
Hybrid MPI/GPU Interpolation for Grid DEM Construction

Andrew Danner
Swarthmore College

Swarthmore, PA 19081
adanner@cs.swarthmore.edu

Jake Baskin
Lindblom Math and Science Academy

Chicago, IL 60636
jake.baskin@gmail.com

Alexander Breslow
University of California, San Diego

La Jolla, CA 92093
abreslow@cs.ucsd.edu

David Wilikofsky
Swarthmore College

Swarthmore, PA 19081
dwiliko1@swarthmore.edu

ABSTRACT

The proliferation of lidar technology in remote sensing has
resulted in extremely large, high resolution point clouds cov-
ering a wide variety of terrain. Constructing a grid digital
elevation model (DEM) from these large data sets requires
extensive computational resources and ample disk space. We
propose a framework for leveraging modern computing re-
sources including multi-core distributed systems and gen-
eral purpose GPU computing to reduce computational bot-
tlenecks and accelerate DEM construction. We employ an
I/O-efficient strategy using quad trees to automatically par-
tition the lidar point clouds into a set of independent work
bundles. We then distribute these work bundles to multi-
ple GPU-equipped hosts which independently interpolate a
portion of the DEM and return partial results. Finally, we
gather the partial results and assemble the final DEM I/O-
efficiently. Our approach balances I/O, computation, and
network communication to reduce bottlenecks. Experimen-
tal results show that our approach scales linearly with the
number of compute hosts, and achieves speed-ups of 25× or
greater using GPU computing. These results make it practi-
cal to use more complex interpolation methods such as regu-
larized splines with tension, which provide geomorphological
advantages over simpler interpolation methods such as lin-
ear interpolation, nearest neighbor interpolation, or natural
neighbor interpolation.

Categories and Subject Descriptors: D.1.3 [Concur-
rent Programming]: Distributed programming, Parallel pro-
gramming

General Terms: Algorithms, Design, Performance

Keywords: Interpolation, MPI, CUDA, Terrain Modeling

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
ACM SIGSPATIAL GIS ’12, November 6-9, 2012 Redondo Beach, CA,
USA.
Copyright 2012 ACM ISBN 978-1-4503-1691-0/12/11. . . $15.00.

1 Introduction
Modern remote sensing methods such as lidar continue to
acquire spatial data at unprecedented rates. Airborne lidar
sensors are capable of measuring the elevation of Earth’s
surface at horizontal resolutions of 30cm or better. Many
applications in transportation, hydrology, ecology, and ur-
ban planning benefit from this very high resolution data.
These applications, however, do not work directly on the raw
waveforms or scattered point clouds generated by the lidar
sensors. Instead, users compute a digital elevation model
(DEM) from the lidar points and run analysis on the digi-
tal elevation model. The extremely large size of the input
lidar data sets makes the computation of a large, high reso-
lution DEM a computationally intensive and algorithmically
challenging task.

For simplicity and efficiency, one of the widely used digital
elevation models used in GIS is the grid model in which a sin-
gle functional value is stored in each cell of a two-dimensional
uniform grid, G. Lidar points are not sampled on a uniform
grid, but instead are often represented as a set S of scattered
points in R2 associated with a height function h : S → R. An
interpolation or approximation method transforms the scat-
tered lidar representation S to a real valued height function
f : R2 → R which can then be evaluated at regularly spaced
grid cells to compute the final grid DEM G.

Interpolation and approximation of point data is a well
studied problem in GIS. A variety of methods including lin-
ear interpolation, inverse distance weighting (IDW), kriging,
spline interpolation and natural neighbor interpolation have
been developed; refer to [15] for a thorough overview. Be-
cause of the complexity and quantity of lidar data, simpler
methods such as triangulating the point set and linearly in-
terpolating triangles are often preferred over more complex
methods. Given the high density of lidar data, this may pro-
duce adequate elevation models, but the underlying model
is not smooth, and any attempts to extract relevant geomor-
phological parameters such as slope and curvatures result in
numerous discontinuities. The regularized spline with ten-
sion (RST) [16] approximates the surface using higher order,
differentiable functions, to produce a smooth surface and
provide improved means to evaluate slope and curvature.
This better quality surface approximation for geomorphol-
ogy applications comes at a significantly increased compu-
tational cost.

The large, multi-gigabyte size of modern lidar data sets,
makes processing the data more computationally demand-
ing. However, technical advances in computing power have
enabled the development of new algorithms to efficiently use
modern hardware resources, particularly parallel processing
capabilities in both multi-core CPU systems and graphics
processing units (GPUs). Traditionally GPUs have been
used to render 3D geometric models on a two dimensional
display of pixels. Typically, the calculations involve ex-
ecuting the same operation, e.g., a matrix multiplication
for lighting, on a large stream of geometric objects repre-
sented by vectors of vertices. GPUs have been optimized
for massively parallel execution of vector operations and
large memory bandwidth. By exposing a model of compu-
tation for programming these GPUs, as done by NVIDIA’s
CUDA library [19] or OpenCL [13], new applications can ex-
tend the computation of GPUs beyond computer graphics
and into general purpose GPU computing (GPGPU). In the
area of geospatial processing, GPGPU computing has seen
increased use [12, 10, 14, 5], including for the problem of
DEM construction [4].

Our results. In this paper we develop a framework for effi-
ciently constructing large, high-resolution grid DEM from li-
dar point clouds. Our system is designed to reduce computa-
tion bottlenecks and leverage modern hardware resources in-
cluding multi-core CPUs and GPGPUs. We experimentally
validate our results using a 96 node GPU cluster Forge [22]
available from NCSA and XSEDE [9]. Our approach has
the following key components:

1. A scalable, I/O-efficient, quad tree segmentation al-
gorithm to automatically partition a large lidar point
cloud into smaller independent work bundles represent-
ing a subset of the final output grid DEM.

2. A distributed multi-core component using a message
passing interface (MPI) implementation to assign work
bundles to multiple processes.

3. A GPU component which accelerates interpolation,
particularly for complex interpolation methods like reg-
ularized spline with tension (RST).

