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ABSTRACT
We develop cache-oblivious data structures for orthogonal
range searching, the problem of finding all T points in a set
of N points in Rd lying in a query hyper-rectangle. Cache-
oblivious data structures are designed to be efficient in ar-
bitrary memory hierarchies.

We describe a dynamic linear-size data structure that an-
swers d-dimensional queries in O((N/B)1−1/d +T/B) mem-
ory transfers, where B is the block size of any two levels of
a multilevel memory hierarchy. A point can be inserted into
or deleted from this data structure in O(log2

B N) memory
transfers. We also develop a static structure for the two-
dimensional case that answers queries in O(logB N + T/B)
memory transfers using O(N log2

2 N) space. The analysis

of the latter structure requires that B = 22c

for some non-
negative integer constant c.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems

General Terms
Algorithms
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1. INTRODUCTION
The memory systems of modern computers are becoming

increasingly complex; they consist of a hierarchy of several
levels of cache, main memory, and disk. The access times
of different levels of memory often vary by orders of mag-
nitude, and to amortize the large access times of memory
levels far away from the processor, data is normally trans-
fered between levels in large blocks. Thus, it is important
to design algorithms that are sensitive to the architecture
of the memory system and have a high degree of locality in
their memory-access patterns.

The traditional RAM model of computation assumes a flat
memory-system with uniform access time; therefore, RAM
model algorithms often exhibit low memory-access locality
and are thus inefficient in a hierarchical memory system. Al-
though a lot of work has recently been done on algorithms
for a two-level memory model, introduced to model the large
difference in the access times of main memory and disks,
relatively little work has been done in models of multilevel
memory. One reason for this is the many parameters in such
models. Very recently the cache-oblivious model was intro-
duced as a way of achieving algorithms that are efficient in
arbitrary memory hierarchies without the use of complicated
multilevel memory models.

In this paper we develop cache-oblivious data structures
for orthogonal range searching, the problem of finding all
points T in a set of N points in Rd lying in a query hyper-
rectangle.

1.1 Model of Computation
In the two-level I/O-model (or external-memory model),

introduced by Aggarwal and Vitter [4], the memory hier-
archy consists of an internal memory (or cache) of size M
and an arbitrarily large external memory partitioned into
blocks of size B. An I/O, or memory transfer, transfers one
block between the internal and external memory. Compu-
tation can only occur on data present in internal memory.
The complexity of an algorithm in this model (an external
memory algorithm) is measured in terms of the number of
memory transfers it performs, as well as the amount of ex-
ternal memory it uses.

In the cache-oblivious model, introduced by Frigo et al. [22],
algorithms are developed and analyzed in the two-level I/O-
model, but they cannot make explicit use of M and B. It is
assumed that M > B2 (the tall cache assumption) and that



when an algorithm accesses an element that is not stored in
cache, the relevant block is automatically transfered into the
cache. If the cache is full, an optimal paging strategy replaces
the ideal block in cache based on the future accesses of the
algorithm. Because an analysis of a cache-oblivious algo-
rithm in the two-level model holds for any block and main
memory size, it holds for any level of an arbitrary memory
hierarchy [22]. As a consequence, an algorithm that is op-
timal in the two-level model is optimal on all levels of an
arbitrary multilevel hierarchy.

1.2 Previous Results
Range searching has been studied extensively in the RAM

model. In the planar case, for example, some of the best
known structures answer queries in O(log N+T logε(2N/T ))
time using linear space and in O(log N + T ) time using
O(N logε N) space, respectively [18, 19]. Refer to a recent
survey for further results [3].

In the I/O-model, the B-tree [21, 9] supports one-dimen-
sional range queries in O(logB N + T/B) memory trans-
fers using linear space. In two dimensions, one has to use
Θ(N logB N

logB logB N
) space to obtain an O(logB N +T/B) query

bound [8, 20]. The external range-tree structure obtains

these bounds and supports updates in O(
log2

B N

logB logB N
) mem-

ory transfers [8]. If only linear space is used, O(
p

N/B +
T/B) is a lower bound on the number of transfers needed to
answer a query, and these bounds are obtained by the kd-B
tree [25]. The kd-B tree can be constructed in O(Sort(N)) =
O(N

B
logM/B

N
B

) I/Os [1, 2], the number of I/Os needed to
sort N elements, and using the logarithmic method [15] this

leads to an O( log2 N
B

logM/B
N
B

) = O(log2
B N) update algo-

rithm. Refer to recent surveys for further I/O-model and
hierarchical memory model results [6, 26].

Frigo et al. [22] developed cache-oblivious algorithms for
sorting, Fast Fourier Transform, and matrix multiplication.
Subsequently, a number of other results have been obtained
in the cache-oblivious model [7, 10, 11, 12, 13, 16, 17, 24],
among them several cache-oblivious B-tree structure with
O(logB N) search and update bounds [11, 12, 13, 17, 24].
Several of these structures can also support one-dimensional
range queries in O(logB N +T/B) memory transfers [12, 13,
17], but at an increased amortized update cost of O(logB N+
log2 N

B
) = O(log2

B N) memory transfers. To our knowledge,
no cache-oblivious structures for higher-dimensional orthog-
onal range searching have been developed.

