
The Largest Empty Circle Problem

Megan Schuster
megan@cs.swarthmore.edu

Abstract

The largest empty circle (LEC) problem is
defined on a set P and consists of finding
the largest circle that contains no points in
P and is also centered inside the convex
hull of P . The LEC is always centered at
either a vertex on the Voronoi diagram for
P or on an intersection between a Voronoi
edge and the convex hull of P . Thus,
finding the LEC consists of constructing
a Voronoi diagram and convex hull for P ,
then searching the Voronoi vertices and
intersections between Voronoi edges and
convex hull edges to see where the LEC
lies. This paper presents a simple O(n[h+
log n]) solution to the largest empty circle
problem. Though previous work on this
problem has found O(n log n) solutions,
we find that for data sets which are some-
what normally distributed, h is small and
our simple algorithm performs well.

1 Introduction

The Largest Empty Circle (LEC) problem is defined
on a set of points P and consists of locating the
largest circle that contains no points of P and is cen-
tered inside the convex hull of P . Less formally, this
problem finds the point q bounded by the convex hull
which maximizes the distance to its nearest neighbor
p ∈ P ; this point is the center of the largest empty
circle. We constrain q to lie within the convex hull
of P because otherwise we would simply choose the
point at infinity as the center of the LEC.

This problem is sometimes referred to as the
Toxic Waste Dump problem, because given the co-
ordinates for a set of cities, the LEC problem would
allow you to find the best site for a toxic waste
dump by finding the location which is maximally far

from every city. This might also be useful for plan-
ning locations for new stores. For example, imag-
ine you would like to build a new McDonald’s in
a metropolitan ares that already has several dozen
McDonald’s stores. By computing the LEC on the
set of existing McDonald’s restaurants, you could
select a site for a new store which is maximally
far from all existing stores to minimize competition
with other McDonald’s restaurants and situate your-
self near people who previously did not have a Mc-
Donald’s nearby.

The Voronoi diagram for the set P is a useful tool
for solving the LEC problem. The Voronoi diagram
is a partition of the plane into convex faces such
that given a set of points P , each face (hereafter,
Voronoi cell) contains exactly one point p ∈ P and
all points in the plane which are closer to p than to
any other point in P . Points lying on the edges be-
tween Voronoi cells are equidistant between the two
points contained in the cells lying to either side of
the edge. Given these properties, it seems intuitive
that the largest empty circle should be centered on a
Voronoi vertex. Since the edges represent all points
which are equidistant to the two points they divide,
it follows that a vertex, which is simply an intersec-
tion between multiple Voronoi edges, would max-
imizes the minimum distance to all nearby points.
Any point that is not on a Voronoi vertex must be
closer to one point than any other and as such any
empty circle we can draw around it will not be of
maximal size.

Based on the above principles, it seems that we
might simply be able to draw empty circles around
all Voronoi vertices and see which is the largest.
However, since we constrain our circle to be cen-
tered inside the convex hull of P , we must be
slightly more careful in our search for the LEC.
First, we must consider only Voronoi vertices which
lie inside the convex hull of P . Second, we must
consider what happens on the edges of the convex



hull itself. At points where a Voronoi edge inter-
sects a convex hull edge, the distances between each
of the two nearest points is maximized, since we are
on a Voronoi edge. Such points must also be consid-
ered as candidates for the center of the LEC.

2 Related Work

The earliest solution to the LEC problem was
presented by Shamos in his Ph.D. thesis (1978).
Shamos presented an algorithm that, given the
Voronoi diagram and the convex hull, could find the
largest empty circle in O(n) time. Unfortunately,
this algorithm was based on the assumption that ev-
ery convex hull edge is intersected by at most two
Voronoi edges, which is not always true, as later
shown by Toussaint (1983). Because the original
Shamos algorithm incorrectly assumes a maximum
of two Voronoi edge intersections at each convex
hull edge, it can miss intersections at edges with
more than two intersections with Voronoi edges and,
as such, can fail to recognize the true LEC.

