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We present an external planar point location data structure that is I/O-efficient both in theory
and practice.

The developed structure uses linear space and answers a query in optimal O(logB N) I/Os,
where B is the disk block size. It is based on a persistent B-tree, and all previously developed
such structures assume a total order on the elements in the structure. As a theoretical result of
independent interest, we show how to remove this assumption.

Most previous theoretical I/O-efficient planar point location structures are relatively compli-
cated and have not been implemented. Based on a bucket approach, Vahrenhold and Hinrichs
therefore developed a simple and practical, but theoretically non-optimal, heuristic structure. We
present an extensive experimental evaluation that shows that, on a range of real-world Geographic
Information Systems (GIS) data, our structure uses a similar number of I/Os as the structure of
Vahrenhold and Hinrichs to answer a query. On a synthetically generated worst-case dataset our
structure uses significantly fewer I/Os.

1. INTRODUCTION

The planar point location problem is the problem of storing a planar subdivision
defined by N line segments such that the region containing a query point p can
be computed efficiently. Planar point location has many applications in, e.g., Ge-
ographic Information Systems (GIS), spatial databases, and graphics. In many of
these applications, the datasets are larger than the size of physical memory and
must reside on disk. In such cases, the transfer of data between the fast main
memory and slow disks (I/O), not the CPU computation time, often becomes the
bottleneck. Therefore, we are interested in planar point location structures that
minimize the number of I/Os needed to answer a query.

While several theoretically I/O-efficient planar point location structures have
been developed, e.g., [17; 1; 8], they are all relatively complicated and consequently
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none of them have been implemented. Based on a bucket approach, Vahrenhold and
Hinrichs developed a simple and practically efficient, but theoretically non-optimal,
heuristic structure [24]. In this paper, we show that a point location structure based
on a persistent B-tree is efficient both in theory and practice; the structure obtains
the theoretical optimal bounds and our experimental investigation shows that, for
a wide range of real-world GIS data, it uses a similar number of I/Os to answer a
query as the structure of Vahrenhold and Hinrichs. For a synthetically generated
worst-case dataset the structure uses significantly less I/Os to answer a query.

1.1 I/O model and Previous Results

We work in the standard I/O model of computation proposed by Aggarwal and
Vitter [2]. In this model, computation can only occur on data stored in a main
memory of size M , and an I/O transfers a block of B consecutive elements between
an infinite sized disk and main memory. The complexity measures in this model
are the number of I/Os used to solve a problem (answer a query) and the number
of disk blocks used.

Aggarwal and Vitter showed that O(N
B logM/B

N
B ) is the external memory equiv-

alent of the well-known O(N log2 N) internal memory sorting bound. Similarly,
the B-tree [10; 12; 18] is the external equivalent of an internal memory balanced
search tree. It uses linear space, O(N/B) blocks, to store N elements, supports
updates in O(logB N) I/Os, and performs one dimensional range queries in optimal
O(logB N + T/B) I/Os, where T is the number of reported elements. Using a gen-
eral technique by Driscoll et al. [14], persistent versions of the B-tree have also been
developed [11; 26]. A persistent data structure maintains a history of all updates
performed on it, such that queries can be answered on any of the previous versions
of the structure, while updates can be performed on the most recent version thus
creating a new version.1 A persistent B-tree uses O(N/B) space, where N is the
number of updates performed, and updates and range queries can be performed in
O(logB N) and O(logB N +T/B) I/Os, respectively [11; 26]; note that the structure
requires that all elements stored in it during its entire lifespan are comparable, that
is, that the elements are totally ordered.

In the RAM model, several linear space planar point location structures that can
answer a query in optimal O(log2 N) time have been developed, e.g., [16; 20; 19].
One of these structures, due to Sarnak and Tarjan [20], is based on a persistent
search tree. In this application of persistence, not all elements (segments) stored in
the structure over its lifespan are comparable; thus a similar I/O-efficient structure
cannot directly be obtained using a persistent B-tree. See the recent survey by
Snoeyink [21] for a full list of RAM model results.

In the I/O model, Goodrich et al. [17] developed an optimal static point location
structure using linear space and answering a query in O(logB N) I/Os. Agarwal et
al. [1] and Arge and Vahrenhold [8] developed dynamic structures. Several struc-
tures for answering a batch of queries have also been developed [17; 9; 13; 24]. Refer
to [4] for a survey. While these structures are all theoretically I/O-efficient, they are
all relatively complicated and consequently none of them have been implemented.

1The type of persistence we describe here is often called partial persistence as opposed to full
persistence where updates can be performed on any previous version.
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Based on an internal memory bucket approach [15], Vahrenhold and Hinrichs there-
fore developed a simple but non-optimal heuristic structure, which performs well in
practice [24]. The main idea in this structure is to impose a grid on the segments
that defines a subdivision and store each segment in a “bucket” corresponding to
each grid cell it intersects. The grid is constructed such that for certain kinds of
“nice data”, each segment is stored in O(1) buckets such that the structure requires
linear space, and each bucket contains O(B) segments such that a query can be
answered in O(1) I/Os. In the worst case however, each segment may be stored in
Θ(

√
N/B) buckets and consequently the structure may use Θ(N

B

√
N/B) space. In

this and some other cases, there may be a buckets containing O(N) segments such
that a query takes O(N/B) I/Os.

