
Figure 2.3: Neuse river basin data set

Points from neighboring quad-tree segment are not found in advance as in our

algorithm, but are found when interpolating a given quad-tree segment q; the algo-

rithm creates a window w by expanding q in all directions by a width δ and querying

the quad tree to find all points within w. The width δ is adjusted by binary search

until the number of points within w is between a user specified range [nmin, nmax].

Once an appropriate number of points is found for a quad-tree segment q, the grid

cells in q are interpolated and written directly to the proper location in the output

grid by randomly seeking to the appropriate file offset and writing the interpolated

results. When each segment has a small number of cells, writing the values of the

T output grid cells uses O(T ) ≫ sort(T ) I/Os. Our approach constructs the output

grid using the significantly better sort(T ) I/Os.
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Figure 2.4: Outer Banks data set, with zoom to very small region.
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Figure 2.6: Interpolated surface generated by our method. Black dots indicate
cells where the deviation between our method and v.surf.rst is greater than three
inches.

ment between the interpolated surfaces and the base grid is not as strong as the

agreement between the algorithms when compared to each other. An overlay of re-

gions with deviation greater than two feet on base map shown in Figure 2.7(a) reveals

the source of the disagreement. A river network is clearly visible in the figure indicat-

ing that something is very different between the two data sets along the rivers. NC

Floodmaps uses supplemental break-line data that is not part of the lidar point set

to enforce drainage and provide better boundaries of lakes in areas where lidar has

trouble collecting data. Aside from the rivers, the interpolated surface generated by

either our method or the prior GRASS implementation agree reasonably well with

the professionally produced and publicly available base map. Furthermore, it was re-

cently observed by Hodgson et al. [55], that the mean absolute error and the RMSE

of the lidar signals themselves are 8.7 inches and 13.0 inches respectively in smooth

open terrain and these errors can be over two feet in forested or mixed cover terrain.
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(a)

Figure 2.7: Interpolated surface generated by our method. Black dots indicate cells
where the deviation between our method and ncfloodmap data is greater than two
feet.

Figure 2.8: Cumulative distribution of deviation between interpolated surface and
data downloaded from ncfloodmaps.com. Deviation is similar for both our method
and v.surf.rst for all values of kmax.
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(a)

(b)

(c)

Figure 3.4: (a) Original terrain. (b) Terrain flooded with persistence threshold
τ = 30. (c) Terrain flooded with τ = ∞.
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(a)

(b)

Figure 3.9: (a) Terrain and flow graph edges shown in blue with flooding of only
low persistence sinks (b) Terrain and flow graph edges with flooding of all sinks.

70



(a) 03 South Atlantic-Gulf (b) 0302 Neuse-Pamlico

(c) 03020201 Upper Neuse (d) 030202 Neuse

Figure 4.1: A region, sub-region, basin and sub-basin in the USGS Hydrologic Unit
System.

of the terrain in the United States, it has some disadvantages. First, while the HUC

boundaries are available for download, there is no automatic way to compute the

USGS hydrological units given a digital elevation model. As the quality and resolution

of digital elevation models improve, the published HUC boundaries may not exactly

match the boundaries suggested by the data. Second, HUCs at the sub-basin level

may be too large for a particular application. Further sub-levels are in development

but are not complete at this time. Third, HUCs are only available for the United

States. Other countries and organizations have other coding methods [90]. Finally,

the digits chosen for a particular HUC are, for the most part, arbitrary. Given two

HUCs, it is often difficult or impossible to determine if water from one HUC flows

into the other based on their numbering alone. Because finding the hydrological units

upstream and downstream from a given location is a common task, a numbering

scheme that allows a computer or user to relate hydrological units, without the need

for visual inspection, would be helpful.
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Figure 6.2: Sample bare Earth lidar data still shows some man-made features in-
cluding the bridge in the center left and eight baseball fields grouped into the two
circles shown in the foreground.

area of roughly 6200 square miles with an average point spacing of approximately 20

feet. However, the point spacing is rather heterogeneous, ranging from nine feet in

open areas to more than 50 feet in densely vegetated regions. Because lidar pulses

are absorbed over water, there are few data points over large bodies of open water.

The data have been pre-processed by the data providers to remove large amount of

vegetation and many buildings from the terrain. However, many man-made features

still exist, including bridges, as shown in Figure 6.2. Because this lidar data was

collected for the purposes of flood mapping, some bridges like the one shown in

Figure 6.3 have been cut during pre-processing to allow the flow of water under the

bridge. While many bridges across major waterways have been cut, Figure 6.2 shows

that this is not always the case.
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Figure 6.3: In this lidar example, the bridges have been cut by the data providers
to allow water to flow through. Many bridges across major waterways have been cut,
but many bridges across smaller streams have not.

