construction quad-tree construction time, but more points increases the cost of surface

approximation in each leaf. Decreasing kmax increases the quad-tree construction

cost but decreases the approximation cost. A very small kmax also does not provide a

sufficient sample size to accurately construct a plausible representation of the surface.

We varied the value of kmax in the range of 1 to 64. For these experiments we set

ε=10ft and the smoothing parameter to be 0.1. The results in Table 6.3 summarizes

our findings. From the second row in the table, we see that the time to construct the

quad tree and find points in neighbor quad tree leaves decreases as kmax increases.

This is expected because as kmax increases, the quad-tree has fewer leaves. For

example, with kmax = 1, the quad-tree has 10.8 million leaves, while for kmax = 64

the tree has only 453 thousand leaves. While increasing kmax decreases the quad-tree

construction time, it increases the interpolation time dramatically. Over our range of

kmax values, the interpolation time increased by a factor of 210, while the construction

time decreased only by a factor of 3 over the same range. We note that in this case

study, the interpolation time and run-time are roughly the same for kmax = 8.

Changing kmax also influences the number of no-data cells in the output grid, the

number of sinks, and the root-mean-square (RMS) deviations of the terrain. For

small kmax values, quad-tree leaves containing no points are more common. If there

are no points in either a given quad-tree leaf or its neighbors, we cannot interpolate

grid cells in this region. In this case we write a no-data value for these cells. In our

experiments, we found that smallest kmax value for which we had zero no-data values
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was kmax = 16. We expect kmax=1 to have the most sinks as it is closest to a simple

binning approach that computes the elevation of a grid cell by a simple average of all

points falling into the grid cell. However, in our interpolation method, we only need

one point in a quad-tree leaf or its neighbors to interpolated all grid cells in that leaf.

Indeed, a simple binning approach results in over 1.00 million no-data cells while for

kmax = 1 there are only 4225 such cells.

As kmax increases, the number of sinks in the grid DEM also increases. For small

values of kmax, the interpolation procedure uses only a small number of points for each

quad-tree leaf and the interpolated surface has less complexity than a quad-tree leaf

interpolated on more points. Thus larger kmax values result in more sinks. Finally, we

compared the difference between each output grid and some base-grid and computed

the RMS deviation. Because we have no “ground-truth” data set to compare against,

we arbitrarily chose one of the grids (kmax=64) to compare with. We see that as kmax

increases, the RMS deviation decreases. However, the overall decrease is less than

0.2 feet (2.5 inches).

By visually inspecting the data sets, we could not find any major discrepancies

across data sets. There were some slight deviations in areas with high slope or rapid

topographic change. Because the deviations were only slight in this test area, we

detected no major changes in either the river network or watersheds extracted from

grids constructed using different kmax values. The value of kmax primarily effects

computation time and the number of no-data cells. For this reason, we choose a

value of kmax that reduces the number of no-data cells and constructs a grid quickly.

A value of kmax between 8 and 16 yields good results in our case study.

In addition to tuning kmax, we can also tune the thinning parameter ε. Recall

that if any two points in a quad-tree leaf are a distance ε apart, the most recently

inserted point is discarded. By default, ε is one-half the grid cell size. We conducted a
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k 1 2 4 8 16 32 64

build time (min) 37.9 39.1 29.2 19.9 15.8 13.5 13.4
interpolation (min) 3.5 5.5 7.2 13.7 31.3 77.6 736.9
total time (min) 41.4 44.6 36.4 33.6 47.1 91.1 749.4
# no-data cells 4225 1299 245 60 0 0 0
# sinks (thousands) 117.9 137.3 157.3 178.0 200.7 217.8 247.1
RMS deviation (ft) 0.444 0.372 0.376 0.345 0.267 .256 N/A

Table 6.3: Impact of kmax on construction time, number of sinks, and RMS deviation.

few experiments in which we varied ε and examined the effects on run time, number

of sinks, and RMS deviations. For these experiments, we set kmax to 8, and the

smoothing parameter to 0.1. Our results are summarized in Table 6.4. As expected,

decreasing ε increases the number of points used in interpolation and increases the

interpolation time. For ε = 5ft, less than 1000 points are discarded of 16.6 million

total points. Again, with more points, the interpolated surface complexity increases

and the number of sinks increases as well. We computed the RMS deviation, using

the ε = 10ft grid as a base, because 10ft is the default value. While both deviations

are small, the smallest value occurs for ε =5ft.