Most of the structures in the above results actually solve a slightly generalized
version of the planar point location problem, namely the vertical ray-shooting prob-
lem: Given a set of N non-intersecting segments in the plane, the problem is to
construct a data structure such that the segment directly above a query point p
can be found efficiently. This is also the problem we consider in this paper.

1.2 Our Results

The main result of this paper is an external data structure for vertical ray-shooting
(and thus planar point location) that is I/O-efficient both in theory and practice.
The structure, described in Section 2, uses linear space and answers a query in
optimal O(logB N) I/Os. It is based on the persistent search tree idea of Sarnak
and Tarjan [20]. As a theoretical contribution of independent interest, we show
how to modify the known persistent B-tree such that only elements present in the
same version of the structure need to be comparable, that is, so no total order
is needed. In Section 3, we then present an extensive experimental evaluation of
our structure’s practical performance compared to the heuristic grid structure of
Vahrenhold and Hinrichs using both real-world and artificial (worst-case) datasets.
In their original experimental evaluation, Vahrenhold and Hinrichs [24] used hy-
drology and road feature data extracted from the U.S. Geological Survey Digital
Line Graph dataset [23]. On similar “nicely” distributed sets of relatively short
segments, our structure answers queries in a similar number of I/Os as the grid
structure but requires about twice as much space. On less “nice” data, our struc-
ture performs significantly better than the grid structure; we present one example
where our structure answers queries using 90% fewer I/Os and requires 94% less
space.

2. RAY-SHOOTING USING PERSISTENT B-TREES

Our structure for answering vertical ray-shooting queries among a set of non-
intersecting segments in the plane is based on the persistent search tree idea of
Sarnak and Tarjan [20]. This idea utilizes the fact that any vertical line l in the
plane naturally introduces an “above-below” order on the segments it intersects.
This means that if we conceptually sweep the plane from left to right (−∞ to ∞)
with a vertical line, inserting a segment in a persistent search tree when its left
endpoint is encountered and deleting it when its right endpoint is encountered, we
can answer a ray-shooting query p = (x, y) by searching for the segment directly
above y in the version of the search tree we had when l was at x. Refer to Figure 1.
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Fig. 1. Vertical ray-shooting using sweep and persistent search tree.

Note that two segments that cannot be intersected with the same vertical line are
not “above-below” comparable. This means that not all elements (segments) stored
in the persistent structure over its lifespan are comparable and thus an I/O-efficient
structure cannot directly be obtained using a persistent B-tree. To make the struc-
ture I/O-efficient, we need a persistent B-tree that only requires elements present
in the same version of the structure to be comparable. In Section 2.1, we first
describe the persistent B-tree of [11; 26] and then in Section 2.2 we describe the
modifications needed to use the tree in a vertical ray-shooting structure.

2.1 Persistent B-tree

A B-tree, or more generally an (a, b)-tree [18], is a balanced search tree with all
leaves on the same level, and with all internal nodes except possibly the root having
Θ(B) children (typically between B/2 and B). Normally, elements are stored in
the leaves and the internal nodes contain “routing elements” used to guide searches
(sometimes called a B+-tree). Since a node or leaf contains Θ(B) elements it can be
stored in O(1) blocks, which in turn means that the tree uses linear space (O(N/B)
disk blocks). Since the tree has height O(logB N), a range search can be performed
in O(logB N +T/B) I/Os. Insertions and deletions can be performed in O(logB N)
I/Os using split, merge, and share operations on the nodes on a root-leaf path [18;
10; 12].

A persistent (or multiversion) B-tree as described in [11; 26] is a directed acyclic
graph (DAG) with elements in the sinks (leaves) and “routing elements” in internal
nodes. Each element is augmented with an insert and a delete version (or time),
defining the existence interval of the element. An element is alive at time t (version
t) if t is in the element’s existence interval and dead otherwise. Similarly, an
existence interval is associated with each node, and it is required that the nodes
and elements alive at any time t (version t) form a B-tree with fanout between
αB and B for some constant 0 < α < 1/2. Given the appropriate root (in-degree
0 node), we can thus perform a range search in any version of the structure in
O(logB N + T/B) I/Os. To be able to find the appropriate root at time t in
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O(logB N) I/Os, the roots are stored in a standard B-tree, called the root B-tree.
An update in the current version of a persistent B-tree (and thus the creation of a

new version) may require structural changes and creation of new nodes. To control
these changes and obtain linear space use, an additional invariant is imposed on
the structure; whenever a new node is created, it must contain between (α + γ)B
and (1− γ)B alive elements (and no dead elements). For reasons that will become
clear shortly, we require that γ > 2/B, α − γ ≥ 1/B, and 2α + 3γ ≤ 1 − 3/B.
Note that the second constraint implies that α > γ, and that the last implies that
dB/2e < (1− γ)B, b 1

2 (1− γ)Bc > (α + γ)B, and d 1
2 ((α + γ)B + B)e < (1− γ)B.