1.3 Our Results
In this paper we develop cache-oblivious data structures

for multidimensional orthogonal range searching. In Sec-
tion 2 we develop a cache-oblivious version of a kd-tree.
This structure answers queries in O(

p
N/B + T/B) mem-

ory transfers using linear space. It supports updates in
O( log2 N

B
· logM/B N) = O(log2

B N) transfers. The structure
can be extended to support d-dimensional range queries in
O((N/B)1−1/d +T/B) memory transfers with the same up-
date bound. To develop the structure, we use several new
ideas as well as several previously developed cache-oblivious
techniques, e.g. the van Emde Boas layout [12] and expo-
nential search trees [11, 5]. To make the structure dynamic,
we use the logarithmic method [15] and a new algorithm
for cache-obliviously constructing a kd-tree in O(Sort(N))

memory transfers. The construction algorithm uses ideas
from a recent I/O-model algorithm [1].

In Section 3 we develop a cache-oblivious version of a two-
dimensional range tree. The structure answers queries in
the optimal O(logB N + T/B) memory transfers but uses
O(N log2

2 N) space. The central part of the structure is an
O(N log2 N) space structure for answering two-dimensional
three-sided range queries in O(logB N+T/B) memory trans-

fers. The analysis of these structures requires that B = 22c

for some nonnegative integer constant c.

2. LINEAR SIZE STRUCTURE
In this section we describe a linear size structure for an-

swering orthogonal range queries. As mentioned, the struc-
ture can be viewed as a cache-oblivious version of a kd-tree.
In Section 2.1 we describe the kd-tree and a cache-oblivious
memory layout (i.e. an assignment of nodes to memory loca-
tions) that allows queries to be answered efficiently. In Sec-
tion 2.2 we show how to construct the structure efficiently.
Finally, in Section 2.3 we show how to make the structure
dynamic. In this paper we concentrate on the planar case;
in the full version of the paper we discuss how the structure
can be extended to Rd.

2.1 Cache-Oblivious kd-tree
In this section we assume, for the sake of simplifying the

analysis of our structure, that N is of the form 22c

, for some
non-negative integer c. Our structure generalizes to arbi-
trary N though the notation and analysis become slightly
more cumbersome. Details will appear in the full paper.

The kd-tree proposed by Bentley [14] is a binary tree of
height O(log2 N) with the N points stored in the leaves of
the tree. The internal nodes represent a recursive decom-
position of the plane by means of axis-orthogonal lines that
partition the set of points into two subsets of equal size.
On even levels of the tree the dividing lines are horizontal,
and on odd levels they are vertical. In this way a rectan-
gular region Rv is naturally associated with each node v,
and the nodes on any particular level of the tree partition
the plane into disjoint regions. In particular, the regions
associated with the leaves represent a partition of the plane
into rectangular regions containing one point each. Refer to
Figure 1.

2.1.1 Memory layout
The van Emde Boas layout is the standard way of laying

out a balanced tree in memory such that a root-leaf path
can be traversed efficiently in the cache-obliviously model.

Lemma 1 (van Emde Boas layout [23, 12]). A bina-
ry tree T of height O(log2 N) with N leaves can be laid out in
Θ(N) contiguous memory locations, such that any root-leaf
path can be traversed cache-obliviously in O(logB N) mem-
ory transfers.

Using the van Emde Boas layout, we define an exponential
layout similar to a layout described in [11]. In this layout,
a balanced binary tree T with N leaves is recursively de-
composed into a set of components, which are each laid out
using the van Emde Boas layout. More precisely, we define
component C0 to consist of the first 1

2
log2 N levels of T . C0

contains Θ(
√

N) nodes and is called an N-component be-
cause its root is the root of a tree (T ) with N leaves. To
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Figure 1: kd-tree and the corresponding partitioning.

obtain the exponential layout of T , we first store C0 using
the van Emde Boas layout (Lemma 1), followed immediately

by the recursive layout of the
√

N subtrees, T1, T2, . . . , T√
N ,

of size
√

N , beneath C0 in T , ordered from left to right.
The recursion stops when a subtree has 2 leaves; such a
2-component is laid out in 3 consecutive memory locations.

Note how the definition of the exponential layout natu-
rally defines a decomposition of T into log2 log2 N+2 layers,

with layer i consisting of a number of N1/2i−1
-components.

An X-component is of size Θ(
√

X) and its
√

X/2 leaves are

connected to
√

X
√

X-components. Thus, the root of an
X-component is the root of a kd-tree containing X points.
Refer to Figure 2.
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Figure 2: Components and exponential layout.

Lemma 2. An exponential layout of a balanced binary tree
T with N leaves uses Θ(N) contiguous memory locations,
and any root-leaf path in T can be traversed cache-obliviously
in O(logB N) memory transfers.

Proof. The first part of the lemma follows directly from
Lemma 1, as the components are laid out contiguously using
the van Emde Boas layout.

Any root-leaf path passes through exactly one N1/2i−1
-

component for 1 ≤ i ≤ log2 log2 N + 2. Each X-component

is stored in a van Emde Boas layout of size
√

X and therefore
by Lemma 1 a component can be traversed in Θ(logB

√
X)

memory transfers. We do not, however, actually use a mem-
ory transfer for each of the O(log log N) components: con-
sider the traversed X-component with B ≤ X ≤ B2. This
component is of size O(B) and is therefore loaded in O(1)

memory transfers. All smaller traversed components are of
total size O(B) and stored consecutively in memory. Thus,
they can also be traversed in O(1) memory transfers. There-
fore, only O(1) memory transfers are used to traverse the last
log2 log2 B components. Thus, the total cost of traversing

a root-leaf path is
Plog2 logB N

i=1 O(logB N1/2i

) = O(logB N)
memory transfers.