Our experimental results show that our approach scales
linearly from two to over 100 hosts. Using GPU RST inter-
polation further accelerates our computation by a factor of
25× or greater, depending on the tunable size of the work
bundles. In one typical case, we computed a 1000x1000
DEM from 1.2 million lidar points in 50 seconds using 48
GPU enabled hosts. The same experiment using a CPU
only algorithm on a single host required 3.3 hours, resulting
in a 239× speed-up for our approach.

Our paper is organized as follows. In Section 2 we re-
view the quad tree based segmentation algorithm we use to
decompose large lidar point sets into smaller regions. In Sec-
tion 3 we describe our approach for distributing computa-
tion tasks across multiple hosts, collecting the results, and
assembling the final output DEM. Section 4 gives a brief
overview of GPU programming and the regularized spline
with tension interpolation method. It also describes how
we implement RST interpolation on the GPU. We conclude
with a summary of experiments and results which demon-
strate the scalability of our framework.

2 Segmenting large points sets

The computational complexity of most interpolation meth-
ods makes it impractical to directly interpolate very large
point sets commonly collected via lidar. For this reason,
scalable algorithms employ a segmentation routine to parti-
tion the region of the final output grid into a disjoint set of
sub-regions, where each sub-region contains a smaller subset
of the original lidar point set. Once the data are partitioned,
each sub-region can be interpolated independently. A pos-
sible side effect of the partitioning is that boundary effects
may be visible where two sub-regions share a common edge.
A solution to this side effect is to use both points within a
sub-region R and points from neighboring sub-regions adja-
cent to R to interpolate the surface within R.

A frequently used data structure for partitioning large
point sets is the quad tree [6]. For very large data sets,
quad trees can be built I/O-efficiently using the methods of
Agarwal et al. [2] or Hjaltason and Samet [11]. A variant
of the first approach was further used by Agarwal et al. [1]
to construct a DEM from very large lidar point sets. While
their implementation runs only as a single threaded appli-
cation, the quad tree construction method used forms the
basis of our approach. For completeness, we include a sum-
mary of this quad tree construction algorithm, and highlight
the features that make this method particularly suitable for
our approach.

2.1 Quad tree construction

The result of Agarwal et al. [1] constructs a grid DEM in
three phases; a segmentation phase which constructs a quad
tree on an input point set; a neighbor finding phase which
computes for each sub-region R, the points in all regions
that share a border with R; and an interpolation phase,
which processes each region and constructs a final output
grid DEM. Our paper proposes a replacement interpolation
phase which is distributed across multiple processes and can
be executed on a GPU. However, our approach relies on the
segmentation phase and neighbor finding phase we summa-
rize below.

Given a set S of N points, a desired output grid bounding
box [x1, x2] × [y1, y2], and a desired maximum number of
points per region, k, Agarwal et al. [1], construct a quad
tree [6] T , on S, such that each quad tree leaf has no more
than k points. The basic premise is to incrementally build T
top-down by inserting the points of S into an initially empty
quad tree. For each point p, we traverse a path from the
root of T to the one leaf q whose corresponding sub-region
contains p. If q contains fewer than k points, we simply
add p to q. Otherwise, we split q into four new leaves, each
representing a quadrant of q and distribute each point within
q to the appropriate new leaf.

To make this approach scalable to data sets too large to fit
in main memory, not all levels of the quad tree are computed
in memory in one pass. Instead, a layer of l levels of the
quad tree are constructed in a single pass over the data. The
parameter l is chosen such that a sub-tree of T containing l
levels can fit in memory along with a buffer for each leaf in
the sub-tree. The basic construction algorithm is the same,
but when a point reaches a leaf q of depth l in a layer of a
sub-tree of T containing more than k points, the leaf is not
sub-divided further, but instead the points are written to an
external buffer Lq for later processing. Once all points have

Figure 1: A quad tree leaf q and its eight shaded neighboring
regions.

been inserted into a particular layer, the quad tree layer is
written to disk and any external buffers are handled recur-
sively by constructing new layers for each external buffer Li.
See [1] for further details.

2.2 Finding neighbors

Once we have constructed the quad tree T on the set of
points S, our next step is to identify for each leaf q of T , the
set of points Sq in all neighboring leaves of q. Two leaves are
neighbors of each other if the regions associated with each
leaf share a common boundary; either an edge or a corner.
Figure 1 shows an example of all the neighbors of a sample
quad tree leaf.

As was the case for the construction of the quad tree,
Agarwal et al. [1] use a layered approach to identify neigh-
boring points for each quad tree leaf. We begin with a list L
of all quad leaves in T and the regions associated with each
leaf in L. For each leaf q ∈ L, we filter the leaf through the
layers of T , starting with the layer associated with the root
of T . Starting with the root v of each layer, we compare q
to each region associated with the children of v. If q shares
a boundary with a child u of v, or if the region associated
with q is contained by the region associated with u, then
q is a neighbor of at least one leaf in the tree rooted in u.
We then recursively visit each child node that neighbors or
contains q. Using the layered approach, each query either
terminates at a leaf w of T or an internal node z at the bot-
tom of one layer of the quad-tree. In the first case, we add a
pair (q, Sw) to a list Λ on disk where Sw is the set of points
contained in w, a leaf adjacent to q. For the queries neigh-
boring or contained within an internal node z at the bottom
of a layer, we add q to a external list Lz. After processing
all leaves in L through the first layer of T , we recursively
identify neighboring points for each leaf in each list Lu for
each layer rooted at u.

After processing all layers of T , the list Λ contains a set
of pairs (q, Su) indicating that the points in Su are in a leaf
which is a neighbor of the leaf q. At this point, it is easy
to construct the set Sq containing all points in all neighbors
of a leaf q; we simply sort Λ by the first element in the pair
(q, Su) and scan the resulting list. All neighboring points of
q will be contiguous in the final sorted list.