After constructing the grid, we computed the river networks and watershed bound-

aries. We observed no major differences in the networks or watershed boundaries. We

did observe a few (fewer than 5) minor differences in the river network. An example

of such a minor discrepancy is shown in Figure 6.7. For ε=10ft or 5ft, we find the

extracted river (white) follows the actual river course visible in the grid DEM. In the

ε 20 10 5

points interpolated (million) 8.58 14.0 16.6
interpolation time (min) 9.0 13.7 18.0
# sinks (thousands) 151.2 178.0 184.9
RMS deviation (ft) 0.311 N/A 0.197

Table 6.4: Impact of ε on construction time, number of sinks, and RMS deviation.
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Figure 6.7: Rivers extracted using ε =10 ft (white) and 20 ft (black).

20ft case however, the extracted river (black) follows a different course. Because the

default ε=10ft results in a more accurate grid DEM than the 20ft case, we chose the

default ε of one-half the grid cell size for our other tests. We found that decreas-

ing ε further only increased the run time of the construction without significantly

improving the quality of the DEM.

For our final set of experiments on grid construction parameters, we varied the

smoothing parameter while using kmax = 8 and ε =10ft. A smoothing parameter of

0 results in a interpolated surface that passes exactly through the input points. For

a non-zero smoothing parameter, the algorithm constructs an approximation surface

in which the input points can deviate from the constructed surface. The default

smoothing parameter is 0.1. Smoothing only effects the interpolation routine, and

not the quad-tree construction. By increasing the smoothing parameter, we can de-

crease the number of sinks in the constructed terrain. Our results are summarized

in Table 6.5. We compute the RMS deviation by comparing the grids to the base
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smoothing 0 0.1 1 5

# sinks (thousands) 186.4 178.0 129.7 67.9
RMS deviation (ft) 0.0131 N/A 0.089 0.300

Table 6.5: Impact of smoothing parameter on number of sinks, and RMS deviation.

grid with the default smoothing of 0.1. For a smoothing parameter of 5, the RMS

deviation increased significantly. We also observed some strange blocky edges in the

terrain with this high smoothing parameter that suggested that such high smoothing

values should be avoided. While increasing smoothing can decrease the number of

sinks somewhat, many sinks still remain even after significant smoothing. By looking

at the persistence of the sinks created, we noted that increasing smoothing typically

eliminates sinks with very small persistence while occasionally reducing the persis-

tence of other sinks by a foot or less. Since smoothing did not remove larger sinks,

smoothing had little effect on the hydrologically conditioned DEM, the river net-

work, or watershed boundaries as the small differences in smoothing where negligible

compared to the extensive flooding performed by the hydrological conditioning stage.

Thus, we found that we could just use the default smoothing. For other terrain ap-

plications, such as topographic analysis, Mitasova et al. [68] describe the benefits of

tuning the smoothing parameter.

6.6 Sensitivity to Grid Resolution

The run time of all stages of our geo-processing pipeline depend heavily on the number

of grid cells in the terrain and therefore the grid resolution. While our pipeline can

handle very large input sizes, it may not be necessary to create a very high resolution

grid with a small cell size for a particular study. For example, a 10ft DEM may be

necessary for a very local detailed study, but a statewide study of watersheds may

only need a coarse 40ft DEM. In this section, we consider the effects of grid resolution

161



on derived DEM products. We constructed DEMs of 10, 20, and 40 foot resolution for

the entire Neuse basin and looked at the deviations in the resulting DEMs, the number

of minima created, the persistence of the minima, and the resulting river network and

watershed boundaries. For each of these experiments we used kmax = 16, a smoothing

parameter of 0.1, and a persistence threshold of 55ft. We used the default ε of half

the grid resolution.

Because we had no “ground truth” elevation measurements, we used the 20ft grid

as our baseline for computed the RMS deviation of the other grids. A histogram of the

deviations for each resolution is shown in Figure 6.8(a) and Figure 6.8(b), respectively.