Remark. Readers familiar with the van Emde Boas layout
will have noticed that the exponential layout is indeed iden-
tical to that layout. The exponential layout really serves to
introduce the notion of X-components, which in Section 2.3
will be the key to making the structure dynamic.

2.1.2 Query
Before describing the query algorithm, we prove a lemma

about the exponential layout, that will be crucial in the
query analysis.

Lemma 3. Consider an exponential layout of a balanced
binary tree T with N leaves, and let v be the root in a subtree
Tv of T containing B leaves. Any traversal of Tv can be
performed in O(1) memory transfers.

Proof. The node v is contained in an X-component with
B ≤ X ≤ B2. Refer to Figure 3. The X-component is of size
O(B) and is therefore stored in O(1) blocks. Furthermore,
the part of Tv that is not included in the X-component is
stored consecutively in memory in O(1) blocks. Therefore,
the optimal paging strategy can ensure that any traversal of
T is performed in O(1) memory transfers, simply by loading
the O(1) relevant blocks.

v

B ≤ X < B2

√
B ≤

√
X < B

X-component

Figure 3: Traversing tree Tv with B leaves.



Exactly as in the RAM model, we recursively answer a
range query Q on a cache-oblivious kd-tree T starting at
the root: at a node v we advance the query to a child vc of
v if Q intersects the region Rvc associated with vc. At a leaf
w we return the point in w if it is contained in Q.

The standard way to bound the number of nodes in T
visited when answering a query Q, or equivalently, the num-
ber of nodes v where Rv intersects Q, is to first bound the
number of nodes v where Rv intersects a vertical line l. The
region Rr associated with the root r is obviously intersected
by l, but as the regions associated with its two children
represent a subdivision of Rr with a vertical line, only the
region Rrc associated with one of these children rc is inter-
sected. Because the region Rrc is subdivided by a horizontal
line, the regions associated with both children of rc are in-
tersected. As each of these children contain N/4 points,
the recurrence for the number of regions intersected by l
is Q(N) = 2 + 2Q(N/4) = O(

√
N). Similarly, we can show

that the number of regions intersected by a horizontal line is
O(

√
N). This means that the number of regions intersected

by the boundary of Q is O(
√

N). The number of additional
nodes visited when answering Q is bounded by O(T ), as
their corresponding regions are completely contained in Q.
Thus, in total O(

√
N + T ) nodes are visited.

If the kd-tree T is laid out using the exponential layout, we
can bound the number of memory transfers used to answer a
query by considering the nodes log2 B levels above the leaves
of T . There are O(N/B) such nodes as the tree Tv rooted in
one such node v contains B leaves. By the same argument
as above, the number of these nodes visited by a query is
O(
p

N/B + T/B). Thus, the number of memory transfers
used to visit nodes more than log2 B levels above the leaves

is O(
p

N/B + T/B). By Lemma 3, Tv can be traversed in
O(1) memory transfers and we obtain the following:

Lemma 4. A kd-tree on a set of N points in the plane
can be laid out in a linear number of memory cells using the
exponential layout, such that a orthogonal range query can
be answered cache-obliviously in O(

p
N/B + T/B) memory

transfers, where T is the number of reported points. The leaf
containing a given point can be found in O(logB N) memory
transfers.

2.2 Kd-tree Construction
In the RAM model, a kd-tree on N points can be con-

structed recursively in O(N log2 N) time; the root dividing
line is found using an O(N) time median algorithm, the
points are distributed into two sets according to this line
in O(N) time, and the two subtrees are constructed recur-
sively. It is easy to see that the median finding and distri-
bution is performed cache-obliviously in O(N/B) memory
transfers [23, 22], and therefore this algorithm is also an
O(N

B
log2 N) cache-oblivious algorithm.

Our algorithm for constructing a kd-tree in O(Sort(N)) =
O(N

B
logM/B

N
B

) memory transfers is based on the ideas used
in an I/O-model construction algorithm by Agarwal et al. [1].
The algorithm works recursively like the RAM model, but
rather than constructing one node in a recursive step, we
construct a subtree of height log2

√
N = 1

2
log2 N . In or-

der to construct such a subtree efficiently, we use a number
of auxiliary structures. In Section 2.2.1 we describe these
structures. In Section 2.2.2 we describe how to construct
one node in the tree efficiently using the auxiliary struc-

tures. Finally, in Section 2.2.3 we present the details of our
algorithm.

2.2.1 Auxiliary structures
To build the top log2

√
N levels of a kd-tree on a set S

of N points, we use four auxiliary structures. Consider di-
viding the rectangular region containing S into

√
N vertical

slabs X1, X2, . . . , X√
N containing

√
N points each. Our first

auxiliary data structure Pv is a list of the points in each of
the slabs stored consecutively, with the points in a given
slab sorted by y-coordinates. Similarly, to define our second
auxiliary structure Ph, we consider dividing S into

√
N hor-

izontal slabs Y1, Y2, . . . , Y√
N and storing the points in each

slab consecutively, with the points in a given slab sorted
by x-coordinates. The two structures allow us to scan the
point in any slab Xi (Yi) in y-order (x-order) in O(

√
N/B)

memory transfers. We construct Pv and Ph in O(Sort(N))
memory transfers using a few sorting steps [22].