To insert a new element x in the current version of a persistent B-tree we first
perform a search for the relevant leaf l using O(logB N) I/Os. Then we insert x in
l. If l now contains more than B elements, we have a block overflow. In this case
we perform a version-split ; we copy all, say k, alive elements from l and mark l as
deleted, i.e, we update its existence interval to end at the current time. Depending
on the number, k, of alive elements, we create one or two new leaves and recursively
update the parent of l. If (α+γ)B ≤ k ≤ (1−γ)B, we create one new leaf with the
k elements and recursively update parent(l) by persistently deleting the reference
to l and inserting a reference to the new node. If on the other hand k < (α+γ)B or
k > (1−γ)B, we have a strong underflow or strong overflow, respectively, violating
our additional invariant. The strong overflow case is handled using a split ; we
simply create two new nodes with approximately half of the k elements each, and
update parent(l) recursively in the appropriate way. The two new nodes both
contains at most dB

2 e < (1 − γ)B elements and at least b 1
2 (1 − γ)Bc > (α + γ)B

elements. Like a strong overflow is handled with a split similar to a normal B-tree,
the strong underflow case is handled with operations similar to merge and share
rebalancing operations on normal B-trees; we perform a version-split on a sibling l′

of l to obtain k′ (αB ≤ k′ ≤ B) other alive elements. Since k+k′ ≥ 2αB and α > γ
we have more than (α+γ)B elements. If k+k′ ≤ (1−γ)B, we simply create a new
leaf with the k + k′ elements. If on the other hand k + k′ > (1− γ)B, we perform
a split in order to create two new leaves. The two new nodes both contain at least
b 1

2 (1 − γ)Bc > (α + γ)B elements and at most d 1
2 ((α + γ)B + B)e < (1 − γ)B

elements. The first case corresponds to a merge and the second to a share. Finally,
we recursively update parent(l) appropriately.

A deletion is handled similarly to an insertion; first the relevant element x in
a leaf l is found and marked as deleted. This may result in l containing k < αB
alive elements, violating the invariant that the live elements form a B-tree with
fanout between αB and B. We call this condition a block underflow. Note that
a node with a block underflow also has a strong underflow since k < (α + γ)B.
To reestablish the invariants, we perform a merge or share as previously; we first
perform a version-split on a sibling node to obtain a total of k + k′ ≥ 2αB − 1
elements, which is at least (α + γ)B by the requirement α − γ ≥ 1/B. We then
either create a new leaf with the obtained elements, or split them and create two
new leaves precisely as previously. Once we have performed the merge or share, we
recursively update the parent of l. Figure 2 illustrates the “rebalance operations”
needed as a result of an insertion or a deletion.

Both insertions and deletions are performed in O(logB N) I/Os, since the changes
(rebalancing) needed on any level of the tree can be performed in O(1) I/Os, and
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Fig. 2. Illustration of “rebalancing operations” needed when updating a persistent B-tree.

since the rebalancing at most propagates from l to the root of the current version.
To see that a persistent B-tree uses O(N/B) blocks after N updates, first note that
a rebalance operation on a leaf creates at most two new leaves. Once a new leaf
l is created, at least γB updates are performed on l before a rebalance operation
is needed on it again. Thus at most 2 N

γB = O(N/B) leaves are created during N
updates. Each time a leaf is created or marked dead, a corresponding insertion or
deletion is performed recursively one level up the tree. Since at most 4 N

γB leaves
are created or deleted during the N operations, it follows by the same argument as
above that the number of nodes created one level up the tree is bounded by 22 N

(γB)2 .
By induction, the number of nodes created h levels up the tree is bounded by
2h+1 N

(γB)h+1 . The total number of nodes (blocks used) over N updates is therefore

bounded by 2N
γB

∑logB N
h=0 (2/γB)h, which is O(N

B ) since γB > 2.

Theorem 1. ([11; 26]) After N insertions and deletions of elements with a total
order into an initially empty persistent B-tree, the structure uses O(N/B) space and
supports range queries in any version in O(logB N +T/B) I/Os. An update can be
performed on the newest version in O(logB N) I/Os.