Toussaint (1983) went on to present an algorithm
which correctly finds the LEC in all cases. However,
the Toussaint algorithm requires O(n log n) running
time when given the convex hull and Voronoi di-
agram. The algorithm first computes the largest
empty circle about each Voronoi vertex which lies
in the interior of the convex hull. This step requires
O(n log h) operations; there are O(n) Voronoi ver-
tices for which we must do an O(log h) point loca-
tion step to check for interiority to the convex hull
(where h is the number of convex hull edges), and
computing the largest empty circle about a point can
be done in constant time. Once all interior points
have been considered, the algorithm computes all in-
tersections between Voronoi edges and convex hull
edges. Toussaint uses an O(log n) algorithm taken
from Chazelle (1980) to find the intersections be-
tween a line segment and a convex n-gon. Since
there are O(n) Voronoi edges (de Berg et al., 2000),
this step requires O(n log h) time overall. By check-
ing all points interior to the convex hull and all in-
tersection points between the Voronoi diagram and
the convex hull, all possible sites for the center of
the LEC have been considered. All that remains is
to report the point about which the largest circle was
drawn. Toussaint thus finds the LEC in O(n log n)

time.
Later, Preparata and Shamos (1985) offer an im-

proved version of Shamos’s original methods (1978)
which no longer relies on the assumption that each
convex hull edge is intersected by at most two
Voronoi edges. Preparata and Shamos describe an
O(n) marching method for finding all intersections
between the Voronoi edges and the convex hull,
which is an improvement on Toussaint’s O(n log h)
method. Preparata and Shamos do not go into detail
about how to check Voronoi vertices on the interior
of the convex hull to see if they might be the cen-
ter of the largest empty circle. We can only assume
that they, like Toussaint, also require an O(n log h)
technique for checking interior points. This solution
is then slightly faster than Toussaint’s, thanks to the
O(n) intersection location step.

Still, all of the LEC-finding algorithms discussed
above require use of the Voronoi diagram and
the convex hull. Both of these structures require
O(n log n) steps to compute. Construction of these
structures dominates the computation time when
finding the LEC, so while there may be some quib-
bling about the fastest methods for finding intersec-
tions between Voronoi diagrams and convex hulls,
overall the solution to the LEC problem is at best
O(n log n) regardless of the steps required to actu-
ally find the largest empty circle.

In this paper, we present a complete method for
finding the LEC, borrowing our approach to the
problem from the previous work of Toussaint. The
algorithm presented includes a computation of the
Voronoi diagram and the convex hull and requires
O(n[h + log n]) running time.

3 Methods

3.1 Computing the Voronoi Diagram and
Convex Hull

Before we can find the largest empty circle for a
set of points P , we must first construct the Voronoi
diagram (V or(P )) and convex hull (CH(P )) for
the set of points. Here, V or(P ) is computed by
first finding the Delaunay triangulation, DT (P ),
which is the dual of V or(P ). Common algorithms
for computing V or(P ) involve an O(n log n) plane
sweep and are not dynamically updateable. How-
ever, de Berg et al. (2000) describe an incremen-



Figure 1: A simple example of the Delaunay triangulation
computed on a small set of points.

tal algorithm for computing DT (P ). Because we
would like to support dynamic updates to V or(P ),
we choose to compute V or(P ) by dualization of a
dynamically updateable implementation of DT (P ).

3.1.1 The Delaunay Triangulation

de Berg et. al (2000) describe an incremental
algorithm for computing Delaunay triangulations,
which we employ here to compute DT (P ). The De-
launay triangulation is a special type of triangulation
which maximizes the minimum angle found in any
triangle in the triangulation. An example is shown
in Figure 1.

We begin with a very large bounding triangle and
add points from P to it one at a time. When adding
a point p, we check the current triangulation and lo-
cate the triangle T which contains p. We then draw
edges between p and each of the vertices of T to
re-triangulate the set P . In doing so, however, we
may have introduced new triangles with small an-
gles such that we no longer have a Delaunay triangu-
lation. Thus, as we re-triangulate with every added
point, we must check the edges of new triangles in-
troduced to see whether they form any small angles.
We flip such edges as needed to the opposite corners
of the quadrilateral which contains them, recursing
on triangles in the neighborhood of newly flipped
edges until we have ensured again that the smallest
angle in the triangulation is as large as possible.

We represent triangles as nodes in a directed
acyclic graph. Whenever a triangle is divided by
insertion of a new point or changed due to edge-

Figure 2: The circumcircle for a triangle T , whose center v is
found by perpendicular bisector construction. If T is a triangle
in a Delaunay triangulation, the v is the Voronoi vertex obtained
when dualizing the Delaunay triangulation to the Voronoi dia-
gram.

flipping, it sets pointers to the new triangles which
result from these changes. Each triangle node also
maintains a pointer for each of its three edges indi-
cating which other triangle neighbors it along that
edge, with care being taken to update these neighbor
pointers as new triangles are introduced and edge
flips are performed. These neighbor pointers are cru-
cial to our ability to dualize DT (P ) to V or(P ).

