
How to Think Like a Computer
Scientist: Learning with Python

Documentation
Release 2nd Edition

Jeffrey Elkner, Allen B. Downey and Chris Meyers

February 22, 2017

CONTENTS

1 Learning with Python 3

Index 295

i

ii

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

CONTENTS 1

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

2 CONTENTS

CHAPTER

ONE

LEARNING WITH PYTHON

2nd Edition (Using Python 2.x)

by Jeffrey Elkner, Allen B. Downey, and Chris Meyers

Last Updated: 21 April 2012

• Copyright Notice

• Foreword

• Preface

• Contributor List

• Chapter 1 The way of the program

• Chapter 2 Variables, expressions, and statements

• Chapter 2b A light look at lists and looping

• Chapter 3 Functions

• Chapter 4 Conditionals

• Chapter 5 Fruitful functions

• Chapter 6 Iteration

• Chapter 7 Strings

• Chapter 8 Case Study: Catch

• Chapter 9 Lists

• Chapter 10 Modules and files

• Chapter 11 Recursion and exceptions

• Chapter 12 Dictionaries

• Chapter 13 Classes and objects

• Chapter 14 Classes and functions

3

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

• Chapter 15 Classes and methods

• Chapter 16 Sets of Objects

• Chapter 17 Inheritance

• Chapter 18 Linked Lists

• Chapter 19 Stacks

• Chapter 20 Queues

• Chapter 21 Trees

• Appendix A Debugging

• Appendix B GASP

• Appendix c Configuring Ubuntu for Python Development

• Appendix D Customizing and Contributing to the Book

• GNU Free Document License

Copyright Notice

Copyright (C) Jeffrey Elkner, Allen B. Downey and Chris Meyers.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with Invariant Sections being Foreward, Preface, and Contributor List, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled “GNU Free Documentation License”.

Foreword

By David Beazley

As an educator, researcher, and book author, I am delighted to see the completion of this book.
Python is a fun and extremely easy-to-use programming language that has steadily gained in popu-
larity over the last few years. Developed over ten years ago by Guido van Rossum, Python’s simple
syntax and overall feel is largely derived from ABC, a teaching language that was developed in the
1980’s. However, Python was also created to solve real problems and it borrows a wide variety of
features from programming languages such as C++, Java, Modula-3, and Scheme. Because of this,
one of Python’s most remarkable features is its broad appeal to professional software developers,
scientists, researchers, artists, and educators.

4 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Despite Python’s appeal to many different communities, you may still wonder why Python? or why
teach programming with Python? Answering these questions is no simple task—especially when
popular opinion is on the side of more masochistic alternatives such as C++ and Java. However,
I think the most direct answer is that programming in Python is simply a lot of fun and more
productive.

When I teach computer science courses, I want to cover important concepts in addition to making
the material interesting and engaging to students. Unfortunately, there is a tendency for introduc-
tory programming courses to focus far too much attention on mathematical abstraction and for
students to become frustrated with annoying problems related to low-level details of syntax, com-
pilation, and the enforcement of seemingly arcane rules. Although such abstraction and formalism
is important to professional software engineers and students who plan to continue their study of
computer science, taking such an approach in an introductory course mostly succeeds in making
computer science boring. When I teach a course, I don’t want to have a room of uninspired stu-
dents. I would much rather see them trying to solve interesting problems by exploring different
ideas, taking unconventional approaches, breaking the rules, and learning from their mistakes. In
doing so, I don’t want to waste half of the semester trying to sort out obscure syntax problems,
unintelligible compiler error messages, or the several hundred ways that a program might generate
a general protection fault.

One of the reasons why I like Python is that it provides a really nice balance between the practical
and the conceptual. Since Python is interpreted, beginners can pick up the language and start doing
neat things almost immediately without getting lost in the problems of compilation and linking.
Furthermore, Python comes with a large library of modules that can be used to do all sorts of tasks
ranging from web-programming to graphics. Having such a practical focus is a great way to engage
students and it allows them to complete significant projects. However, Python can also serve as
an excellent foundation for introducing important computer science concepts. Since Python fully
supports procedures and classes, students can be gradually introduced to topics such as procedural
abstraction, data structures, and object-oriented programming — all of which are applicable to later
courses on Java or C++. Python even borrows a number of features from functional programming
languages and can be used to introduce concepts that would be covered in more detail in courses
on Scheme and Lisp.

In reading Jeffrey’s preface, I am struck by his comments that Python allowed him to see a higher
level of success and a lower level of frustration and that he was able to move faster with better
results. Although these comments refer to his introductory course, I sometimes use Python for
these exact same reasons in advanced graduate level computer science courses at the University of
Chicago. In these courses, I am constantly faced with the daunting task of covering a lot of difficult
course material in a blistering nine week quarter. Although it is certainly possible for me to inflict
a lot of pain and suffering by using a language like C++, I have often found this approach to be
counterproductive—especially when the course is about a topic unrelated to just programming. I
find that using Python allows me to better focus on the actual topic at hand while allowing students
to complete substantial class projects.