2.2 Modified Persistent B-tree

In the persistent B-tree as described above, elements were stored in the leaves only.
To search efficiently, internal nodes also contain elements (“routing elements”).
In our discussion of the persistent B-tree so far we did not discuss precisely how
these elements are obtained, that is, we did not discuss what element is inserted in
parent(v) when a new node (or leaf) v is created and a new reference is inserted in
parent(v). As in standard, non-persistent B-trees, the persistent B-trees described
above use a copy of the maximal element in v as a routing element in parent(v)
when v is created. Therefore, when an element is deleted, that is, marked as dead
in a leaf, live copies of the element can still exist as routing elements in the internal
nodes. Thus, even though when searching for a given element e at time t we
only compare e with elements considered alive at time t, we may compare e to an
internal routing copy of an element long after the original leaf element is marked
dead. If not all elements stored in the persistent B-tree during its entire lifespan
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are comparable, that is, if they are not totally ordered, we cannot evaluate the
comparisons needed to perform the search. In the vertical ray shooting problem,
segments are only partially ordered (only segments intersecting a give vertical line
can be compared) and therefore the standard persistent B-tree cannot be used to
design an I/O-efficient vertical ray shooting structure.

To obtain an I/O-efficient vertical ray-shooting structure, we construct a persis-
tent B-tree structure that only requires elements present in the same version to be
comparable. To do so, we modify the existing persistent B-tree to store actual data
elements in both leaf nodes and internal nodes, and impose the new invariant that
the alive elements at any time t form a B-tree with data elements in internal as well
as leaf nodes. Thus, the main difference between our modified structure and the
previous structure is that at any given time t, at most one live copy of an element
exists in the structure; we do not create multiple live copies of the same element to
use as routing elements. Except for slight modifications to the version-split, split,
merge, and share operations, the insert algorithm remains unchanged. In the delete
algorithm we need to be careful when deleting an element x in an internal node u.
Since x is the only live copy, we must mark it as dead, but x is also associated with
a reference to a child uc of u that is still alive. Therefore, instead of immediately
marking x dead, we first find x’s predecessor y in a leaf below u and persistently
delete it. Then we delete x from u, insert a live copy of y with a reference to the
child uc, and perform the relevant rebalancing. What remains is to describe the
modifications to the rebalance operations.

2.2.1 Version-split. Recall that a version-split (not leading to a strong underflow
or overflow) consists of copying all alive elements in a node u, using them to create
a new node v, deleting the reference to u, and recursively inserting a reference to
v in parent(u). Since the reference to u has an element x associated with it, we
cannot simply mark it deleted by updating its existence interval. However, since
we are also inserting a reference to the new node v, and since the elements in v
are a subset of the elements in u, we can use x as the element associated with the
reference to v. Thus we can perform the version-split almost exactly as before,
while maintaining the new invariant, by simply using x as the element associated
with the reference to v as shown in Figure 3.

Version−split
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�������
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u vu

x x x

Fig. 3. Illustration of a version-split. Partially shaded regions correspond to alive elements, black
to dead elements, and white regions to unused space. (Individual elements use this same shading
convention to indicate their status.)

2.2.2 Split. When a strong overflow occurs after a version-split of u, a split is
needed; two new nodes v and v′ are created and two references inserted in parent(u).
As in the version-split case, the element x associated with u in parent(u) can be



8 · L. Arge, A. Danner, S-M Teh

used as the element associated with the reference to v′. To maintain the new
invariant we then “promote” the maximal element y in v to be used as the element
associated with the reference to v in parent(u), that is, instead of storing y in v,
we store it in parent(u). Refer to Figure 4. Note that, because of the promotion
of y, the new node v has one less element than it would have had using the split
procedure described in the previous section. However, the previous space arguments
still applies since Ω(γB) updates are still required on v before further structural
changes are needed. Otherwise a split remains unchanged.

Split
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Fig. 4. Illustration of a split.

2.2.3 Merge. When a strong underflow occurs after a version-split of u, we per-
form a version-split of u’s sibling u′ and create a new node v with the obtained
elements. We then delete the references to u and u′ in parent(u) by marking the
two elements x and y associated with the references to u and u′ as deleted. We can
reuse the maximal of these elements, say y, as the reference to the new node v. To
maintain the new invariant (preserve all elements) we then “demote” x and store
it in the new node v. Otherwise a merge remains unchanged. Refer to Figure 5.
The demotion of x leaves the new node v with one more element than it would
have had using the merge procedure described in the previous section. However, as
in the previous case, Ω(γB) updates are still needed on v before further structural
changes are needed.
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u u’ vu u’

Merge

x y yyx

x

Fig. 5. Illustration of a merge.

2.2.4 Share. When a merge would result in a new node with a strong overflow,
we instead perform a share; we first perform a version-split on the two sibling nodes
u and u′ and create two new nodes v and v′ with the obtained elements. As in the
merge case, we then delete the references to u and u′ in parent(u) by marking two
elements x and y associated with u and u′ as deleted. We can reuse the maximal
element y as the reference to v′ but x cannot be used as a reference to v. Instead,
we demote x to v and promote the maximal element z in v to parent(u). Refer to
Figure 6. Since we have both a demotion and promotion in this case, the number
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of elements in the new node v is identical to the number of elements we would have
if we used the share procedure described in the previous section.
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Fig. 6. Illustration of a share.