The vertical and horizontal slabs divide the rectangular
region containing S into a grid of N basic rectangles, each of
which contains between 0 and

√
N points. Let Gi,j be the

basic rectangle defined by the intersection of Xi and Yj . Let
gi,j = |Gi,j ∩ S| refer to the number of points within Gi,j .
Refer to Figure 4(a). For each basic rectangle Gi,j , we are
interested in knowing the number of points in basic rectan-
gles in the j’th horizontal slab to the left of and including
Gi,j , that is, σh(i, j) =

Pi
k=1 gk,j (horizontal sum). Our

third auxiliary structure, σh, is a list of these partial sums
for all basic rectangles, ordered such that sums for the same
vertical slab are stored consecutively, with the sums for the
basic rectangles in a given slab stored in y-order. Similarly,
we are interested in knowing the number of points in ba-
sic rectangles in the i’th vertical slab below and including
Gi,j , that is, σv(i, j) =

Pj
k=1 gi,k (vertical sum). Our final

auxiliary structure, σv, is a list of these partial sums, or-
dered such that the sums for the same horizontal slab are
stored consecutively, with the sums for a given slab ordered
by x-order. Refer to Figure 4(a). We can construct σh

in O(Sort(N)) memory transfers by scanning through Ph,
computing σh(i, j) for each basic rectangle, and then sort-
ing all the partial sums first by vertical slab and then by
horizontal slab within each vertical slab. We can construct
σv in a similar way using Pv.
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Figure 4: (a) Slabs, basic rectangles, and horizon-
tal/vertical sums (b) Counting points in a rectangle.



2.2.2 Finding a dividing line
Each node of a kd-tree corresponds to a subdivision of

a rectangular region using a vertical or horizontal line. We
now describe how to efficiently compute a vertical line l that
divides the K = |R∩S| points in a given rectangular region
R in two equal sized sets, assuming that K is already known.
We can compute a horizontal dividing line in a similar way.

Let Xi, Xi+1, . . . , Xj and Yc, Yc+1, . . . , Yd be the vertical
and horizontal slabs intersected by R, respectively. Refer to
Figure 4(b). We start by computing the number of points in
R∩Xi by scanning the contiguous portion of Pv correspond-
ing to Xi in O(

√
N/B) memory transfers. If we find more

than K/2 points in R, we know that l is in Xi. In this case we
can compute l by selecting the point with rank K/2 element

among the points in R∩Xi in O(
√

N/B) memory transfers
using the standard linear time selection algorithm [22, 23].
Otherwise, we continue and compute the number of points in
R∩Xi+1. We do so by first computing the number of pointsPd−1

k=c+1 g(i+1),k = σv(i+1, d−1)−σv(i+1, c) between (but
not including) Yc and Yd in Xi by accessing the relevant two
partial sums in σv. Then we compute and add the number
of points from basic rectangles Gi+1,c and Gi+1,d in R by
accessing the two relevant positions of Ph. As above, we
determine if l is in Xi+1, and if so, compute it in O(

√
N/B)

memory transfers by using selection on R∩Xi+1. If l is not
in Xi+1 we continue to expand our search to the right until
we find the correct vertical slab.

The only memory transfers we have not already accounted
for in the above algorithm are the ones used to access σv and
Ph when computing the number of points in R within ver-
tical slabs completely spanned by R. We only access the
parts of these auxiliary structure corresponding to four hor-
izontal slabs; Yc and Yd−1 for σv and Yc and Yd for Ph.
As the structures are laid out in memory according to hor-
izontal slabs, and from left to right within each such slab,
the optimal paging strategy can keep the relevant parts of
them in cache between transfers. Since the four slabs con-
tain O(

√
N) elements, we therefore use at most O(

√
N/B)

memory transfers to access σv and Ph. Thus, we can com-
pute a single dividing line in O(

√
N/B) transfers in total.

2.2.3 Construction algorithm
To construct a kd-tree on the set S of N points, we first

construct the auxiliary structures defined in Section 2.2.1
using O(Sort(N)) memory transfers. Then we construct
the top 1

2
log2 N levels of the kd-tree by first construct-

ing the root using the algorithm described in Section 2.2.2
above, and then recursively subdividing the two resulting
regions using the same algorithm (and auxiliary structures),

until each constructed region contains
√

N points. We use
O(

√
N/B) memory transfers to construct each of the

√
N di-

viding lines, for a total of
√

N ·O(
√

N/B) = O(N/B) trans-
fers. After constructing the top subtree, we can distribute
the N points to the

√
N regions defined by the leaves of the

subtree in O(Sort(N)) memory transfers. Details will ap-
pear in the full version of the paper. Finally, we recursively
construct a kd-tree on the points in each of these regions.