Note that the vertical scale is logarithmic and the histograms are centered around a

deviation of 0ft. For the 10ft grid, deviations have a magnitude of less than 1ft for

94.6% of the grid cells and a magnitude less than 3ft for 99.8% of all grid cells. For

the 40ft grid, 83.7% and 99.0% of cells have a deviation with magnitude less than

1ft and 3ft, respectively. In the 40ft grid case, a few spikes appear in the deviation

histogram around 15 and 70 feet. In each of these cases, the deviations occurred at

the bottom of quarries that had a sparse point sampling. In the grid construction

phase, cells in these areas were interpolated using very few points subject to large

deviations depending on which far away points were used to interpolate in these areas.

Many of these quarries are over 100ft deep, so it is reasonable to suspect that in the

40ft grid, we might interpolate of group of cells in the DEM construction using one

point high on the walls of the quarry, while the 20ft grid might sample one point

closer to bottom of the quarry. Each spike is an instance of sparse point sampling in

small isolated areas, and overall, the 40ft grid agrees well with the 20ft grid.

If we look closer at the spatial distribution of areas with high deviations, we can

verify that quarries and other sharp drop-offs indeed are the source of most high

deviation between grid resolutions. In Figure 6.9, we see an example of a quarry
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Figure 6.8: Distribution of deviations from 20ft grid elevations for (a) 10ft grid (b)
40ft grid. Vertical scale is logarithmic.
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that is over 100ft (30m) deep. The first figure shows the constructed 20ft grid. Some

block-like artifacts are apparent at the bottom of the quarry. This is indicative of

sparse point sampling in the grid construction. Note that these artifacts only appear

in the bottom of this quarry and in general the interpolated DEM is smooth where

there were sufficient sample points during grid construction. The middle and bottom

figures display a number of white dots where the deviation between the 10ft grid

(middle) and 40ft grid (bottom) exceed 5ft. Note these areas of high deviation are

clustered around areas of rapid topographic change. Because the 40ft grid cannot

resolve details as well as the 20ft or 10ft grid, there are more places in the 40ft grid

where the deviation is higher. Note that in addition to the quarry, there are some high

deviations along the river banks, another area of rapid topographic change. Visual

inspection of other areas with high deviations showed that the highest deviations

occurred in areas with steep slopes or sharp boundaries. This is to be expected as

the cell size will effect the ability to represent these features accurately.

Next, we examined the effect of different grid resolutions on the number of sinks

created and the persistence of these sinks. Our findings are summarized in Table 6.6.

The total number of sinks increases as we reduce the grid cell size. However, the

percentage of grid cells classified as sinks decreases with higher resolution. For ex-

ample, the 10ft grid has 27.33 million sinks representing 1.7% of all grid cells, while

over 3.5% of the 40ft grid’s 99 million grid cells are classified as sinks. While the 10ft

grid has many more sinks, Table 6.6 shows that most of these sinks have a very low

persistence with only 47.5% of all sinks having a persistence greater than 0.1ft (3cm).

It is interesting to note that the number of sinks above some persistence threshold

systematically decreases with decreasing cell size. One possible reason for this is that

the higher resolution grids will make both minima and maxima more pronounced.

Imagine trying to find the exact location of a minimum using one measurement near
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(a)

(b)

(c)

Figure 6.9: Spatial distribution of deviations from (a) 20ft grid elevations for (b)
10ft grid (c) 40ft grid. White points indicate spots where vertical elevation deviation
exceeds 5ft.
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Resolution (feet) 10 20 40

# of sinks (millions) 27.33 12.45 3.54

# of sinks with
persistence

greater than 0.1ft 12,970,927 7,775,221 2,629,032
greater than 1ft 1,230,822 861,123 443,693
greater than 5ft 29,882 22,447 16,259
greater than 10ft 3,122 2,572, 1,860
greater than 20ft 440 358 280
greater than 30ft 121 96 75
greater than 40ft 15 15 14
greater than 100ft 12 12 12

Table 6.6: Number of sinks in grid DEMs of various resolutions. Persistence values
listed in feet. The 10ft grid has many more smaller sinks, but all grids agree on the
the number of sinks with persistence greater than 100ft.

the minimum in the 40ft case versus using sixteen measurements near the minimum

in the 10ft case. The 10ft grid has a higher probability of evaluating a cell close to

the true minimum, while if the 40ft grid cell is slightly off from the true location of

a minimum, it will overestimate the height of the minimum. This overestimation of

minimum height for the 40ft case would lead to a systematic decrease in persistence of

sinks for the larger grid cell sizes. The persistence value depends on the height of the

saddle as well and a coarse grid resolution could either overestimate or underestimate

the true height of the saddle, so while it may be possible given a large systematic

overestimation of saddle heights that coarse grids would have systematically higher

persistence values, but experimental evidence seems to indicate this is not the case.