Theorem 2. After N updates on an initially empty modified persistent B-tree,
the structure uses O(N/B) space and supports range queries in any version in
O(logB N + T/B) I/Os. An update can be performed on the newest version in
O(logB N) I/Os.

Corollary 1. A set of N non-intersecting segments in the plane can be pre-
processed into a data structure of size O(N/B) in O(N logB N) I/Os such that a
vertical ray-shooting query can be answered in O(logB N) I/Os.

While trivially performing a sequence of N given updates on a (modified as well
as unmodified) persistent B-tree takes O(N logB N) I/Os, it has been shown how
the N updates can be performed in O(N

B logM/B
N
B ) I/Os (the sorting bound) on

a normal (unmodified) persistent B-tree [25; 3; 6]. In the modified B-tree case, the
lack of a total order seems to prevent us from performing the updates in this much
smaller number of I/Os. It remains a challenging open problem to construct the ray-
shooting structure (the modified persistent B-tree) in O(N

B logM/B
N
B ) I/Os. Such a

fast algorithm would immediately lead to a semi-dynamic (insert-efficient) vertical
ray-shooting structure using the external version of the logarithmic method [8].

3. EXPERIMENTAL RESULTS

In this section we describe the results of an extensive set of experiments designed to
evaluate the performance of the (modified) persistent B-tree when used to answer
vertical ray-shooting queries, compared to the performance of the grid structure of
Vahrenhold and Hinrichs [24].

3.1 Implementations

We implemented both the persistent B-tree and the grid structure using TPIE [5;
7]. TPIE is a library of templated C++ classes and functions designed to ease the
implementation of I/O-efficient algorithms and data structures. Below we discuss
the two implementations separately.

3.1.1 Persistent B-tree implementation. When using the persistent B-tree to an-
swer vertical ray-shooting queries the elements (segments) already implicitly contain
their existence interval (the x-coordinates of the endpoints). Thus we implemented
the structure without explicitly storing existence intervals.2 This way each element

2We have also implemented a general persistent B-tree with existence intervals. Both implemen-
tations will be made available in TPIE.



10 · L. Arge, A. Danner, S-M Teh

occupied 28 bytes. To implement the root B-tree we used the standard B-tree im-
plementation in the TPIE distribution [7]. In this implementation each element
occupies 16 bytes.

Two parameters α and γ are used in the definition of the persistent B-tree.
Since we are working with large datasets, we choose these parameters to optimize
for space. Space is minimized when γ (and thus the number of updates needed
between creation of nodes) is maximized, and the constraints on α and γ require
that we choose γ ≤ min{α − 1/B, 1/3 − 2/3α − 1/B}. The maximal value of γ
is when α = 1

5 , so we chose α = 1
5 and γ = 1

5 − 1
B accordingly. If we wanted to

optimize for query performance, we should choose a larger value of α—leading to a
smaller tree height—but a few initial experiments indicated that increasing α had
relatively little impact on query performance.

3.1.2 Grid structure implementation. The idea in the structure of Vahrenhold
and Hinrichs [24] is to impose a grid on (the minimal bounding box of) the segments
and store each segment in a bucket corresponding to each grid cell it intersects.
The grid is designed to have N/B cells and ideally each bucket is of size B. To
adapt to the distribution of segments, a slightly different grid than the natural√

N/B × √
N/B grid is used; for a bounding box of width xd and height yd, two

parameters, Fx = 1
N ·xd

∑N
i=1 |xi2 − xi1| and Fy = 1

N ·yd

∑N
i=1 |yi2 − yi1|, where the

i’th segment is given by ((xi1, yi1), (xi2, yi2)), are used to estimate the amount of
overlap of the x-projections and y-projections of the segments, respectively. Then
the number of rows and columns in the grid is calculated as Nx = αx

√
N/B and

Ny = αy

√
N/B, where αx/αy = Fy/Fx and αxαy = 1.

In the TPIE implementation of the grid structure [24], the segments are first
scanned to compute Nx and Ny. Then they are scanned again and a copy of each
segment is made for each cell it crosses. Each segment copy is also augmented with
a bucket ID, such that each copy occupies 32 bytes. Finally, the new set of segments
is sorted by bucket ID using TPIE’s I/O-optimal merge sort algorithm [2; 5]. The
buckets are stored sequentially on disk and a bucket index is constructed in order
to be able to locate the position of the segments in a given bucket efficiently. The
index is simply a Nx ×Ny array with entry (i, j) containing the position on disk of
the first segment in the bucket corresponding to cell (i, j) (as well as the number
of segments in the bucket). Each index entry is 16 bytes.

If L is the the number of segment copies produced during the grid structure
construction, O( L

B logM/B
L
B ) I/Os is the number of I/Os used by the algorithm.

Ideally, this would be O(N
B logM/B

N
B ) I/Os, but in the worst case each segment

can cross
√

N/B buckets and the algorithm requires O(N
B

√
N/B logM/B

N
B ) I/Os.