For full details on the computation of Delaunay
triangulations, see see de Berg et al. (2000). Once
we have a Delaunay triangulation in place, we can
dualize it to give the desired Voronoi diagram.

3.1.2 The Voronoi Diagram
Once DT (P ) has been computed, it is fairly

straightforward to dualize it to V or(P ). The duality
between the Voronoi diagram and the Delaunay tri-
angulation is such that every triangle in DT (P ) cor-
responds to a vertex in V or(P ). Triangles which are
neighbors in DT (P ) have their vertices connected
by an edge in the V or(P ) dual space (de Berg et al.,
2000).

The coordinates of the Voronoi vertex which cor-
respond to a triangle T ∈ DT (P ) can be found by
locating the center of the circle which circumscribes
T (Okabe et al., 2000). To compute the circumcir-
cle, we use the perpendicular bisector construction
as in Figure 2; the circumcircle for a triangle is cen-
tered at the point at which the perpendicular bisec-
tors for the triangle’s edges all intersect. To compute
V or(P ) from DT (P ), then, we first iterate over all
triangles in DT (P ), computing the circumcircle to
find the dual vertex in V or(P ).

Once all Voronoi vertices have been found, we



Figure 3: A simple example of the Voronoi diagram and con-
vex hull computed on the set of points shown in Figure 1.

connect them to one another by again iterating over
the triangles of DT (P ). Here, we make use of the
neighbor pointers stored in our Delaunay structure.
For each triangle T ∈ DT (P ) and its correspond-
ing point p ∈ V or(P ), we retrieve all of T ’s neigh-
bors, T ′. For each t ∈ T ′, we take its corresponding
point p′ ∈ V or(P ) and draw an edge between p and
p′. The resulting set of edges describes exactly the
Voronoi planar partition.

The dualization from DT (P ) to V or(P ) de-
scribed here can be computed in O(n) time. We
must iterate over all triangles in DT (P ), of which
there are O(n) (de Berg et al., 2000). For each tri-
angle, we must compute the circumcircle to locate
the corresponding Voronoi vertex and check three
neighbor pointers to draw the appropriate Voronoi
edges. These two operations can be done in con-
stant time, giving an overall O(n) runtime for the
dualization step.

3.1.3 The Convex Hull

Finally, we must compute CH(P ) before we can
go on to find the LEC. Here, we use the simple
O(nh) Jarvis march algorithm to compute the con-
vex hull. The interested reader should refer to de
Berg et al. (2000) for further details on this algo-
rithm.

At this point, we have found the Voronoi diagram
and convex hull for our data set (Figure 3). With all
necessary data structures in place, we now proceed
to find the largest empty circle.

3.2 Finding the Largest Empty Circle

To find the largest empty circle, we first locate
all potential centers for that circle, which involves
identifying all Voronoi vertices which are interior
to CH(P ) and finding all intersections between
Voronoi edges and convex hull edges. Once all can-
didate centers have been located, we draw the largest
possible empty circle around each and report which
was the largest of all.

3.2.1 Checking Interior Voronoi Vertices
We use a naive approach for finding all Voronoi

vertices which are interior to CH(P ). For each
Voronoi vertex, we march counter-clockwise around
CH(P ), checking whether the vertex lies to the left
of the edge. If the vertex lies to the left of all edges in
CH(P ), we know that it is interior and add it to the
list of candidate LEC centers. This requires O(nh)
steps, since we must check all h convex hull edges
for all O(n) Voronoi vertices.

3.2.2 Finding Convex Hull and Voronoi Edge
Intersections

We employ another naive approach for finding
all intersections between Voronoi edges and convex
hull edges. For every Voronoi edge, we check both
endpoints for interiority to CH(P ). If one is interior
and one is exterior, we know that this edge must in-
tersect CH(P ) at some point. We then iterate over
all convex hull edges and check for intersection with
the Voronoi edge in question. By repeating this pro-
cess for every Voronoi edge, we are guaranteed to
find all intersections between V or(P ) and CH(P ).

This step requires O(nh) runtime. We must check
all O(n) Voronoi edges, and for any which intersect
the convex hull, we must iterate over all h convex
hull edges to find the intersection point.

