
Optimal Double Coverage In The Art Gallery

Scott Dalane
sdalane1@swarthmore.edu

Andrew Frampton
aframpt1@swarthmore.eu

Abstract

We plan to examine a well known visibil-
ity problem termed the art gallery prob-
lem. The general idea behind the prob-
lem is that a museum wants to mini-
mizethe number of cameras present in
an art gallery while still recording every-
thingthat happens in the room. We take
the problem a step further and investigate
the optimal arrangement of cameras so
that every spot in the room is covered by
not just one, but two cameras. This will
allow constant surveilance even if any one
camera were to fail. We do this by us-
ing a bottom-up approach where we use
a three coloring algorithm to find the op-
timal placement for single coverage and a
basic dobuble coverage of a polygon rep-
resenting a floorplan. We then use a opti-
mization algorithm with a line of sight al-
gorithm to check each camera of the dou-
ble coverage and remove any unnecessary
cameras, leaving the optimal double cov-
erage of the polygon.

1 Introduction

The problem is named after art galleries because the
art needs to be under surveilance at all times and
they tend to be shaped in irregular ways which can
make this security difficult. The problem was first
proposed by Viktor Klee in 1973 (Klee, 1979). It
has since been proven that a maximum of⌊n/3⌋
cameras will be needed,n being number of vertices
in the polygon that is the room, to cover the entire
room. This is known as the Art Gallery Theorem
and was stated by Vaclav Chvatal (Chvatal, 1973).

For us to tackle this problem we designed a program
that takes a set of points that make up the polygon
that will be guarded, and then returns an image of the
floorplan with the cameras placed upon it. By using
a three coloring algorithm on each of the points in
the triangulation determine the ideal single camera
placement and the basic double coverage placement
of cameras, which can then be optimized.

2 Triangulation

In order to perform the 3-coloring on the points of
the polygon, it is first necessary to break the polygon
down into its constituent triangles, so that we can
accurately determine whether the 3-coloring is ac-
curate. We do this by finding any splitpoints within
the polygon so that it can be seperated into mono-
tone polygons. These monotone polygons are then
individually triangulated, then put back together to
create an ideal triangulation ofn − 2 triangles forn
points.

2.1 Finding Split Points

The first step in our triangulation algorithm was to
locate any split points in the polygon that we can use
to break the polygon down into smaller, monotone
polygons to triangulate. The split point is a point that
is determined to be interior to its neighboring points
on they-axis, in other words, when the point causes
the polygon to be convex on the top or bottom. This
is done by going through each point and shooting a
rays up and down the point’sx-axis (Seidel, 1991).
We then use helper functions to determine whether
or not the rays intersect any other segments of the
polygon. If both rays hit a segment of the polygon,
they are then tested on the basis of how many times
they intersect the polygon to determine whether they
are interior to the polygon. If the point and its rays



Figure 1: The top two polygons are monotone be-
cause every line only intersect the polygon twice.1

meet these criteria they are then flagged as a split
point and the polygon is then split into three poly-
gons, one to the upper right of the point, one to the
upper left, and one beneath the point, with the bases
of the upper two polygons and the top of the lower
polygon formed by the rays along the x-axis of the
point. This continues until the original polygon has
been completely broken down into monotone poly-
gons (de Berg et al., 2000).

2.2 Monotone Triangulation

Since monotone polygons have no interior points on
the y-axis, they get rid of several possible degen-
eracies when being triangulate as opposed to try-
ing to triangulate the entire poylgon at once. Once
the monotone polygons have obtained, each point
within them is checked as the start point for the tri-
angulation using a method similar to the one used
for finding split points, but this time we check to see
if they are interior to their neighboring points in re-
gard to thex-axis. If such a point is found, then it
is chosen as a start point, otherwise the split point
is chosen. The triangulation algorithm then walks
around the polygon’s points using a list of connec-
tions stored in each point to determine the points it
is connected to, and if there is no connection to the
start point, then one is added and a line is formed.
The shared point between the two previous points
is added and then the three are saved as a triangle,
and this continues until the entire polygon has been
traversed. After each monotone triangle has been tri-

1image from http://en.wikipedia.org/wiki/Monotonepolygon

Figure 2: An example of triangulation around start
points.2

angulated, they are all put back together in the poly-
gon, and the horizontal rays from the split points are
removed, creating an optimally triangulated polygon
(de Berg et al., 2000).