As a final experiment regarding the effects of grid resolution on other pipeline

stages, we looked at the watershed hierarchies derived from 10ft, 20ft, and 40ft grids.

Most watershed boundaries were in good agreement, however, there are a few excep-

tions. We show an example of different watershed boundaries in Figure 6.10. Both

figures show two watersheds with level 1 Pfafstetter labels 5 and 3. Water flows West
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from the hydrological unit, or basin, labeled 5 into 3. The top figure shows the basin

boundaries for the 10ft grid and the 20ft grid looks similar to the 10ft grid at this

scale. Note that the river labeled R in the top figure is in basin 3. In the bottom

figure generated on a 40ft grid, the river labeled R is contained in basin 5. This is

the only noticeable difference between the level 1 Pfafstetter basins extracted from

the 10, 20, and 40ft grids.

Upon zooming to the outlet of basin 5 as shown in Figure 6.11, we begin to see

the reason for the different delineations. Figure 6.11(a) shows the underlying terrain

at 10ft resolution before hydrological conditioning. An overlay of basin boundaries

(black) and the the rivers (white) extracted from the hydrologically conditioned 10ft

DEM is also shown. Two large rivers, labeled R and R′, join the main river very

close to each other. In the 10ft case, shown in Figure 6.11(b), the mouths of R and

R′ are separated by about a 1/4-mile (400m), and R′ is upstream of R. In the 20ft

case, shown in Figure 6.11(c), the main river contained in basin 5 migrates to the

southeast and the rivers R and R′ are barely separated with R′ still slightly upstream.

In the 40ft case, shown in Figure 6.11(d), R joins the main branch upstream of R′

and is therefore labeled as being part of basin 5. The Pfafstetter labels are consistent

for each of the three resolutions, but in areas where two tributaries join a main river

close to each other, the relative upstream ordering of tributaries can change and

thus the watershed boundaries change. While it is good that the Pfafstetter labeling

algorithm can generate appropriate labels as river connectivity changes, only one of

these possible labelings is correct in reality. A visual inspection of Figure 6.11(a)

seems to indicate that R likely joins the main river bed upstream of R′ and the

National Hydrography Dataset available online from the USGS also indicates that R

(Mosley Creek) flows into the Neuse River upstream of R′ (Contentnea Creek) about

10 miles East-northeast of the city of Kinston, NC. Thus, the lower resolution 40ft
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(a)

(b)

Figure 6.10: Two watershed regions labeled by Pfafstetter algorithm have quite
different boundaries in the (a) 10ft grid and (b) 40ft grid.
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grid has the correct order of river connectivity, though at all three resolutions, river

R joins the main river about 1 mile East of the actual mouth of Mosley Creek.

While large noticeable changes in watershed boundaries are rare in the higher

levels of the watershed hierarchy, slight differences in watershed boundaries are more

common in smaller watersheds less than an few thousand acres, where there are a

number of small streams of roughly the same flow accumulation flowing into a main

channel. In areas where the hydrological conditioning stage has flooded much of the

terrain, the flat routing method can create some artificial river networks that do not

agree well with reality and can result in inaccurate Pfafstetter basins. Because the

Pfafstetter labeling method encodes watershed connectivity properties, it is relatively

straightforward to split or merge the boundaries of two Pfafstetter boundaries if the

user knows the correct connectivity from auxiliary data sets. Overall, we find that

the optimal choice of grid resolution depends on the application. For a regional study

covering the entire Neuse basin, a 40ft grid produces both a detailed river network

and watershed hierarchy that only differs from the 10ft or 20ft grid in a few spots.