This particular construction and post-processing step en-
ables our intuitive parallel interpolation phase. What the
neighbor finding phase produces is a sequential stream where
we can access information about the boundary of each quad
tree leaf q and the points contained both within q and the
neighbors of q in a simple sequential scan. Agarwal et al. [1],
proceeded by serially processing and interpolating the region
associated with q using the points Sq. We describe our im-
provements to this serial approach in the next two sections.

3 Distributed Computation

The quad tree construction decomposes the entire output
grid DEM into a set of smaller sub-regions so we can inter-
polate each sub-region independently using a small number
of points instead of trying to interpolate the entire region
using the entire input point set S. Furthermore, the neigh-
bor finding phase of the previous section pre-computes for
each region represented by a quad tree leaf q, the points in
neighboring leaves of q and arranges all these neighboring
points sequentially on disk in a large list Λ. This naturally
leads to the following sequential algorithm for constructing
the entire DEM: For each quad tree leaf q, we sequentially
construct an interpolated surface f(x, y) using the points Sq
inside q and its neighboring leaves. For each cell (col, row),
we compute the corresponding (x, y) values for the center of
the cell and evaluate the interpolated surface z = f(x, y).
For scalability, rather than writing this cell value directly
to the final location in the grid DEM using random access
I/O, we write the tuple (col, row, z) to a file G and sort G
by grid order once all leaves have been interpolated. This
approach is summarized in Algorithm 1. We refer to a single
pair (q, Sq) as a work bundle. A work bundle represents the
finest level of granularity of the entire interpolation task.

Algorithm 1 Sequential Interpolation

G← ∅
for all (q, Sq) ∈ Λ do

construct interpolated surface f(x, y) using Sq
for all cells (col, row) ∈ q do

z ← f(x(col), y(row))
write (col, row, z) to G

end for
end for
Sort G by grid order
Scan sorted stream G and write to final output DEM

Since the region corresponding to each leaf q is interpo-
lated independently, the outer loop of Algorithm 1 can easily
be parallelized and multiple processing units could simulta-
neously processes individual regions. We develop our par-
allel algorithm so that it is easy to implement in a popular
parallel application framework, MPI [7]. MPI defines a mes-
sage passing interface that allows multiple processing units
to communicate via the exchange of messages. Each message
has a source ID, a destination ID, a message tag ID, and a
buffer of typed data containing the contents of the message.
The MPI framework provides send and receive functions to
implement communication between processes. Each process
participating in a parallel computation has unique ID known
to all other processes. Our parallel solution for interpolation
uses P ≥ 3 processes to distribute computation. A particu-
lar process serves one of three roles: scatterer, gatherer, or
worker. In our approach, there is one dedicated scatterer,
one dedicated gatherer and P − 2 worker processes. These
roles are illustrated in Figure 2 and described below.

The scatterer is the only process that reads from the file
Λ containing the pairs (q, Sq). While there are still unread
pairs, the scatter process reads the next pair from Λ, waits
for a free worker process i and distributes a work bundle
(q, Sq) to i by exchanging a few messages containing in-
formation about q, the grid sub-region associated with q,

Figure 2: Accelerating interpolation by distributing work bundles across multiple worker processes using MPI. A scatter
process handles reading work bundles from disk and distributing them to workers. The gather process collects cells from
workers and writes them unsorted to a file G. A final sort of G produces the final DEM.

and one or messages containing the points in Sq. See Algo-
rithm 2.

Algorithm 2 Scatter

for all (q, Sq) ∈ Λ do
find free worker, i
send (q, Sq) to process i via MPI

end for

A worker process repeatedly receives messages containing
a work bundle, constructs the interpolated surface as done
in the serial algorithm, and evaluates the cell values as seen
in Algorithm 3. Instead of each worker writing the (i, j, z)
cell values directly to the output file G, each worker sends
the cell values to the gatherer process.

Algorithm 3 Worker

while (q, Sq) received via MPI from scatterer do
construct interpolated surface f(x, y) using Sq
for all cells (col, row) ∈ q do

z ← f(x(col), y(row))
send (col,row,z) to gatherer via MPI

end for
Notify scatterer via MPI that this process is ready.

end while

The gatherer process described in Algorithm 4 collects
(i, j, z) values from worker processes and writes the values
to G. Once the gatherer has received all the cells, it sorts G
by grid order and writes the final output DEM.

Decomposed in this way, only two processes need to per-
form file I/O. The scatterer is the only process reading files
and the gatherer is the only process writing files. The ex-
change of messages is implemented over the network inter-
connect, so that no disk I/O is necessary for the worker
processes. Aside from the sorting by the gatherer process,
all computation is done by workers. If the I/O bandwidth
is sufficient, a single process could server multiple roles. For
instance, the role of scatterer and gatherer could be assigned
to a single process.

Algorithm 4 Gather

G← ∅
Find worker i ready to send computed cells
while cells available from some worker i do

receive (col, row, z) from worker i via MPI
write (col, row, z) to G
Find another worker i ready to send computed cells

end while
Sort G by grid order
Scan sorted stream G and write to final output DEM

Besides limiting I/O contention, our distributed interpo-
lation has a number of advantages. Our approach is scalable
as there is limited communication between nodes. To reduce
message overhead, points sent to workers and cells sent to
the gatherer are not sent one at a time, but are instead
buffered into blocks of multiple points/cells. Because the
scatter and gather processes do not perform much compu-
tation, they can devote hardware resources to file I/O and
network communication. Conversely, for a particular work
bundle, a worker performs little network communication and
no I/O and can thus devote most of its hardware resources
to interpolation.

Our approach also follows naturally from the quad tree
decomposition and no additional post processing of the file
of work bundles (q, Sq) ∈ Λ is needed to switch from the
sequential algorithm to the distributed algorithm. As we
later describe in Section 5, the MPI implementation also
allows us to leverage multi-core nodes in distributed clusters
by assigning multiple workers to a single multi-core host.
We show that distributing computation using the methods
in this section provide linear speedups across a large range
for the number of processes. However, we can achieve even
greater performances by parallelizing the interpolation of a
single work bundle using GPU computing.