3.2.3 Locating the Largest Empty Circle
Now that we have found all possible points at

which the LEC can be centered (as in Figure 4),
we have to decide which of these candidates is the
actual center of the LEC. To find the largest empty
circle that can be drawn around any given candi-
date center, we exploit the duality between DT (P )
and V or(P ). Candidate centers are vertices in V or
space; however, when drawing a circle around a can-
didate point we want to ensure that this circle does



Figure 4: Candidate centers for the largest empty circle for the
set of points shown in Figures 3 are outlined here. All candi-
date centers lie on Voronoi vertices or on intersections between
Voronoi and convex hull edges.

Figure 5: Solid, black lines indicate edges in DT (P ).
Dashed, grey lines indicate edges in V or(P ). The point p is
a Voronoi vertex and is thus a candidate LEC center. Here,
p’s three nearest neighbors are the three points contained in the
Voronoi cells adjacent to p, which are the vertices of p’s dual
triangle in DT space, v1, v2, and v3.

Figure 6: The LEC for our simple set of points.

not contain any points in P , which are vertices in
DT space.

Any Voronoi vertex is the intersection of at most
three Voronoi edges. This follows directly from
the dual relationship between V or(P ) and CH(P );
each Voronoi vertex corresponds to one Delaunay
triangle and is connected to the vertices which cor-
respond to that triangle’s neighbors, of which there
are exactly three (except near the edges of the space,
where there may be only two neighbors). Since each
Voronoi vertex p is incident to at most three Voronoi
cells, the three points in P closest to p are those three
points which lie in the Voronoi cells to which p is
adjacent. Those three points are the vertices of p’s
dual triangle in DT (P ) (see Figure 5). Thus, by
dualizing p ∈ V or(P ) back to T ∈ DT (P ), we can
find p’s three nearest neighbors. We then choose the
closest neighbor and draw a circle about p whose ra-
dius equals the distance between that neighbor and
p.

We accomplish the dualization of a Voronoi ver-
tex to a Delaunay triangle very simply by building a
dictionary of Voronoi vertex-Delaunay triangle pairs
as we are doing our initial construction of V or(P )
from DT (P ). We then look up candidate vertices
in this dictionary to find their nearest neighbors and
draw empty circles about them. By drawing empty
circles around each candidate vertex, we can locate
and report the LEC.

This final step of the algorithm requires O(n)
time. Finding the closest point P to any candidate
center can be done in constant time by simple dic-
tionary lookup, and we must repeat this process for



Figure 7: A summary of the steps involved in computing the
LEC.

all O(n) candidate centers.
At this point, we need only to report the largest

empty circle we have found, as in Figure 6. Figure
7 provides a summary of all steps taken to compute
the LEC and their associated runtimes. The overall
runtime of our algorithm is thus O(n[h + log n]).

4 Results

We ran the algorithm described above on a set of
points corresponding to the latitude and longitude
coordinates of all U.S. cities in the 48 contiguous
states of population 100,000 or greater (there are 251
such cities). We found the LEC to be centered at
-108.2659◦ latitude, 46.7316◦ longitude, near Win-
nette, MT. V or(P ) and CH(P ) for this data set
are displayed in Figure 8; the resulting LEC is dis-
played in Figure 9.

The algorithm runs on this dataset of U.S. cities
in less than four seconds. In order to analyze the al-
gorithm’s overall performance and the performance
of intermediate steps within the algorithm, we ran it
on a number of data sets ranging in size from 100
points to 10,000 points and recorded the amount of
processor time required to compute each step of the
algorithm. For these timed tests, we used randomly
generated, normally distributed sets of points. The
results of these tests are shown in Figure 10.

5 Discussion

Our algorithm was tested on and successfully com-
puted the LEC for the U.S. cities data set as well as
randomly generated, normally distributed data sets
of up to 10,000 points. It is clear from Figure 10
that the time required to compute the LEC is domi-
nated by the computation of DT (P ); all other steps
of our algorithm proceed quickly in comparison. For
the 10,000 point data set, for example, it took about
33 minutes to compute DT (P ). The next slowest

step of the algorithm was locating the intersections
between V or(P ) and CH(P ), which took only 26
seconds.