The total cost of building all subtrees with size larger
than B2 is T (N) =

√
NT (

√
N) + Sort(N) = O(Sort(N))

memory transfers [22]. All subtrees of size smaller than B2

are constructed in O(N/B) memory transfers in total, since
as soon as the number of points in a region becomes smaller
than B2 the optimal paging strategy can hold these points

in cache during all recursive calls needed to construct a kd-
tree on the points. Thus, in total, we construct the kd-tree
on S in O(Sort(N)) memory transfers.

Finally, it is easy to lay out the kd-tree in memory ac-
cording to the exponential layout in O(Sort(N)) memory
transfers. Details will again appear in the full version of
this paper.

Lemma 5. A kd-tree on a set of N points in the plane
can be constructed and laid out according to the exponential
layout cache-obliviously in O(Sort(N)) memory transfers.

2.3 Dynamic Structure
In this section we show how to design a dynamic structure

based on the static cache-oblivious kd-tree described in Sec-
tion 2.1. In Section 2.3.1 we discuss how to support deletions
on our cache-oblivious kd-tree using a relaxed version of the
exponential layout and partial rebuilding. In Section 2.3.2
we discuss how to support insertions using the logarithmic
method.

2.3.1 Semi-dynamic structure
In the RAM model a kd-tree T can relatively easily be

modified to support deletions efficiently using global rebuild-
ing. To delete a point from T we simply find the relevant
leaf w in O(log2 N) time and remove it. We then remove w’s
parent and connect w’s grandparent to w’s sibling. The re-
sulting tree is no longer a kd-tree but it still answers queries
in O(

√
N + T ) time, as the number of nodes corresponding

to a rectangle intersected by a vertical line remains
√

N ,
and as the number of nodes corresponding to a rectangle
completely contained in a query Q remains O(T ) (because
the tree is still binary). To insure that N is proportional
to the actual number of points in T , the structure is com-
pletely rebuilt after N/2 deletions. This adds only an extra
O(log2 N) time amortized to the deletion bound.

Relaxed exponential layout. The cache-oblivious algo-
rithm for deleting a point from T is similar to the RAM
model algorithm. To preserve data locality, however, we
need to carefully maintain the layout of T in memory.

Recall that, to obtain a static cache-oblivious version of a
kd-tree T , we laid out T in memory using the exponential
layout: we decomposed T into log2 log2 N + 2 layers, with

layer i consisting of a number of N1/2i−1
-components, and

laid out each component using the van Emde Boas layout.
An X-component was of size Θ(

√
X) and its root was the

root in a kd-tree containing X points (Figure 2). In order to
support deletions efficiently, we slightly modify this layout.
In the relaxed exponential layout, we still decompose T into

log2 log2 N + 2 layers, with layer i consisting of N1/2i−1
-

components. We allow some flexibility, however, in the size
and space use of components. More precisely, we impose the
following two invariants on the components.

Invariant 1. An X-component in T is of size O(
√

X)
and its root is the root in a tree with between X/2 and 2X
leaves.

Invariant 2. Let v be a node of T in an X-component,
let Tv be the subtree rooted at v, and let K be the num-
ber of leaves in Tv. The O(

√
X) subtrees of Tv below the

X-component containing v are stored within 4K contiguous
memory cells.



The exponential layout obviously fulfills the invariants
of the relaxed exponential layout. Furthermore, Lemma 2
and 3 hold for the relaxed exponential layout, because In-
variant 1 guarantees that the asymptotic size of the X-
components is unchanged, and Invariant 2 guarantees that a
subtree with B leaves is still stored in O(1) blocks. Because

we can still argue that a query visits O(
p

N/B+T/B) nodes
that are roots in subtrees containing B points, we obtain the
following.

Lemma 6. A kd-tree on a set of N points in the plane
can be laid out in a linear number of memory cells using
the relaxed exponential layout, such that an orthogonal range
query can be answered cache-obliviously in O(

p
N/B+T/B)

memory transfers, where T is the number of reported points.
The leaf containing a given point can be found in O(logB N)
memory transfers.

Delete algorithm. To delete a point from a kd-tree laid
out using the relaxed exponential layout, we, as in the RAM
model algorithm, first find the relevant leaf w and remove it
and its parent. This may result in the two invariants being
violated. Below we show how to restore them.

First consider Invariant 1. The removal of w can result
in this invariant being violated for each of the O(log log N)
components along the path from the root of T to w. Let
C be the topmost component where Invariant 1 is violated.
Let v be the root of C, and let Tv be the subtree rooted
at v. If Tv is an X-component then it contains X/2 − 1
points. To restore the invariant, we first collect the X/2− 1
points in Tv as well as the X/2 ≤ X ′ ≤ 2X points in the
subtree Tv′ , rooted at the sibling v′ of v, and destroy Tv ,
Tv′ , and their parent y. We then construct a kd-tree T ′ on
the collected K points. If X − 1 ≤ K ≤ 2X, we lay out
T ′ in the space previously occupied by Tv and Tv′ using the
exponential layout, and connect the grandparent of v to the
root of T ′. In effect we merge Tv and Tv′ into T ′. Refer to
Figure 5. If K > 2X we replace y with the root r of T ′, and
lay out the two subtrees Tu and Tu′ , rooted in the children
of r, in the space previously occupied by Tv and Tv′ using
the exponential layout. In effect we share points between
Tv and Tv′ . Refer to Figure 6. Since T ′ contains between
X − 1 and 2X points in the first case, and Tu and Tu′ each
contain between X and 5X/4 points in the second case, we
can in both of the above cases lay out the constructed trees
such that their roots are roots of an X-component. Thus,
Invariant 1 is restored.