4 GPU Accelerated Interpolation

The quad tree segmentation and distribution of work bun-
dles are independent of the interpolation method used. To

construct terrains based on geomorphological principles, and
to demonstrate the performance benefits of parallelization,
we use the regularized spline with tension method described
by Mitasova et al. [18] as our interpolation method. This
method models the surface as a thin plate spline under ten-
sion, and is an example of one many different spline methods
that have been proposed for surface approximation. While
seemingly complicated, this method has many advantages
over other simpler approximation schemes. In particular, it
can accurately compute secondary surface properties such
as slope, profile curvature, and tangential curvature, which
are important in landform analysis and landscape process
modeling. We present the details of the regularized spline
with tension method here for completeness.

Given n input points {~r1, ~r2, . . . , ~rn}, where ~ri = (xi, yi),
each with a value zi, the surface is defined by

z(~r) = a1 +

n∑
j=1

λjR(ρj), (1)

R(ρj) = −[E1(ρj) + ln ρj + CE],

where z(~r) is the value at an arbitrary point ~r = (x, y), a1
is a constant trend, λj are a set of coefficients, and R(ρj)
is a radial basis function. In the function R(ρj), CE =

0.577215 . . . is the Euler constant, and E1(ρj) =
∫∞
ρj

e−u

u
du

is the exponential integral function. ρj = (ϕ|~r − ~rj |/2)2,
where |~r − ~rj | is a Euclidean distance function in R2, and
ϕ is a tunable tension parameter. As ϕ > 0 is decreased,
the approximation surface is tuned from acting like a rigid
metal sheet to a flexible membrane.

The n+ 1 coefficients a1 and λj are found by solving the
following linear system of equations

a1 +

n∑
j=1

λj [R(ρi) + δijw0/wj] = zi, i = 1, . . . , n (2)

n∑
i=1

λj = 0, (3)

where w0/wj are positive weights representing a smooth-
ing parameter for each point rj . Setting the smoothing pa-
rameter w0/wj to 0 results in an interpolation method where
the surface must pass through all the input points. Increas-
ing the smoothing for a particular point ~ri allows the sur-
face to approximate zi at ~ri. A particular advantage of this
method is that in addition to computing an interpolated sur-
face, high order derivatives of the surface can be computed
by direct evaluation of the derivative of z(~r).

Typically, a standard LUP decomposition is used to solve
the linear system of equations. This approach is used in im-
plementations by Agarwal et al. [1] and Mitasova et al. [17,
18]. For a set of n points, solving the linear system for coef-
ficients a1 and λi, 1 ≤ i ≤ n can be done in O(n3) time. We
use this serial implementation based on Crout’s algorithm
for in-place matrix LUP decomposition as our comparison
to our GPU approach described below.

4.1 CUDA architecture overview

For developing our GPGPU interpolation solution, we use
the CUDA architecture and computation model developed

for use on modern NVIDIA GPUs. CUDA capable GPUs
feature a very large number of computing processors, or
cores, high memory bandwidth, and floating point compu-
tation performance exceeding that of traditional CPUs. For
example, the Tesla M2070 GPU from NVIDIA features 448
cores, a 150GB/sec memory bandwidth, 6GB of GPU mem-
ory and 1030 Gigaflops of peak single precision floating point
performance.

On the software side, CUDA provides a small C-like li-
brary for programming the GPU. GPU code is described in
special GPU functions called kernels. The code contained
within a kernel executes on all GPU cores simultaneously,
reading and writing data from GPU memory. The CUDA
architecture is designed to efficiently access GPU memory,
particularly when sequential cores are accessing sequential
data elements in memory. The basic design of a CUDA ap-
plication is to copy data from CPU RAM to GPU memory,
run one or more kernels on the GPU cores, and transfer the
final result back to CPU memory for traditional, non-GPU
post-processing.

To gain the best performance on GPGPU applications,
it is important to keep CUDA cores busy and reduce the
amount of data transfer between CPU memory and GPU
memory. For small problem sizes, the overhead of copying
data between the CPU and GPU may be greater than the
time it takes to simply process the data sequentially on the
CPU directly.

4.2 GPU Interpolation
Our approach uses the GPU to process a single work bundle
(q, Sq) by executing three GPU kernels. The first kernel
uses the n points in Sq to construct an n+ 1×n+ 1 matrix
A, representing the coefficients of a1 and λi, 1 ≤ i ≤ n in
Equation 2 and Equation 3. By copying the x and y values of
the points in Sq to GPU, each GPU core can independently
compute a single element in A. If there are more elements
in A than there are GPU cores, we simply assign elements
of A to cores in a round robin fashion. Using a special grid
block and thread group model in CUDA, this assignment can
be handled automatically by CUDA in a single kernel call.
Note that since A is symmetric, we only need to compute
elements on or above the diagonal and copy elements from
above the diagonal to the lower side of A. The matrix A
resides entirely in GPU memory.

Our second kernel solves the system Aλ = z for λ, where
λ = [a1, λ1, . . . , λn]T and z = [0, z1, . . . , zn], where zi is the
elevation of the point (xi, yi, zi) ∈ Sq for 1 ≤ i ≤ n. Instead
of developing a full parallel GPU accelerated LUP decompo-
sition kernel, we leveraged the expertise of CULA [8], a set
of GPU accelerated linear algebra routines. CULA provides
GPU functionality similar to the CPU library LAPACK. Us-
ing the values for A and z stored in GPU memory, CULA
solves for λ using the GPU and stores the result back in
GPU memory.

Our final GPU kernel computes the values for cells in the
region of the final grid DEM defined by the subregion q,
by using λ, Sq, and the center coordinates of each cell in
the DEM to evaluate Equation 1. Using the GPU, we can
parallelize this computation by assigning each GPU core to
single cell. As was the case in the computation of the matrix
A, if there are more cells than cores, we can assign cells to
cores in a round-robin fashion using readily available CUDA
kernel semantics.