For more local studies, a 20ft or 10ft grid would be more suitable. The increased

detail of a high resolution grid is quite noticeable when zoomed into a very small

area and the lidar data certainly support grids with resolutions as high as 10ft.

6.7 Sensitivity to Persistence Thresholds

One of the advantages of our new pipeline implementation over previous algorithms

is the ability to set a persistence threshold to remove only the subset of sinks from a

grid DEM that have a persistence value below the threshold. In this section we con-

sider how the persistence threshold effects the river network and thus the watershed

hierarchy. We extracted watershed boundaries from a 20ft grid DEM after removing

sinks below three persistence thresholds; 50ft, 40ft, and 30ft. None of these thresh-
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(a) (b)

(c) (d)

Figure 6.11: A detailed view of Figure 6.10. (a) Base terrain shown at 10ft resolu-
tion. Watershed boundaries at (b) 10ft, (c) 20ft, and (d) 40ft grid resolutions
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olds removed all sinks; the number of sinks remaining after hydrological conditioning

were 15, 28, and 96, for the 50ft, 40ft, and 30ft grids, respectively. The highest

persistence of any minima in the basin was 253 feet inside a quarry Northeast of

Raleigh-Durham International Airport. Figure 6.14 shows the location of sinks and

the boundaries of their drainage areas for the three persistence thresholds. In the

50ft case (Figure 6.14), we could easily visually inspect each sink individually. Of

the fifteen total sinks, thirteen of these sinks were genuine quarries with no drainage

outlet and were correctly preserved by the hydrological conditioning algorithm. An

example of such a quarry is shown in Figure 6.12. The area draining into the quarry

is relatively small at 600 acres (240 hectares) and this excluding this drainage area

from the river network does not significantly alter the watershed boundaries on a

regional scale. This is to be expected as quarries do not typically drain large areas.

An example of a sink that is preserved with a threshold of 50ft but should have

been removed is shown in Figure 6.13. The drainage area of this sink is over 10

times larger at 7300 acres than the previous case. The river network is blocked

by a bridge and a road in the Southeast corner of the image where the watershed

boundary is almost linear. Most of the water in this watershed should flow out under

the bridge which is about 25 feet above the river surface. However, the quarry just

upstream of the bridge results in the hydrological conditioning algorithm assigning

a high persistence value (170+ feet) to this quarry and directing all water blocked

upstream by the bridge into the quarry. The correct modification to the terrain would

be to remove the bridge crossing the river just East of the quarry. The quarry would

still have a high persistence, but water not within the quarry boundaries would travel

around the quarry and under the bridge. With the exception of this example and

one other small watershed, a persistence threshold of 50ft in this case study removed

almost all sinks that were not quarries.
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Figure 6.12: A quarry and its 600 acre watershed is preserved with a persistence
threshold of 220 feet or less.
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Figure 6.13: The largest (7300 acres) incorrectly computed closed basin, shown in
white, for a persistence threshold of 50ft. A bridge in the southeast blocks flow.

As we lower the persistence threshold, more sinks are kept and fewer are removed.

At a persistence threshold of 40ft, 13 additional sinks appear. The drainage area

boundaries are shown in Figure 6.14(b). These additional sinks are all examples

of small streams being blocked by bridges, but the drainage area of the additional

sinks is small and does not dramatically effect the watershed boundaries or the river

network. In particular, most of the Neuse river basin drains to a single outlet along

the coast in the southeast corner of the figure. However, if we lower the persistence

threshold to 30ft, we see dramatic changes in the number and drainage area of the

preserved sinks as illustrated in Figure 6.14(c). The most obvious observation is that

water upstream of the Falls lake dam, shown in pink shading, is disconnected from

the rest of the basin. Also, many more minima appear, especially in urban areas such

as Wake county, just South of the disconnected Falls lake basin. A brief inspection

of a number of these sinks in Wake county revealed 62 total sinks, 47 of which were

caused by bridges blocking rivers, 10 of which were around quarries and five whose
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source was not obvious.