Tv

Merge

Tv′

z

x

z

x

T ′

y

Figure 5: A merge of two trees.

Next consider Invariant 2. The removal of w can result in
this invariant being violated in nodes on the path from the
root of T to l. Let v be the topmost node where Invariant 2
is violated, and let K be the number of points in the sub-
tree Tv rooted at v. If v is in an X-component, the O(

√
X)

Share

Tu Tu′Tv′Tv

y z

x

r

x

z

Figure 6: A share between two trees.

subtrees T1, . . . TO(
√

X) of Tv below the X-component con-
taining v use more than 4K contiguous memory cells. To
restore the invariant we compress all these subtrees. We
compress a subtree Ti containing |Ti| nodes by traversing Ti

and rewriting the nodes in |Ti| contiguous memory cells. The
compressed layout of Ti is followed immediately in memory
by the compressed layout of Ti+1 (effectively “pushing” all
the unused space in each subtree past the end of the last
subtree). This way the subtrees now use less than 2K con-
tiguous memory cells and Invariant 2 is restored.

Delete analysis. The search for leaf w requires O(logB N)
memory transfers (Lemma 6).

The cost of restoring Invariant 1 at a node v (using merg-
ing or sharing) is dominated by the O(Sort(X)) memory
transfers (Lemma 5) needed to construct the new trees and
X-components. Because the roots of the new X-components
are the roots of trees containing at least X points, at least
X/2 = Θ(X) deletes have to be performed below them be-
fore the invariant can be violated again. Since a single delete
decreases the number of points in the subtrees rooted in
the roots of O(log log N) components (in O(log log N) lay-
ers), the total amortized cost of restoring Invariant 1 is
Plog log N

i=0 O( 1
B

logM/B N1/2i

) = O( 1
B

logB N) = O(logB N)
memory transfers.

Restoring Invariant 2 at a node v (using compression) re-
quires O(K/B) memory transfers if v is the root in a subtree
Tv containing K points (Lemma 3). Because Tv is stored in
less than 2K contiguous memory locations after the com-
pression, at least K/2 deletes have to be performed below v
before the invariant can be violated at v again. Since a single
delete decreases the number of points below O(log N) nodes
(on each level of the tree), the amortized cost of restoring
Invariant 2 is O( 1

B
log2 N) = O(logB N) memory transfers.

Theorem 1. A semi-dynamic kd-tree on a set of N points
in the plane can be laid out in a linear number of memory
cells using the relaxed exponential layout, such that a range
query can be answered cache-obliviously in O(

p
N/B+T/B)

memory transfers, where T is the number of reported points.
Deletes can be supported cache-obliviously in O(logB N) mem-
ory transfers amortized.

2.3.2 Fully dynamic structure
We use the logarithmic method [15] to obtain a fully dy-

namic structure from the semi-dynamic structure.
First consider the case where we only want to support

insertions. We maintain a set of O(log2 N) static kd-trees
(Lemma 4) D0,D1, . . . such that Di is either empty or has
size 2i. An insertion is performed by finding the first empty
structure Di, discarding all structures Dj , j < i, and build-
ing Di from the new point and the

Pi−1
l=0 2l = 2i − 1 points



in the discarded structures using O(Sort(2i)) memory trans-
fers (Lemma 5). If we divide this cost between the 2i points,
each of them is charged O( 1

B
logM/B

N
B

) transfers. Because
points never move from higher to lower indexed structures,
we charge each point O(log2 N) times. Thus the amortized

cost of an insertion is O( log2 N
B

logM/B
N
B

) = O(log2
B N)

memory transfers.
To answer a query we simply query each of the O(log2 N)

structures. Querying Di normally takes O(1 +
p

2i/B +
Ti/B) transfers, where Ti is the number of reported points.
The optimal paging strategy can keep the first Θ(log2 B2)
structures in memory at all times, so the number of transfers
used to query these structures is actually O(1 + T/B) in

total. Thus O(1 + T/B) +
Plog2 N

i=log2 B2 O(
p

2i/B + Ti/B) =

O(
p

N/B + T/B) is the total query cost.
To handle deletions we use the semi-dynamic cache-oblivi-

ous kd-tree (Theorem 1) instead of the static cache-oblivious
structures Di. To delete a point we simply delete it from the
relevant Di using O(logB N) memory transfers. We globally
rebuild the entire structure after every N/2 deletes, such
that the number of structures remains O(log2 N). This en-

sures a range query can still be answered in O(
p

N/B +
T/B) memory transfers. In terms of the logarithmic method,
we ignore deletions, that is, we destroy and reconstruct
structures Di as if no deletes were taking place. This way,
points still only move from lower to higher index structures,
which ensures that the amortized insertion cost remains the
same.

Regarding deleted points as still being present in terms of
the logarithmic method also lets us efficiently find the struc-
ture Di containing a point to be deleted. We maintain a sep-
arate cache-oblivious B-tree on the points in the structure.
For point p it stores how many points had been inserted
since the last global rebuild when p was inserted. Mainte-
nance of this structure adds O(logB N) memory transfers
to the insertion bound [12]. To find the structure Di con-
taining a given point, we query the B-tree using O(logB N)
transfers. A simple calculation, based on the obtained infor-
mation and the current number of elements inserted since
the last global rebuilding then determines i.