Once the cell values for a particular work bundle (q, Sq)
are computed by the GPU, we copy the values back to the
CPU for further processing. If, for example, we are us-
ing worker processes as in Algorithm 3 in Section 3, the
worker would not need to compute cell values on the CPU.
It would instead convert the GPU output cells to a sequence
of (col, row, z) tuples to send via MPI to the gatherer pro-
cess.

Overall, our GPU accelerated interpolation is a simple
adaptation of the standard RST algorithm implemented on
the CPU in prior work. The assignment of work to GPU core
is relatively natural in these matrix and grid-based applica-
tions as we have multiple matrix elements/cells performing
independent but similar computations. As we show in our
experimental results in the next section, this interpolation
can be significantly accelerated by using GPU resources.

5 Experiments

We tested the effectiveness of our system through a series
of experiments on a large GPU cluster available through
XSEDE [9], formerly Teragrid. Our primary test cluster was
the Dell NVIDIA Linux Cluster, Forge, available through
NCSA. The primary work queue on Forge consists of 32
AMD Opteron Magny-Cours 2.4 GHz dual-socket eight-core
nodes with 48GB of CPU memory. Each physical node is
connected to six NVIDIA Fermi M2070 GPUs. Each GPU
consists of 448 cores, 6GB of GPU memory and 1.03 Ter-
aflops of single-precision floating point performance. Infini-
Band QDR provides the network interconnect between phys-
ical nodes.

Implementation. We implemented our solution in C++
and CUDA 4.0. For the quad tree construction, we used the
implementation of Agarwal et al. [1], which also leverages
TPIE [3, 21], a library for easing the development of I/O-
efficient algorithms on large data sets. We implemented our
MPI layer to interface with TPIE files generated by the quad
tree construction phase. We used the openmpi 1.4.3 library
implementation of the MPI interface. The implementation
of the scatter node in the MPI layer used TPIE to write grid
values to disk and sort the final set of grid points. Initial ex-
periments indicated that there was sufficient I/O bandwidth
to allow the scatter and gather processes to be implemented
as a single MPI process, thus freeing an additional process
for the computationally intensive interpolation.

Our implementation was designed to easily swap interpo-
lation methods. Primarily, we wanted to explore the advan-
tages of a GPU version of the regularized spline with ten-
sion (RST) method with an standard CPU implementation.
The CPU implementation uses no external libraries, such
as LAPACK. Initial experiments indicated that our hand
coded implementation interfaced better with the output of
the quad tree construction output and avoided the overhead
of pre- and post-processing the input/output to conform to
LAPACK formats. We developed our CUDA implementa-
tion of RST with the CULA [8] routines for LUP decom-
position in mind so that we could leverage the expertise in
GPU LUP decomposition provided by the CULA library.

Data. For experimental data, we used lidar data files in
LAS format available from the Pennsylvania Spatial Data
Access (PASDA) Geospatial Data Clearinghouse [20]. Lidar
tiles are available in 10,000ft x 10,000ft tiles projected into
PA State Plane coordinates. We used lidar points classified

as ground points during a 2008 Survey of Delaware County
in Southeastern Pennsylvania. The average point density
was roughly one point per 50ft2, suitable for grid DEMs
with a spatial resolution of 10ft per cell or better.

Overview of Experiments. The performance of our im-
plementation depends on a number of parameters. The two
primary parameters that are independent of our implemen-
tation is the number of input lidar points N and the number
of cells, G in the final output grid DEM. Given a fixed N and
G however, there are number of parameters specific to our
implementation. The first is the maximum number of points
per quad tree leaf, k. A small value of k results in a large
number of leaves, each with a small number of points. This
means that the interpolation of each individual work bundle
(q, Sq) will be less computationally intensive for small k as
opposed to larger values of k. However, the number of work
bundles increases as k decreases.

The second parameter we can vary in our implementa-
tion is the number of processors P used in the distributed
computation. Increasing P should decrease overall runtime,
provided we do not create a communication bottleneck in
transferring data between an increasing number of processes.
Our final parameter that we explore is the advantage of us-
ing the GPU to compute the interpolation as opposed to a
standard CPU only implementation. We expect the GPU to
outperform the CPU, provided we can provide enough data
to the GPU to overcome the overhead of transferring the
data from CPU memory to GPU memory when running our
GPGPU interpolation.

As we are primarily interested in the scalability of our im-
plementation, our experimental discussion focuses mostly on
tuning the parameters k and P , and enabling or disabling
interpolation via the GPU. We summarize our results be-
low. Unless otherwise stated, our tests were run using a
single 10,000ft by 10,000ft lidar file in LAS format contain-
ing N = 2.2 million ground points. Our final output DEM
was constructed at 10ft resolution, containing 1000 rows,
1000 columns, and G = 1 million total cells. During quad-
tree construction, points closer than half the grid resolution
away from another point in the quad tree are discarded since
the output grid will not be interpolated at sub-pixel resolu-
tion. For our experiments, a quad-tree for 10ft resolution on
our 2.2 million point data set contained 1.5 million points
after thinning.

5.1 Quad tree construction

Our first set of experiments was to create multiple sets of
work bundles for various values of k, the maximum number
of points per quad tree leaf. This process is independent
of both the method of interpolation used and the number
of processes used for interpolation. Results are shown in
Table 1. As the quad tree is built in layers, processing all
layers starting at a particular depth in the quad tree effec-
tively reads and writes the input data set once. Thus, the
run-time is roughly a function of the depth of the quad tree
and the number of I/O passes over the data. With a reason-
able 8GB of memory, the quad tree and all work bundles can
be constructed in a single pass over the input and internal
sort of work bundles. Thus the overall run-time for the quad
tree construction is not significantly influenced by k.