As mentioned earlier, we used naive approaches
to several of the intermediate steps of this algo-
rithm, including the simple Jarvis march for con-
vex hull computation, the point location step for
finding all Voronoi vertices interior to the convex
hull, and the step for identifying intersections be-
tween Voronoi and convex hull edges. Each of
these naive steps was O(nh), and for each of these
steps we might have used a more sophisticated algo-
rithm in hopes of achieving better runtime for the
overall LEC algorithm. For the convex hull, we
might have chosen from a variety of O(n log n) al-
gorithms (see Preparata and Hong (1985), de Berg
et al. (2000), for examples). This only improves
the speed of computing the convex hull if the num-
ber of convex hull edges is somewhat large. For the
identification of interior Voronoi vertices, Toussaint
(1983) describes an O(n log h) technique, which is a
guaranteed improvement over the O(nh) technique
we use, regardless of the distribution of our set of
points. For the Voronoi/convex hull intersection lo-
cation step, Chazelle (1980) describes an O(n log h)
technique for computing the intersections between
a set of segments and a convex polygon, and better
still, Preparata and Shamos (1985) describe an O(n)
march around all Voronoi cells that discovers all in-
tersections with the convex hull.

While the naive approaches to these intermediate
steps used in our algorithm could be improved by
implementing any of the known faster algorithms
mentioned above, the results of Figure 10 sug-
gest that this would provide very little improve-
ment to the running time of our overall LEC algo-
rithm. It is clear that the O(n log n) computation of
DT (P ) dominates the computation time for finding
the LEC, and thus minor speed-ups to intermediate
steps would be of limited value.

It should be noted that the data sets on which we
tested our algorithm’s running time were all approxi-
mately normally distributed. As such, h, the number
of convex hull edges, was quite small compared to n,
the number of data points (see, for example, Figure
8). Considering the possible applications of the LEC
problem, such as toxic waste dump site selection or
business location planning, we expect that the data



Figure 8: The Voronoi diagram and convex hull for the data set of all US cities of population 100,000 or greater.

Figure 9: The largest circle which contains no U.S. cities of population 100,000 or greater and is centered within the convex hull
of these cities. The center lies at -108.2659◦ latitude, 46.7316◦ longitude, near Winnette, MT.



Figure 10: At top, a plot of processor time versus number of
data points. The time required for the DT (P ) computation is
barely distinguishable from the total running time of the entire
algorithm. All other algorithmic steps have running times clus-
tered very near to zero for data sets of all sizes and are not distin-
guishable on this plot. For this reason, a plot of log(processor
time) versus number of data points is shown at bottom. The
time for the DT (P ) computation is again quite similar to the
time for the overall algorithm. The next most time consuming
step is the identification of V or(P )/CH(P ) edge intersections,
but this step is far faster than the computation of DT (P ).

Figure 11: Processor time used by our algorithm on 1000
data points lying on a circle as compared to 1000 normally dis-
tributed, randomly generated data points.

sets our algorithm will most commonly encounter
will be similar to the data sets on which we have al-
ready tested it–somewhat normally distributed, with
h small compared to n. However, should we need to
compute the LEC on some set of points which is dis-
tributed differently (say, in a ring-like shape, where
h and n would be similar), we expect our O(nh)
intermediate steps to begin to contribute to signifi-
cantly slower runtimes for our algorithm overall.

To test this idea, we ran our algorithm on a set
of 1000 points distributed on a circle so that h = n
and compared the resulting performance to the per-
formance on a normally distributed set of the same
size. The resulting running times are displayed in
Figure 11. Note that the O(nh) check for interior
Voronoi vertices is still relatively quick. However,
we see that our convex hull algorithm and our tech-
nique for locating Voronoi/convex hull intersections
take much longer on the circular data than on the
normally distributed data, leading to about a seven-
fold increase in the overall running time of our al-
gorithm. Thus, if we intend to run our algorithm
on non-normally distributed data where h may be-
come large, we would almost certainly benefit from
switching to an O(n log n) convex hull algorithm
and an O(n) technique for finding Voronoi/convex



hull intersections. Still, because our algorithm is pri-
marily applicable in domains where data is likely to
be normally distributed, such as sets of cities or busi-
ness locations, we continue to use the naive O(nh)
intermediate steps, since they seem to work well for
this type of data.