Refer to Figure 7 for an example of such a dataset.
Answering a query using the grid method simply involves looking up the position

of the relevant bucket (the cell containing the query point) using the bucket index
and then scanning the segments in the bucket to answer the query. In the ideal
case each bucket contains O(B) segments, and the query can be performed in O(1)
I/Os. However, in the worst case, a query takes O(N/B) I/Os.
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Fig. 7. Worst-case dataset for the grid method.

3.2 Data

To investigate the efficiency of our vertical ray-shooting data structure, we used
road data from the US Census TIGER/Line dataset containing all roads in the
United States [22]. In this dataset, one curved road is represented as a series of
short linear segments. Roads (segments) are also broken at intersections, such
that no two segments intersect other than at endpoints. Because of various errors,
the dataset actually contains a few intersection segments, which we removed in a
preprocessing step.

Our first 6 datasets, containing between 16 million segments (374 MB) and 80
million segments (1852 MB), consist of the roads in connected parts of the US (cor-
responding to the six CD’s on which the data is distributed). A summary of the
number of segments in each dataset is given in Table 1, and images of the datasets
appear in Figure 8. In addition to these large datasets, we also used four smaller
datasets with disjoint data regions; dataset CL1 consists of the four US states
Washington, Minnesota, Maine and Florida, and CL2 excludes Minnesota. The
bounding boxes of CL1 and CL2 are relatively empty with the exception of three

Data Segments Size
Set (in Millions) (MB)

D1 16.36 374

D1-2 31.22 714

D1-3 41.78 956

D1-4 57.33 1312

D1-5 69.82 1598

D1-6 80.91 1852

CL1 6.69 153

CL2 5.09 116

ATL 10.84 248

DST 6.40 146

LONG 1.00 23

Table 1. Number of segments and raw dataset size (assuming 24 bytes per segment) of the
experimental datasets.
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Fig. 8. Illustration of the real-world datasets used in our experiments. Black regions indicate
areas in the dataset. The outline of the continental US serves as a visualization guide and is not
part of the actual data set.

or four “hot spots” where the states are located. These datasets were included to
investigate the effect of non-uniform data distributions. The dataset DST spans a
sparsely populated region of the United States and was included to investigate the
effect of longer but more uniformly distributed segments (we expect that the seg-
ments are longer and more uniformly distributed in the desert than in metropolitan
areas). The dataset ATL, on the other hand, was chosen as a dense, but maybe
less uniform, dataset. Finally, in addition to the real world data, we also generated
a dataset LONG, corresponding to Figure 7, designed to illustrate the worst-case
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behavior of the grid method.
For query point sets, we generated a list of 100000 randomly sampled points from

inside each of the datasets; for each query point p, we made sure that segments are
hit by vertical rays emanating from p in both the positive and negative y-directions.

3.3 Experimental Setup

We ran our experiments on an Intel PIII - 500MHz machine running FreeBSD 4.5.
All code and data resided on a local 10000 RPM 36GB SCSI disk. The disk block
size was 8KB, so each leaf of the persistent B-tree could store 290 elements and
each internal node (also containing references) 225 elements. In the root B-tree,
each leaf could hold 510 elements and each internal node 681 elements. The grid
method bucket index had N/256 entries of 16 bytes each.

We were interested in investigating the I/O performance when the data sets are
much larger than the available internal memory. Because extremely large data sets
are not readily available and would prohibit extensive testing, we limited the RAM
of the machine to 128 MB and, since the OS was observed to use 60 MB, we limited
the amount of memory available to TPIE to 12 MB. Constraining the memory also
provides insight into how the structures would perform if the system had more total
memory but was under heavy load.

TPIE is flexible with regards to how I/Os are actually performed; for imple-
mentations where scanning and reading large contiguous portions of the data are
common, it is often preferable to use the UNIX read() and write() system calls to
take advantage of OS features such as prefetching. For data structure implementa-
tions that perform random I/O, memory-mapped I/O is often preferable. Therefore
we implemented the grid method using streams and read()/write() system calls
exclusively, while we implemented the persistent B-tree using memory-mapped I/O
(except that read()/write() system calls were used to process sweep events during
construction).

To increase realism in our experiments, we used TPIE’s built-in (8-way set asso-
ciative LRU-style) cache mechanism to cache parts of the data structures. Since a
query on the persistent B-tree always begins with a search in the relatively small
root B-tree, we used a 72 block cache (8 internal nodes and 64 leaf nodes) for the
root B-tree—enough to cache the entire structure in all our experiments. We also
used a separate 16 block cache for the internal persistent B-tree nodes and a 32
block cache for the leaf nodes. Separate caches were used for internal nodes and
leaves to ensure that accesses to the many leaves did not result in eviction of the
few internal nodes from the cache. In total, the caches used for the entire persistent
structure were of size 120 blocks or 960KB. For the grid structure, we (in analogy
with the root B-tree in the persistent case) cached the entire bucket index—of size
2.41 MB for the largest dataset (D1-6).