For a even distribution of points, we would expect roughly
N/k total leaves. We can see this general trend in Table 1,

though for large values of k, we can see more heterogeneous
density and deviations from the expected N/k distribution.
For example compare the number of leaves for k = 10, 100,
and 1000, or k = 20, 200, and 2000. For 1.5 million input
points, we expect roughly 2200 leaves with k = 1000 and
1100 leaves with k = 2000. We see this behavior experi-
mentally for k = 2000, but some local regions with a high
density of points when k = 1000 results in some additional
leaf splitting of the quad tree leaves, and a higher than ex-
pected leaf count when compared to a uniform distribution
of points. This illustrates that lidar data indeed does not
always have a uniform point density and that a quad tree de-
composition which can adjust to non-uniform point density
is an appropriate data structure for lidar data.

k time leaves

10 16 257889

20 14 165267

50 15 59715

100 15 25779

150 14 16401

200 14 15720

300 16 10755

400 13 5478

500 13 4233

800 16 4056

1000 14 3747

2000 11 1029

5000 18 582

Table 1: Quad tree construction time, shown in seconds, is
mostly independent of the maximum number of points per
quad tree leaf, k

5.2 Impact of quad tree leaf size

The real impact of the number of points in the quad tree
leaf, k, is during the interpolation phase. Recall that the in-
terpolation on each work bundle uses both the points within
a quad tree leaf q and points in leaves which are neighbors
of q. A quick analysis [1] shows that the expected number of
neighbors for a quad tree leaf is eight, thus we expect the in-
terpolation of each work bundle to run on 8k = O(k) points.
In the case of RST interpolation and other related interpo-
lation methods which solve a system of k linear equations,
we expect the runtime per work bundle to be O(k3). Since
the total number of work bundles/leaves would be roughly
O(N/k) for uniformly distributed data, we expect the to-
tal run time to be O(Nk2). To experimentally verify this,
we ran our RST interpolation implementation on the work
bundles generated by the quad tree construction for various
values of k. We also compared the results using both a CPU
version of RST and our GPU version implemented in CUDA.
In each case, we used eight MPI processes. Using multiple
processes helped conduct initial tests of our MPI implemen-
tation, and accelerated our run-times to test a wide range of
values for k. Additionally, the cost model for running jobs

Figure 3: Run time vs k using CPU RST interpolant across
eight MPI processes. Note, horizontal scale is not linear

on the Forge cluster charges users per physical node, not
per number of processes. Since Forge contained one work
queue with eight GPUs on one physical node, we could con-
duct tests both with and without the GPU using eight MPI
processes for the same cost of using one process.

The results for our CPU RST implementation are shown
in Figure 3. The timings only include the time for in-
terpolation and for writing the final grid DEM, not the
time for quad tree construction which is mostly independent
of k and independent of the interpolation method. Note
that the horizontal scale is not linear. The strong non-
linear dependence on k is visible in the chart. Actual val-
ues for k = 10, 20, 50, 100, 150, 200 and 400 were 46, 73, 313,
1711, 3341, 3567, and 17051 seconds respectively. Compared
to constructing the quad tree, interpolating dominates the
overall run-time, even for small values of k. The final out-
put DEM is the same size for each of these experiments, and
constructing the final DEM takes only 2-3 seconds in each
experiment.

The results of the CPU interpolation implementation show
that having a small value of k is desirable to reduce overall
runtime. However, having a small value of k creates more
individual leaves, and while we use points from neighbor-
ing leaves to improve smoothness of the interpolation across
boundaries of neighboring leaf regions, increasing k would
result in fewer potential artifacts of our quad tree decompo-
sition method as we transition across leaf boundaries.

GPU Interpolation. As we see in Figure 4, we can
achieve significant reductions in overall run-time for large
values of k by using a GPU interpolation routine. For a
wide range of values of k, 10 ≤ k ≤ 800, the interpola-
tion time is consistently around 140 seconds, and we see
no quadratic dependence on k on the GPU. Furthermore,
for k = 10, the GPU implementation at 147 seconds is more
than three times slower than the corresponding CPU imple-
mentation. This comparison is a bit misleading, however.
What is happening in this case is that we are seeing the
overhead of copying data from CPU memory to GPU and
getting little benefit from the hundreds of cores available
on the GPU. Effectively, the runtime is I/O bound between
CPU memory and GPU memory for small values of k. The
actual computation is almost instantaneous for small value

Figure 4: Run time vs k using GPU RST interpolant across
eight MPI processes. Note, horizontal scale is not linear.
Run time is I/O bound for a wide range of k until the amount
of GPU work across 480 cores exceeds the cost of CPU-GPU
memory transfers

of k on the GPU. So while we get no speedup for k = 10,
our relative performance improves dramatically for larger
values of k when compared to the CPU. We get speedups of
1.8×, 10×, and 25× for k = 20, 100, and 200, respectively.
For k = 200, the CPU interpolation takes almost one hour
compared to less than 140 seconds for the GPU implemen-
tation. For k = 1000, we could reasonably expect the CPU
to take over 24 hours, based on the observed quadratic CPU
performance. The GPU easily processes this data set in 156
seconds.

We can actually see some quadratic dependence on k when
using the GPU, but we must use much larger values of k than
we use on the CPU. Actual values for k = 1000, 2000, and
5000 were 156, 378, and 635 seconds respectively. Thus we
can see the GPU RST interpolation has tremendous per-
formance benefits over the CPU. It allows us to use higher
values of k, reducing artifacts due to quad tree region bound-
aries as there are fewer leaves for larger k. Both our GPU
and CPU implementations assume the entire matrix A rep-
resenting the coefficient of Equation 2 fits in GPU/CPU
memory. For k = 5000, using points in a leaf q and its
surrounding neighbors can regularly result in matrices sev-
eral Gigabytes in size. For this reason, we cannot currently
process matrices larger than 20000 by 20000 on the GPU.
Still, the GPU allows us to efficiently process work bun-
dles two orders of magnitude larger than what is practical
on the CPU. Overall, our experimental results demonstrate
that, compared to a CPU RST implementation, using GPU
to accelerate interpolation allows us to both process data
more quickly and also use higher values of k, thus reducing
artifacts.

5.3 Impact of number of processes

To test the effectiveness of our distributed approach to inter-
polation outlined in Section 3, we ran our implementation
on for a varying number of processes, using both CPU inter-
polation and GPU interpolation. The results for the CPU
interpolation are shown in Figure 5, while GPU/CUDA re-
sults are shown in Figure 6.