2.3 Handling Degeneracies

It is worth noting that the algorithm that we have
come up with in this is capable of handling just about
any degeneracy that we encountered. If the polygon
is concave, our algorithm can deal with the problems
of possible outside segments as well as any problems
that may arise from having a vertex in the middle of
the polygon. the outside segment problem is done by
our suprisingly simple intersection test which takes
the modulus of the number of interstections that the
ray encounters with both edges and vertices. If the
number of intersections is even then the resulting
modulus is zero, and the ray is considered outside
and discarded, as was previously explained in sec-
tion 2.1.

3 Optimizing Camera Placement

3.1 3-coloring and Camera Placement

With the triangulation in place it is now possible
to perform an easy 3-coloring of the polygon, so
that cameras can be placed. Using the triangula-
tion within the polygon, we can now proceed to use

2from http://www.cs.ucsb.edu/s̃uri/cs235/Triangulation.pdf



three coloring to determine where to place the cam-
eras. Using the list of triangles that was created dur-
ing the monotone triangulation, our algorithm takes
the first triangle from the list and colors each point
a different color. The algorithm then looks for tri-
angles that share sides with the previously colored
triangle and color the remaining point is then col-
ored based on what coloring of the other two points
are. This continures until all of the triangles in the
list have been colored, with the number of the points
with each coloring stored as an integer. The integers
are then compared with one another, cameras being
placed at the color with the lowest integer value, cre-
ating optimal single coverage for the polygon (Urru-
tia, 1991) . But in order to achieve double coverage
another set of cameras have to be placed at the next
smallest coloring to provide a basic double coverage
which can be optimized.

3.2 Visibility Graph

Now that the cameras have been placed it is time to
determine what points they see and and what how
many cameras see each point, assuming that if a
camera could see a point then it generally sees the
area surrounding the point, barring degenerate cases
which are taken care of when the cameras are opti-
malized later on. Using a line of sight function,we
created a visibility graph by traversing every point
from each camera, drawing a line between the two
points, making sure that the line did not intersect a
segment of the polygon and remained inside of it.
By doing this we then built up a list of each point
seen by each camera, with thenumber of cameras
seeing each point, allowing our heuristic to optimal-
ize the camera placement (O’Rourke, 1987).

3.3 Camera Optimalization

Now we have our optimalize the camera placement
by going through each camera and seeing if it can
be removed from the polygon, updating the each
point it sees and decrements the number of cameras
that can see them accordingly. If one any point’s
count of cameras that can view it drops below 2, then
the camera has to be replaced, otherwise, it remains
taken off and the next camera is then checked. After
the optimization algorithm is complete, the cameras
left are the optimal.

Figure 3: Simple double coverage on a test polygon
using only 3-coloring.

Figure 4: Optimized double coverage using a visi-
bility graph and optimization.



4 Results and Conclusion

After testing our algorithm on progressively more
complex polygons, our algorithm easily does bet-
ter than⌊2n/3⌋ camera placement for double cover-
age of cameras outside of the the worst case, while
the entire program runs inn2 time, due to the fact
that the points are looked at multiple times espes-
cially during the optimalization step. It also proves
fairly adept at making a strong placement for cov-
erage greater than double, although it needs to be
more thoroughly tested to make any conclusions in
that regard.

References

V. Chvatal. 1973. A combinatoral theorem in plane ge-
ometry. Number 18, pages 39–41.

M. de Berg, M. van Kreveld, M. Overmars, and
O. Schwarzkopf. 2000. Computational geometry: Al-
gorithms and applications (2nd ed.). pages 45–61.

V. Klee. 1979. Some unsolved problems in plane geom-
etry. volume 52, pages 131–145.

Joseph O’Rourke. 1987. Art gallery theorems and algo-
rithms. pages 11–23.

Raimund Seidel. 1991. A simple and fast incremental
randomized algorithm for computing trapezoidal de-
compositions and for triangulating polygons. InCom-
putational Geometry The- ory and Application, vol. 1,
no. 1, pp. 51-64.

Jorge Urrutia. 1991. Art gallery and illumination prob-
lems.