3.4 Experimental Results

3.4.1 Structure size. Figure 9 shows the size of the grid and persistent B-tree
data structures constructed on the 11 datasets. For the real life (TIGER) data, the
grid method uses about 1.4 times the space of the raw data, whereas the persistent
B-tree sometimes uses almost 3 times the raw data size. The low overhead of the
grid method is a result of relatively low segment duplication (around 1.02 average
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copies per segment) due to the very short segments. The rest of the space is used to
store the bucket index. The larger overhead of the persistent B-tree is mainly due
to structural changes (rebalance operations) resulting in the creation of multiple
copies of each segment; we found that there are roughly 2.4 copies of each segment
in a persistent B-tree structure.
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Fig. 9. Space utilization of grid and persistent B-tree based structures. Size is relative to the
raw dataset size.

Analyzing the numbers for the real datasets in more detail reveals that for the
first six datasets and ATL the space utilization is quite uniform. For datasets DST,
CL1, and CL2 the grid structure uses slightly less space while the persistent B-
tree uses more space. The persistent B-tree method uses more space because the
relatively small datasets are sparsely populated with segments; at any given time
during the construction sweep, the sweep line intersects relatively few segments.
As a result, many transitions are made between a height one (one leaf) and height
two (with a low-degree root) tree, resulting in relatively low block utilization.

For the artificially generated dataset LONG, the space usage of both structures
increases dramatically. As expected, the cause of the enormous space use of the grid
structure is a high number of segment copies (93 per segment on the average). The
persistent B-tree also has a significant increase in space, but not nearly as much
as the grid structure—the structure is 94% smaller than the grid structure. The
reason for increased space usage in the persistent B-tree is that all the segments
are long and thus they stay in the persistent structure for a long time (in many
versions), resulting in a high tree. Furthermore, most of the structural changes in
the beginning of the construction algorithm are splits, leading to many copies of
alive elements. Similarly, most of the structural changes at the end of the execution
are merges, again leading to a large redundancy.
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Fig. 10. Construction performance: (a) Number of I/Os per 100 segments. (b) Construction
time per segment.
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Fig. 11. The number of segments intersecting the sweep line as a function of sweep line position
during the construction of the persistent B-tree for the D1-6 dataset.

3.4.2 Construction efficiency. Figure 10 shows construction results in terms of
I/O and physical time. The numerical data used for the graphs can be found in Ta-
ble 2 in the Appendix. For all the real-world datasets the persistent B-tree structure
uses around 1.5 times more I/Os than the grid structure. This is rather surprising
since the theoretical construction bound for the persistent B-tree is O(N logB N)
I/Os, compared to the (good case) O(N

B logM/B
N
B ) bound for the grid structure.

Theory thus predicts that the tree construction algorithm should perform about B
times as many I/Os as the grid method. The reason for this discrepancy between
theory and practice is that during the construction sweep the average number of
segments intersecting the sweep line is relatively small. For the D1-6 dataset, it is
less than 2500 segments (Refer to Figure 11). Thus the size of the persistent B-tree
accessed during each update is small and as a result the caches can store most of
the nodes in the tree.

While it only takes about 50% more I/Os to construct the persistent B-tree
structure than to construct the grid structure, it takes nearly 17 times more phys-
ical time. One reason for this is that most of the I/Os performed by the grid
construction algorithm are sequential, while the I/Os performed by the persistent
B-tree algorithm are more random. Thus the grid algorithm takes advantage of
the optimization of the disk controller and the OS file system for sequential I/O.
Another reason is that construction of the persistent B-tree structure is more com-
putationally intensive than construction of the grid. Our trace logs show that over
95% of the construction time for the persistent B-tree is spent in internal memory
compared to only 50% for the grid method.

While the grid construction algorithm outperforms the persistent B-tree algo-
rithm on the real-life datasets the worst-case dataset, LONG, causes it significant
problems. For this dataset, the grid construction takes 48 minutes compared to 53
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minutes for the 80 times bigger dataset D1-6, and compared to 10 minutes for the
persistent B-tree. The reason is that the large size of the structure results in a high
I/O construction cost. The persistent B-tree construction also takes relatively more
I/Os (and time), mainly due to the high average number of segments intersecting
the sweep-line (500000 at the peak).

3.4.3 Query efficiency. Our query experiments illustrate the advantage of the
persistent B-tree structure over the grid structure; Figure 12 shows that a query is
consistently answered in less than two I/Os on the average, while the grid structure
uses between approximately 2.6 and 28 I/Os on the average for the real-world
datasets, and 126 I/Os for the LONG dataset. The numerical data used for the
graphs can be found in Table 3 in the Appendix.