Figure 5: Run time in seconds vs total number of MPI pro-
cesses, P , using CPU RST interpolant and k = 100. Note,
horizontal scale is not linear. For P > 1, one process serves
as a scatterer/gatherer while P − 1 processes serve as work-
ers interpolating work bundles. Results for P = 1 do not
use MPI and instead correspond to Algorithm 1.

For the CPU results, we fixed the value of k at 100. Rel-
ative performance appears similar for other values of k. We
repeatedly ran our experiments while doubling the number
of processes used each time from 1 to 128 total processes.
We ran up to eight processes on a single physical host on
the Forge Cluster. As each physical host has two eight core
processors, each host could comfortably run eight interpo-
lation processes while still managing the operating system
with the remaining unused cores. For P ≤ 8, all processes
resided on a single physical host machine.

As Figure 5 shows, our solution scales linearly over a large
number of processes. Doubling the number of processes re-
duces the total run-time by roughly half, as we would expect
under ideal circumstances. Such performance indicates that
our solution has low MPI communication overhead, allow-
ing the scatterer and gatherer processes to maintain a steady
flow of data to all worker processes even when there are over
120 separate workers distributed over sixteen physical hosts.
The result for 128 processes, 107 seconds, is 111 times faster
than the serial result for no MPI (P=1), 11996 seconds, over
three hours.

In addition to running a completely serial version with
no MPI, we ran experiments using only P = 2 MPI pro-
cesses. Since one node is dedicated to being the scatter-
ing/gathering process leaving only one worker, we expected
the results for P = 2 to be very similar to the results for
P = 1. In fact, one might expect that results for P = 2
would be slower as a result of MPI communication over-
head, which is completely absent in the serial case. Some-
what surprisingly however, the P = 2 case is roughly 1–2%
faster than the serial version. This was confirmed over mul-
tiple runs of these two cases. Even though the two processes
communicate over MPI, the two processes are physically lo-
cated on the same hosts and do not need to communicate
over InfiniBand to exchange messages. Additionally, there
is a small benefit because the I/O of the first process can
overlap somewhat with the computation of the worker pro-
cess. The gatherer prefetches the next work bundle from

Figure 6: Run time in seconds vs total number of MPI pro-
cesses, P , using GPU RST interpolant and k = 2000. Note,
horizontal scale is not linear.

disk after sending the current work bundle to the worker
for computation, resulting in small overlap in reading while
the worker computes the result for the current work bundle.
A similar overlap occurs after the worker sends back the
resulting DEM values back to the scatter/gather process.
The worker can receive the next bundle over MPI while the
gather process writes DEM values to disk. The final result
is a small, but noticeable performance boost even when us-
ing an MPI solution with two processes. The performance
benefits compared to the serial implementation are natu-
rally more noticeable as we increase the number of workers
interpolating grid values in parallel.

In addition to comparing the effect of varying the number
of processes using a CPU interpolation, we can perform the
same analysis while using the GPU. Our setup is slightly
modified from the CPU approach as each physical host has
only six individual GPU cards. As each worker process needs
exclusive access to a GPU, we limit the maximum number
of processes per physical host to six, capping the maximum
number of processes over sixteen physical hosts at 96. As
was the case for the CPU experiments, for P ≤ 6, all MPI
processes run on a single physical host. For the GPU exper-
iments, we fixed k at 2000, since higher k yields fewer work
bundles. Furthermore, we found that using a smaller k with
GPU interpolation results in greater MPI communication
overhead and diminishing returns for large number of MPI
processes. As seen in Figure 6, the performance trend is sim-
ilar to that of Figure 5. We see the same linear scalability
with increasing number of MPI processes, at least up to 48
processes. We also see a somewhat more pronounced perfor-
mance gain when using P = 2 processes over the completely
serial implementation.

The overhead of MPI is more noticeable in this set of ex-
periments than in the CPU interpolation case. Because the
GPU interpolation is so efficient, there is less elapsed time
between sending the work bundle out to a worker processes
and being able to receive the final DEM values from that
worker. When distributing work bundles to a large num-
ber of GPU enabled workers, we noticed that some workers
sat idle while the scatter processes was distributing bun-
dles to other processes, leading to diminishing returns on

Figure 7: Run time in seconds vs total number of MPI pro-
cesses, P , using GPU RST interpolant and k = 1000. Note,
horizontal scale is not linear.

performance for larger values of P . In an ideal setup with
no communication overhead, we would expect a speedup of
roughly P − 1 when using P processors, as computation is
distributed over P − 1 workers. When P = 4 and there
are 3 worker processes, the speedup over the serial version
P = 1 is 2.8×. For P = 24, the speedup is only 16.2×, for
P = 48, 28×, and for P = 96, 34×. This indicates that
for such high computational throughput we cannot keep the
workers sufficiently busy for such a large number of GPUs.
For comparison, we include results for using the GPU when
k = 1000 in Figure 7. The reduced computational work-
load results in even a greater percentage of communication
overhead and diminished performance returns on P ≥ 24
processes. Still, we continue to get greater speedups using
more GPU processes.

Ultimately, we would expect this diminished performance
behavior in the CPU interpolation results as well if we in-
creased the number of worker processes sufficiently. At some
point, the time it takes to communicate with all P−1 worker
processes exceeds the time it takes to process a work bundle
on a single worker. Given the slow interpolation of the CPU,
we do not see this limit for 128 workers, but we definitely
begin to see the communication overhead even using a few
as six GPU accelerated workers.

5.4 Large Scale Test

As a final experiment to demonstrate scalability, we con-
structed a 10ft resolution DEM containing 121 million cells
from 162 million lidar points, occupying 9GB of disk space.
Constructing the quad tree on a single host took 13 minutes
using k = 1000. Using 24 GPUs, we could construct the
DEM using RST in 2 hours and 4 minutes. The final result
is shown in Figure 8.