Theorem 2. There exists a cache-oblivious data struc-
ture for storing a set of N points in the plane using linear
space, such that a orthogonal range query can be answered in
O(
p

N/B +T/B) memory transfers, where T is the number
of reported points. The structure can be constructed cache-
obliviously in O(Sort(N)) memory transfers and supports
updates in O( log N

B
logM/B N) = O(log2

B N) memory trans-
fers.

The results and data structures presented in this section
can be extended to higher dimensions. We provide details
in the full version of the paper.

Theorem 3. There exists a cache-oblivious data struc-
ture for storing a set of N points in Rd using linear space,
such that a d-dimensional orthogonal range query can be an-
swered in O((N/B)1−1/d +T/B) memory transfers, where T
is the number of reported points. The structure can be con-
structed cache-obliviously in O(Sort(N)) memory transfers
and supports updates in O( log N

B
logM/B N) = O(log2

B N)
memory transfers.

3. QUERY-EFFICIENT STRUCTURE
In this section, we describe our static cache-oblivious range

tree structure for answering two-dimensional range queries
in O(logB N+T/B) memory transfers. The main part of this
structure is a cache-oblivious structure for answering three-
sided queries presented in Section 3.1. We describe how this
structure is used to obtain our cache-oblivious range tree in
Section 3.2

3.1 Three-Sided Queries
A three-sided query Q = [xl, xr] × [yb,∞) on a set S

of N points in the plane asks for all T points in the set
Q ∩ S. In this section we develop a structure for answering
such queries in O(logB N + T/B) memory transfers using
O(N log2 N) space. The structure is inspired by the external
priority search tree of Arge et al. [8].

3.1.1 Structure
Our structure is recursively defined. It consists of 3

√
N

structures of size O(
√

N) and 2
√

N − 1 recursive struc-

tures on
√

N points each. Thus the structure uses S(N) ≤
2
√

NS(
√

N) + O(N) = O(N log2 N) space.
To define the structure, we first consider dividing the

plane into
√

N vertical slabs X1, X2, . . . , X√
N containing√

N points each. Using these slabs we then define 2
√

N − 1
buckets. A bucket is a rectangular region of the plane that
completely spans one or more consecutive slabs and is un-
bounded in the positive y-direction, like a three-sided query.
Each bucket contains

√
N points and is defined as follows:

we start with
√

N active buckets b1, b2, . . . , b√N correspond-

ing to the
√

N slabs. The x-range of the slabs define a
natural linear ordering on these buckets. We then imagine
sweeping a horizontal sweep line from y = −∞ to y = ∞.
Every time the total number of points above the sweep line
in two adjacent active buckets, bi and bj , in the linear order

falls to
√

N , we mark bi and bj as inactive. Then we con-
struct a new active bucket spanning the slabs spanned by bi

and bj with a bottom y-boundary equal to the current posi-
tion of the sweep line. This bucket replaces bi and bj in the
linear ordering of active buckets. The total number of buck-
ets defined in this way is 2

√
N − 1, since we start with

√
N

buckets and the number of active buckets decreases by one
every time a new bucket is constructed. Note that the proce-
dure defines an active y-interval for each bucket in a natural
way. Buckets overlap but the set of buckets with active y-
intervals containing a given y-value (the buckets active when
the sweep line was at that value) are non-overlapping and
span all the slabs. This means that the active y-intervals of
buckets spanning a given slab are non-overlapping. Refer to
Figure 7.

Xi

Figure 7: Active intervals of buckets spanning slab
Xi.
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Q

xl
xr

yb

Figure 8: Buckets active at yb.

After defining the 2
√

N − 1 buckets, we are now ready to
present the three-sided query data structure. It consists of
a cache-oblivious B-tree T on the

√
N boundaries defining

the
√

N slabs, as well as a cache-oblivious B-tree for each
of the

√
N slabs. The tree Ti for slab i contains the bot-

tom endpoint of the active y-intervals of the O(
√

N) buck-
ets spanning the slab. For each bucket bi we also store the√

N points in bi in a list Bi sorted by y-coordinate. Fi-
nally, recursive structures S1,S2, . . . ,S2

√
N−1 are built on

the
√

N points in each of the 2
√

N − 1 buckets. The layout
of the structure in memory consists of O(N) memory loca-
tions containing T , then T1, . . . , T√

N , and B1, . . . ,B2
√

N−1,
followed by the recursive structures S1, . . . ,S2

√
N−1.

3.1.2 Query
To answer a three-sided query Q = [xl, xr] × [yb,∞), we

consider the buckets whose active y-interval contains yb.
These buckets are non-overlapping and together they con-
tain all points in Q since they span all slabs and have bottom
y-boundary below yb. We report all points that satisfy Q
in each of the buckets with x-range completely between xl

and xr. At most two other buckets bl and br—the ones
containing xl and xr—can contain points in Q, and we find
these points recursively by advancing the query to Sl and
Sr. Refer to Figure 8.