Analyzing the grid structure results for the real-world datasets in more detail
reveals that the performance is mostly a function of the distribution of segments
within their bounding box. The bounding boxes become more full as we move from
D1 to D1-6, and as a result the average number of I/Os per query drops from 3.76
to 2.65. The dataset ATL overlaps with a significant portion of D1, but because of
the better distribution of segments within the bounding box the I/O performance
is better for ATL. Datasets CL1 and CL2 exacerbate the problem with non-uniform
distributions; for these datasets, most grid cells, more than 90%, are completely
empty. As a result, a query within a non-empty cell is very expensive. Finally,
as expected the LONG data set shows the grid structures vulnerability to long
segments; on average a query takes 126 I/Os.

Analyzing the persistent B-tree results in detail reveals that its performance is
mostly a function of the average number of segments intersecting the sweepline;
datasets D1 through D1-6 and ATL have higher average I/O cost than DST, CL1
and CL2. Similarly, dataset D1 has a lower average cost than ATL, since the region
of D1 not in ATL has a smaller number of sweepline-segment intersections. This is
the opposite of the behavior of the grid method whose query performance is worse
for D1 than ATL. Finally, even though the average number of sweepline-segment
intersections for the LONG dataset is more than half a million, the height of the
tree is no more than three at any time (version), and as a result the query efficiency
is maintained.

3.4.4 Further experiments. In our experiments with the TIGER data we noticed
that non-empty buckets in the grid structure often occupied three or more disk
blocks of segments. Therefore we expected that by reducing the grid spacing in both
the x and y-direction by a factor of two—creating four times as many buckets—
each bucket would likely occupy only one disk block, leading to an improved query
performance. Such an improvement is of course highly data dependent. It would
also come at the cost of space, since we must index four times as many buckets,
and the denser grid may result in more segment duplication. To investigate this
we ran our tests again using such a modified grid; we found that for the real-life
datasets the number of segment copies did not increase significantly (from 1.02 to
1.04 copies per segment). Thus the construction performance was maintained. In
terms of query performance, we found that the four-fold increase in the number of
buckets leads to a factor of two to three improvement in the query performance.
Refer to Figure 13. In these experiments we cached the entire bucket index, which
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Fig. 12. Query performance: (a) Number of I/Os per query. (b) Time per query in milliseconds.
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(a) Number of I/Os per query. (b) Time per query in milliseconds.
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is four times larger than in the regular grid method. For D1 the index is 2 MB,
and for D1-6 the index is 10 MB, ten times larger than the cache used in the
persistent B-tree. For the LONG dataset, the modified grid uses twice the space of
the standard grid and still has poor query performance compared to the persistent
B-tree.

Finally, to investigate the influence of caches we ran a series of experiments
without caching. In these experiments we found that one additional I/O is used
per query in the grid structure in order to access the bucket index. In the persistent
B-tree structure one or two extra I/Os are used depending on the height of the root
B-tree. This can immediately be reduced by one I/O per query by just caching
the block containing the root of the root B-tree. Thus we conclude that the query
performance does not depend critically on the existence of caches.

4. CONCLUSIONS

In this paper, we have presented an external point location data structure based on
a persistent B-tree that is efficient both in theory and practice. One major open
problem is to construct the structure in O(N

B logM/B
N
B ) I/Os, as compared to the

(trivial) O(N logB N) algorithm discussed in this paper.
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APPENDIX

Data Relative Size I/Os (Thousands) Time (Minutes)

Set Grid Tree Grid Tree Grid Tree

D1 1.377 2.669 334 513 10 174

D1-2 1.370 2.668 637 977 20 341

D1-3 1.371 2.660 854 1309 27 436

D1-4 1.374 2.673 1174 1798 38 607

D1-5 1.374 2.662 1430 2187 46 727

D1-6 1.374 2.657 1657 2533 53 892

CL1 1.354 2.816 129 203 3.8 63

CL2 1.352 2.834 103 162 3.0 51

ATL 1.377 2.684 223 331 6.7 116

DST 1.368 2.902 136 214 4.2 68

LONG 124.013 7.168 1816 58 48 10

Table 2. Data structure size, construction I/Os, and construction time for grid and persistent
B-tree. See also Figures 9 and 10.

Data I/Os per Query Time per Query (ms)
Set Grid 1/2 Grid Tree Grid 1/2 Grid Tree

D1 3.76 1.70 1.86 7.22 5.60 5.07

D1-2 3.26 1.58 1.94 6.61 5.20 5.08

D1-3 3.39 1.62 1.96 8.41 6.93 5.86

D1-4 2.84 1.47 1.97 8.40 7.49 7.14

D1-5 2.70 1.44 1.96 8.25 7.43 7.17

D1-6 2.65 1.43 1.98 8.62 7.76 7.72

CL1 18.55 5.50 1.51 18.31 7.24 3.00

CL2 28.40 8.16 1.41 24.81 9.75 3.40

ATL 2.74 1.45 1.91 5.78 4.81 3.44

DST 2.65 1.42 1.58 4.32 3.20 3.77

LONG 126.00 64.22 1.74 1067.11 506.11 0.77

Table 3. Query performance of grid, half-grid, and persistent B-tree structures. See also Figures
12 and 13.