6 Discussion

Overall, our solution for grid DEM construction leverages
many modern computational techniques to quickly compute
a grid DEM from large lidar point clouds. Interpolation
techniques such as RST have typically been replaced by sim-
pler methods when used with lidar due the computational

Figure 8: 10ft DEM of Delaware County, Pennsylvania, 121
million grid cells

complexity of RST. However, by using I/O-efficient algo-
rithms, multiple cores, GPU computing, and modern clus-
ter resources such a XSEDE, we can reduce the computation
time of complex interpolation methods. Furthermore, since
RST has nice geomorphological properties such as the ability
to easily evaluate derivatives of terrains, our solution could
have applications in areas including flow modeling, flood risk
assessment and coastal erosion.

The design of our system is independent of the interpola-
tion method used. While we demonstrated that RST in par-
ticular benefits from GPU computation, it would be possible
to accelerate simpler interpolated methods as well by using
only the quad-tree decomposition and distributed comput-
ing component using MPI.

When designing such a complex system, it is important to
carefully analyze bottlenecks and attempt to balance I/O,
computation, and network and inter-process communica-
tion. Our approach proposes a framework which helps to
decouple some of these concerns and allow us to reduce bot-
tlenecks when processing large geospatial data sets.

References
[1] P. K. Agarwal, L. Arge, and A. Danner. From point cloud to

grid DEM: A scalable approach. In A. Riedl, W. Kainz, and
G. Elmes, editors, Progress in Spatial Data Handling. 12th
International Symposium on Spatial Data Handling, pages
771–788. Springer-Verlag, 2006.

[2] P. K. Agarwal, L. Arge, O. Procopiuc, and J. S. Vitter.
A framework for index bulk loading and dynamization. In
Proc. International Colloquium on Automata, Languages,
and Programming, pages 115–127, 2001.

[3] L. Arge, O. Procopiuc, and J. S. Vitter. Implementing I/O-
efficient data structures using TPIE. In Proc. European Sym-
posium on Algorithms, pages 88–100, 2002.

[4] A. Beutel, T. Mølhave, and P. K. Agarwal. Natural neigh-
bor interpolation based grid dem construction using a gpu.
In ACM GIS ’10: Proceedings of the 18th ACM SIGSPA-
TIAL International Symposium on Advances in Geographic
Information Systems, pages 172–181, November 2010.

[5] A. Beutel, T. Mølhave, P. K. Agarwal, A. P. Boedihardjo,
and J. A. Shine. Terranni: Natural neighbor interpolation
on a 3d grid using a gpu. In ACM GIS ’11: Proceedings of
the 19th ACM SIGSPATIAL International Symposium on
Advances in Geographic Information Systems, pages 64–74,
November 2011.

[6] M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. Computational Geometry – Algorithms and
Applications. Springer Verlag, Berlin, 1997.

[7] J. J. Dongarra, S. W. Otto, M. Snir, and D. Walker. A

message passing standard for mpp and workstations. Com-
munications of the ACM, 39(7):84–90, 1996.

[8] EM Photonics. CULA Dense Version R12, 2012.
http://www.culatools.com.

[9] Extreme Science and Engineering Discovery Environment
(XSEDE). https://www.xsede.org/ 2012.

[10] Q. Fan, A. Efrat, V. Koltun, S. Krishnan, and S. Venkata-
subramanian. Hardware-assisted natural neighbor interpo-
lation. In ALENEX ’05: Proceedings of the 7th Workshop
on Algorithm Engineering and Experiments, pages 111–120,
2005.

[11] G. R. Hjaltason and H. Samet. Speeding up construction of
quadtrees for spatial indexing. VLDB, 11(2):109–137, 2002.

[12] I. K. E. Hoff, J. Keyser, M. Lin, D. Manocha, and T. Cul-
ver. Fast computation of generalized Voronoi diagrams using
graphics hardware. In SIGGRAPH ’99: Proc. of the 26th
Annual Conference on Computer Graphics and Interactive
Techniques, pages 277–286, 1999.

[13] Khronos Group. OpenCL Version 1.1, 2012.
http://www.khronos.org/opencl/.

[14] M. McKenney, S. Hill, G. D. Luna, and L. Lowell. Geospa-
tial overlay computation on the gpu. In ACM GIS ’11: Pro-
ceedings of the 19th ACM SIGSPATIAL International Sym-
posium on Advances in Geographic Information Systems,
pages 473–476, November 2011.

[15] L. Mitas and H. Mitasova. Spatial interpolation. In P. Lon-
gley, M. F. Goodchild, D. J. Maguire, and D. W. Rhind,
editors, Geographic Information Systems - Principles, Tech-
niques, Management, and Applications. Wiley, 1999.

[16] H. Mitasova and L. Mitas. Interpolation by regularized spline
with tension: I. theory and implementation. Mathematical
Geology, 25:641–655, 1993.

[17] H. Mitasova, L. Mitas, W. Brown, D. Gerdes, L. Kosi-
novsky, and T. Baker. Modelling spatially and temporally
distributed phenomena: new methods and tools for grass gis.
International Journal of Geographical Information Systems,
9:433–446, 1995.

[18] H. Mitasova, L. Mitas, and R. S. Harmon. Simultaneous
spline interpolation and topographic analysis for lidar eleva-
tion data: methods for open source gis. IEEE Geoscience
and Remote Sensing Letters, 2(4):375–379, 2005.

[19] NVIDA. CUDA Version 4.1, 2012.
http://developer.nvidia.com/what-cuda.

[20] Pennsylvania Office for Information Technology, Geospa-
tial Technologies Office, and Pennsylvania State University.
Pennsylvania spatial data access (pasda) geospatial data
clearinghouse. http://www.pasda.psu.edu/.

[21] The Center for Massive Data Algorithmics (MADALGO),
Aarhus University, Aarhus, Denmark. TPIE, 2012.
http://www.madalgo.au.dk/tpie/.

[22] The National Center for Supercomputing Applica-
tions (NCSA). Forge dell nvidia linux cluster 2012.
https://www.xsede.org/web/guest/ncsa-forge.