We find the buckets bl and br that need to be queried re-
cursively and report the points in the completely spanned
buckets as follows. We first query T using O(logB

√
N)

memory transfers to find the slab Xl containing xl. Then
we query Tl using another O(logB

√
N) memory transfers to

find the bucket bl with active y-interval containing yb. We
can similarly find br in O(logB

√
N) memory transfers. If bl

spans slabs Xl, Xl+1, . . . , Xm we then query Tm+1 with yb

in O(logB

√
N) memory transfers to find the active bucket

bi to the right of bl completely spanned by Q (if it ex-
ists). We report the relevant points in bi by scanning Bi

top-down until we encounter a point not contained in Q.
If T ′ is the number or reported points, a scan of Bi takes
O(1 + T ′/B) memory transfers. We continue this proce-
dure for each of the k completely spanned active buckets,
using O(k logB

√
N +Ti/B) memory transfers in total. The

number of points Ti reported in the scans must be larger
than bk

2
c
√

N since, by construction, every two adjacent ac-

tive buckets contain at least
√

N points above yb. Thus we

spend O(logB

√
N + Ti

B
· (1 + logB

√
N√

N/B
)) memory transfers

altogether, not counting the recursive queries.
To analyze the total number of memory transfers used by

the query algorithm, note that the algorithm performs at
most two queries on each level of the recursion; in the ac-

tive buckets containing xl and xr. Assume that N = 22d

for some non-negative integer d. We first consider the query
cost on all levels containing at least B2 points. On level

1 ≤ i ≤ log2 logB N containing N1/2i−1 ≥ B2 points, the

cost is O(logB N1/2i

+ Ti
B
·(1+ logB N1/2i

N1/2i
/B

)) = O(logB N1/2i

+

Ti
B

) transfers. Thus, the total cost over all such levels is
Plog2 logB N

i=1 O(logB N1/2i

+ Ti
B

) = O(logB N + T/B) trans-

fers. Next consider levels containing less than B2 points. If
we assume that B = 22c

for some constant non-negative
integer c, we know that there will be a level containing

precisely B2 = 22c+1
points, since N = 22d

. The first
smaller level thus contains precisely B points, which means
that it (T , T1, . . . , T√

B , and B1, . . . ,B2
√

B−1) fits in a con-
stant number of memory blocks. Because all structures are
stored contiguously in memory, the level can be loaded into
cache in O(1) memory transfers. Thus, instead of spending

O(logB

√
B+ Ti

B
·(1+ logB

√
B√

B/B
)) =

√
B ·O(Ti/B) transfers on

this level, the optimal paging strategy ensures that we only
spend O(1) transfers. On the next level of recursion a struc-

ture contains precisely
√

B points and thus it and all levels of
recursion below it occupies O(

√
B log2

√
B) = O(B) space.

Thus, the optimal paging strategy can load all relevant lower
levels in O(1) memory transfers. In summary, a query uses
O(1) transfers on all levels containing less than B2 points,
and the total query costs is therefore O(logB N + T/B).

In the above argument, the assumptions on B and N
guaranteed that the structure contained recursive levels on
exactly B2 and B points, and no levels with between B2

and B points. Our complexity argument would not apply
if such a level existed, since it would not fit in O(1) blocks
and thus the optimal paging strategy could not avoid the√

B · O(Ti/B) query cost. In the full version of this paper
we show how the assumption on N can easily be removed
by adjusting the number of slabs on the highest level of re-
cursion appropriately. Thus we obtain the following:

Theorem 4. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N log2 N)

space, such that, if B = 22c

for some nonnegative inte-
ger constant c, a three-sided range query can be answered
in O(logB N + T/B) memory transfers.

3.2 Cache-Oblivious Range Tree
Using our structure for three-sided queries, we can con-

struct a cache-oblivious range tree structure for general range
queries in a standard way. The structure consists of a cache-
oblivious B-tree T on the N points sorted by x-coordinates.
With each internal node v we associate two secondary struc-
tures for answering three-sided queries on the points stored
in the leaves of the subtree rooted at v; one structure for
answering queries with the opening to the left and one for
answering queries with the opening to the right. The sec-
ondary structures on each level of the tree use O(N log2 N)
space, for a total space usage of O(N log2

2 N).
To answer a range query Q = [xl, xr] × [yb, yt], we search

down T using O(logB N) memory transfers to find the first
node v where the left and right x-coordinate of Q are con-
tained in different children of v. Then we query the right
opening secondary structure of the left child of v, and the
left opening secondary structure of the right child of v, using
O(logB N + T/B) memory transfers. It is easy to see that
this correctly reports all T points in Q.



Theorem 5. There exists a cache-oblivious data struc-
ture for storing N points in the plane using O(N log2

2 N)

space, such that, if B = 22c

for some nonnegative integer
constant c, a range query can be answered in O(logB N +
T/B) memory transfers.

4. CONCLUSION
In this paper we presented cache-oblivious data structures

for multidimensional range searching. While our results
represent the first cache-oblivious multidimensional range
searching data structures, they also introduce a number of
interesting and challenging open problems. These problems
include improving the kd-tree update bound, improving the
space bound of the range-tree, removing the block size as-
sumption from the range-tree and three-sided query struc-
tures, as well as making these structures dynamic. Devel-
oping higher-dimensional range-query structures with poly-
logarithmic query bounds is also a challenging open problem.
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