Because a large portion of the Neuse river basin is detached from the main basin

with a persistence threshold of 30ft, we expect the watershed boundaries to be sig-

nificantly different for persistence thresholds of 50ft and 30ft. In Figure 6.15, we see

that while basin 9 loses a significant fraction of its drainage area when lowering the

persistence to 30ft, it is still larger than basin 8 and the ordering of the Pfafstetter

basins (indicated by color) is unchanged. If a further downstream area lost a signifi-

cant fraction of its total area by lowering the persistence threshold, re-ordering and

re-labeling of basins would be much more likely.

If we look at the component that was cut off from the Neuse river basin in Fig-

ure 6.15, we can see by the watershed labels in Figure 6.16, that flow has been routed

in an unrealistic way. Note that under the Pfafstetter label method, water in even

numbered basins and basin 9 flow into lower numbered odd basins. The figure shows

a region surrounded by even number basins plus basin nine. Thus, this region has no

outlet to any other region. This is consistent with the observation that the region is

disconnected from the main Neuse river basin in the terrain model. The odd num-

bered basins are tightly clustered in the center where a sink collects all of the water.

If we looked closely at the flow directions in this basin, we would see flow from basin

4 being directed Northwest towards the center, when in the real terrain water flows

Southwest towards the Falls lake dam. Thus lowering the persistence below 30ft will

not yield a good hydrologically conditioned DEM.

In the three persistence values tested in this section, we found that persistence

can indeed be used to preserve real terrain features such as quarries, but that many

bridges and an occasional dam create sinks with a moderately high persistence that

should be removed. The gap in persistence values between the bridge with the highest

persistence and the quarry with the lowest persistence is over 20ft. Thus, a persistence
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(a)

(b)

(c)

Figure 6.14: Drainage area boundaries of sinks shown in black with overlay of North
Carolina county boundaries. A persistence threshold of (a) 50ft removes almost all
sinks caused by bridges and creates one large primary basin. A threshold of (b)
40ft results in 28 remaining sinks, but the primary basin is intact. For a thresh-
old of (c) 30 ft, the Neuse river basin becomes disconnected at the Falls lake dam
(Northwest/shaded), and 96 sinks remain, most of which are due to bridges.
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(a)

(b)

Figure 6.15: Pfafstetter basins for (a) persistence threshold of 50ft and (b) 30ft.
Even though the headwaters are disconnected in the 30ft case, the ordering of the
basin remains unchanged.
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Figure 6.16: Watershed of Falls Lake area when persistence threshold is 20ft. Rivers
computed in the southeast region eventually drain to a sink in the center of the image,
instead of flowing under the dam which is to the the southeast

threshold of 55ft in this case study preserves all the quarries while routing flow across

bridges. This new method of scoring and removing sinks below a threshold score could

prove to be a valuable tool for many hydrological studies.

6.8 Conclusions

In this Chapter, we demonstrated that the algorithms presented in this thesis form a

scalable and flexible pipeline that efficiently process massive amounts of data derived

from modern remote sensing methods. Our primary emphasis in this thesis was on

scalable algorithms, but we have seen that our tunable design allows us to explore

interesting modeling issues as well. While lidar provides many potential benefits to

the GIS community, our experiments highlighted the need for additional work in

some areas. Bridges are particularly problematic for hydrological flow routing. We

have seen in this Chapter that the topological persistence of most sinks blocked by

bridges have a high persistence value, but this value is much lower than features such

as quarries. We believe further improvements in th GIS modeling using topological

persistence can help identify bridges effectively and lead to improved hydrological
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conditioning models that can automatically make small local cuts through bridges.

This will significantly reduce the extent of terrain modification via flooding and

dramatically reduce the size of flat areas.

Bridge removal is also important for accurate watershed extraction. As discussed

in Section 6.6, subtle changes in the order of river mouths joining a main channel can

significantly change watershed boundaries computed using the Pfafstetter method.

Often times, odd flow routing paths are the result of poor flat routing models on areas

that have been hydrologically conditioned by flooding sinks. Flooding sinks caused

by bridges in not an ideal approach, but future work in bridge removal, hydrological

conditioning alternatives to flooding, and improved flow routing on flat areas could

help significantly improve the quality of data derived from hi-resolution terrains. It

is likely that many of these improved models can be incorporated into our flexible

and scalable pipeline so that future model improvements can quickly be integrated

into a framework that scales to massive modern elevation data sets.
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