6.2.1 Software and Hardware

We implemented our algorithms using the C++ programming language and the

Linux operating system. We built our code on a number of external software li-

braries, primarily TPIE, GRASS, and GDAL. As mentioned in the introduction,

TPIE [11], is a templated, portable, I/O environment written in C++ that provides

support for implementing I/O-efficient algorithms and data structures. Our imple-

mentation work was greatly simplified by the fact that all main primitives of our

algorithms—scanning, sorting, stacks and priority queues—are already implemented

I/O-efficiently in tpie. For data visualization and basic data manipulation, we used

the open-source GIS GRASS [52], written primarily in C. In particular, for our grid

DEM construction algorithm, we used the regularized spline with tension interpo-

lation code that exists in the GRASS module s.surf.rst. Because of scalability

problems with the new vector engine in GRASS 6.2, we used GRASS 5.4 for our
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Figure 6.4: DEM of Neuse river basin derived from lidar points

148



(a)

(b)

Figure 6.5: (a) First level of Pfafstetter watershed labels for largest basin in Neuse.
(b) Recursive decomposition of basin four.
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Figure 6.6: Falls lake, with a dam located near the Southeast corner of the figure.
The boundary of the Falls lake flat is outlined in black while blue lines show rivers
entering the reservoir and routed across the flat area.
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Figure 6.7: Rivers extracted using ε =10 ft (white) and 20 ft (black).

20ft case however, the extracted river (black) follows a different course. Because the

default ε=10ft results in a more accurate grid DEM than the 20ft case, we chose the

default ε of one-half the grid cell size for our other tests. We found that decreas-

ing ε further only increased the run time of the construction without significantly

improving the quality of the DEM.

For our final set of experiments on grid construction parameters, we varied the

smoothing parameter while using kmax = 8 and ε =10ft. A smoothing parameter of

0 results in a interpolated surface that passes exactly through the input points. For

a non-zero smoothing parameter, the algorithm constructs an approximation surface

in which the input points can deviate from the constructed surface. The default

smoothing parameter is 0.1. Smoothing only effects the interpolation routine, and

not the quad-tree construction. By increasing the smoothing parameter, we can de-

crease the number of sinks in the constructed terrain. Our results are summarized

in Table 6.5. We compute the RMS deviation by comparing the grids to the base
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(a)

(b)

(c)

Figure 6.9: Spatial distribution of deviations from (a) 20ft grid elevations for (b)
10ft grid (c) 40ft grid. White points indicate spots where vertical elevation deviation
exceeds 5ft.
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(a)

(b)

Figure 6.10: Two watershed regions labeled by Pfafstetter algorithm have quite
different boundaries in the (a) 10ft grid and (b) 40ft grid.
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(a) (b)

(c) (d)

Figure 6.11: A detailed view of Figure 6.10. (a) Base terrain shown at 10ft resolu-
tion. Watershed boundaries at (b) 10ft, (c) 20ft, and (d) 40ft grid resolutions
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Figure 6.12: A quarry and its 600 acre watershed is preserved with a persistence
threshold of 220 feet or less.
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Figure 6.13: The largest (7300 acres) incorrectly computed closed basin, shown in
white, for a persistence threshold of 50ft. A bridge in the southeast blocks flow.

As we lower the persistence threshold, more sinks are kept and fewer are removed.

At a persistence threshold of 40ft, 13 additional sinks appear. The drainage area

boundaries are shown in Figure 6.14(b). These additional sinks are all examples

of small streams being blocked by bridges, but the drainage area of the additional

sinks is small and does not dramatically effect the watershed boundaries or the river

network. In particular, most of the Neuse river basin drains to a single outlet along

the coast in the southeast corner of the figure. However, if we lower the persistence

threshold to 30ft, we see dramatic changes in the number and drainage area of the

preserved sinks as illustrated in Figure 6.14(c). The most obvious observation is that

water upstream of the Falls lake dam, shown in pink shading, is disconnected from

the rest of the basin. Also, many more minima appear, especially in urban areas such

as Wake county, just South of the disconnected Falls lake basin. A brief inspection

of a number of these sinks in Wake county revealed 62 total sinks, 47 of which were

caused by bridges blocking rivers, 10 of which were around quarries and five whose
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(a)

(b)

(c)

Figure 6.14: Drainage area boundaries of sinks shown in black with overlay of North
Carolina county boundaries. A persistence threshold of (a) 50ft removes almost all
sinks caused by bridges and creates one large primary basin. A threshold of (b)
40ft results in 28 remaining sinks, but the primary basin is intact. For a thresh-
old of (c) 30 ft, the Neuse river basin becomes disconnected at the Falls lake dam
(Northwest/shaded), and 96 sinks remain, most of which are due to bridges.
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(a)

(b)

Figure 6.15: Pfafstetter basins for (a) persistence threshold of 50ft and (b) 30ft.
Even though the headwaters are disconnected in the 30ft case, the ordering of the
basin remains unchanged.
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Figure 6.16: Watershed of Falls Lake area when persistence threshold is 20ft. Rivers
computed in the southeast region eventually drain to a sink in the center of the image,
instead of flowing under the dam which is to the the southeast

threshold of 55ft in this case study preserves all the quarries while routing flow across

bridges. This new method of scoring and removing sinks below a threshold score could

prove to be a valuable tool for many hydrological studies.

6.8 Conclusions

In this Chapter, we demonstrated that the algorithms presented in this thesis form a

scalable and flexible pipeline that efficiently process massive amounts of data derived

from modern remote sensing methods. Our primary emphasis in this thesis was on

scalable algorithms, but we have seen that our tunable design allows us to explore

interesting modeling issues as well. While lidar provides many potential benefits to

the GIS community, our experiments highlighted the need for additional work in

some areas. Bridges are particularly problematic for hydrological flow routing. We

have seen in this Chapter that the topological persistence of most sinks blocked by

bridges have a high persistence value, but this value is much lower than features such

as quarries. We believe further improvements in th GIS modeling using topological

persistence can help identify bridges effectively and lead to improved hydrological

177