6 Conclusion and Future Work

In this paper, we have describe an algorithm which
computes the largest empty circle on a set of points
P . The algorithm is O(n[h + log n]) and sup-
ports dynamic updates to the set P without heavy
re-computation of underlying structures. The algo-
rithm requires the use of the Voronoi diagram, which
we compute by dualizing the Delaunay triangulation
of P . The convex hull of P must also be computed.
We then check all Voronoi vertices and intersections
between Voronoi and convex hull edges to see which
is the center of the largest empty circle.

Our algorithm is O(n[h + log n]), which is
asymptotically worse than the O(n log n) solutions
published by Toussaint (1983) and Preparata and
Shamos (1985). This extra h term results from tak-
ing naive O(nh) approaches to a few intermedi-
ate steps in computing the LEC. However, we have
shown that our algorithm’s overall running time
is not much affected by these O(nh) intermediate
steps when our data is more or less normally dis-
tributed. Thus, we find that our use of simple, naive
techniques at some steps of our algorithm is justi-
fied; while asymptotically faster techniques do exist
for these steps, these faster techniques are consider-
ably more complicated than the simple approach we
take. Because our O(nh) methods contribute very
little to the total runtime of our algorithm (Figure
10), we find that we can use simple, straightforward
techniques at a negligible cost to the running time of
our algorithm.

For future work, it may be useful to implement
support for further location constraints on the center
of the LEC, such as described in Chew and Drysdale
(1986) or Toussaint (1983). For example, we might
like to restrict the LEC to be centered in some sim-
ple, though not necessarily convex, polygon or set
of polygons other than the convex hull. This would
have been useful when working with the data set
comprised of US cities. Suppose we are using our

algorithm to find a toxic waste dump site. Rather
than using the convex hull of this data set, which
contains parts of Mexico, the Gulf of Mexico, and
the Atlantic and Pacific oceans, and does not include
all of the land comprising the 48 contiguous states
(Figure 8), we might have preferred to constrain the
LEC to be centered anywhere on US mainland terri-
tory. This would both ensure that the selected site
were actually a United States holding, and would
also provide a wider selection of possible LEC cen-
ters by including more area in the northern United
States. Thus, using some sort of simple, polygonal
approximation of the 48 contiguous states would be
an improvement.

To do this, we would have to change our point
location strategy for testing whether a Voronoi ver-
tex is interior to the bounding region, since that re-
gion would no longer be convex. The current naive
O(nh) technique for finding intersections between
the Voronoi diagram and the bounding region would
still be effective, but if we were to update to the
O(n) marching technique described by Preparata
and Shamos (1985), we would have to modify it
slightly to deal with non-convex bounding regions.

Our current algorithm avoids complicated inter-
mediate steps and successfully computes the LEC
on data sets of varying sizes and distributions. It is
quite fast on normally distributed sets. While we
could improve its performance on non-normal data
sets and support further location constraints on the
center of the LEC by using more complicated in-
termediate steps in our algorithm, for now we stick
with the simple solution to the LEC problem and
assume it will most often be used on normally dis-
tributed data sets.

7 Acknowledgements

I am grateful to Professor Andy Danner for advising
this project and for providing a script for graphing
the 48 contiguous states. I also thank my Swarth-
more College Computer Science Senior Conference
classmates for reviewing this paper and providing
suggestions for its improvement.

References
B.M. Chazelle, 1980. Computational Geometry and Con-

vexity, Ph.D. thesis, Carnegie-Mellon University.



L.P. Chew and R.L. Drysdale, 1986. Finding Largest
Empty Circles with Location Constraints Dartmouth
Computer Science Technical Report PCS-TR86-130

M. de Berg et al. Computational Geometry: Algorithms
and Applications (2ed). Berlin: Springer, 2000. pp
185-197.

A. Okabe et al. Spatial Tessellations: Concepts and
Applications of Voronoi Diagrams (2ed). Chichester:
John Wiley and Sons, Ltd, 2000. pp 43-57.

F.P. Preparata and S.J. Hong. 1977. Convex Hulls of Fi-
nite Sets of Points in Two and Three Dimensions.
Communications of the ACM, v.20, n.2, pp 87-93.

F.P. Preparata and M.I. Shamos. Computational Geome-
try: An Introduction. New York, NY: Springer-Verlag,
1985. pp 251-253.

M.I. Shamos, 1978. Computational Geometry, Ph.D. the-
sis, Yale University.

G.T. Toussaint, 1983. Computing Largest Empty Circles
with Location Constraints. International Journal of
Parallel Programming, v12.5, pp 347-358.