Although Python is still a young and evolving language, I believe that it has a bright future in
education. This book is an important step in that direction. David Beazley University of Chicago
Author of the Python Essential Reference

1.2. Foreword 5

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Preface

By Jeffrey Elkner

This book owes its existence to the collaboration made possible by the Internet and the free soft-
ware movement. Its three authors—a college professor, a high school teacher, and a professional
programmer—never met face to face to work on it, but we have been able to collaborate closely,
aided by many other folks who have taken the time and energy to send us their feedback.

We think this book is a testament to the benefits and future possibilities of this kind of collabora-
tion, the framework for which has been put in place by Richard Stallman and the Free Software
Foundation.

How and why I came to use Python

In 1999, the College Board’s Advanced Placement (AP) Computer Science exam was given in
C++ for the first time. As in many high schools throughout the country, the decision to change
languages had a direct impact on the computer science curriculum at Yorktown High School in
Arlington, Virginia, where I teach. Up to this point, Pascal was the language of instruction in
both our first-year and AP courses. In keeping with past practice of giving students two years of
exposure to the same language, we made the decision to switch to C++ in the first year course for
the 1997-98 school year so that we would be in step with the College Board’s change for the AP
course the following year.

Two years later, I was convinced that C++ was a poor choice to use for introducing students to com-
puter science. While it is certainly a very powerful programming language, it is also an extremely
difficult language to learn and teach. I found myself constantly fighting with C++’s difficult syn-
tax and multiple ways of doing things, and I was losing many students unnecessarily as a result.
Convinced there had to be a better language choice for our first-year class, I went looking for an
alternative to C++.

I needed a language that would run on the machines in our GNU/Linux lab as well as on the
Windows and Macintosh platforms most students have at home. I wanted it to be free software, so
that students could use it at home regardless of their income. I wanted a language that was used
by professional programmers, and one that had an active developer community around it. It had
to support both procedural and object-oriented programming. And most importantly, it had to be
easy to learn and teach. When I investigated the choices with these goals in mind, Python stood
out as the best candidate for the job.

I asked one of Yorktown’s talented students, Matt Ahrens, to give Python a try. In two months he
not only learned the language but wrote an application called pyTicket that enabled our staff to
report technology problems via the Web. I knew that Matt could not have finished an application
of that scale in so short a time in C++, and this accomplishment, combined with Matt’s positive
assessment of Python, suggested that Python was the solution I was looking for.

6 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Finding a textbook

Having decided to use Python in both of my introductory computer science classes the following
year, the most pressing problem was the lack of an available textbook.

Free documents came to the rescue. Earlier in the year, Richard Stallman had introduced me
to Allen Downey. Both of us had written to Richard expressing an interest in developing free
educational materials. Allen had already written a first-year computer science textbook, How to
Think Like a Computer Scientist. When I read this book, I knew immediately that I wanted to use
it in my class. It was the clearest and most helpful computer science text I had seen. It emphasized
the processes of thought involved in programming rather than the features of a particular language.
Reading it immediately made me a better teacher.

How to Think Like a Computer Scientist was not just an excellent book, but it had been released
under the GNU public license, which meant it could be used freely and modified to meet the needs
of its user. Once I decided to use Python, it occurred to me that I could translate Allen’s original
Java version of the book into the new language. While I would not have been able to write a
textbook on my own, having Allen’s book to work from made it possible for me to do so, at the
same time demonstrating that the cooperative development model used so well in software could
also work for educational materials.

Working on this book for the last two years has been rewarding for both my students and me,
and my students played a big part in the process. Since I could make instant changes whenever
someone found a spelling error or difficult passage, I encouraged them to look for mistakes in the
book by giving them a bonus point each time they made a suggestion that resulted in a change
in the text. This had the double benefit of encouraging them to read the text more carefully and
of getting the text thoroughly reviewed by its most important critics, students using it to learn
computer science.

For the second half of the book on object-oriented programming, I knew that someone with more
real programming experience than I had would be needed to do it right. The book sat in an unfin-
ished state for the better part of a year until the open source community once again provided the
needed means for its completion.

I received an email from Chris Meyers expressing interest in the book. Chris is a professional pro-
grammer who started teaching a programming course last year using Python at Lane Community
College in Eugene, Oregon. The prospect of teaching the course had led Chris to the book, and he
started helping out with it immediately. By the end of the school year he had created a companion
project on our Website at http://openbookproject.net called *Python for Fun* and was working
with some of my most advanced students as a master teacher, guiding them beyond where I could
take them.

Introducing programming with Python

The process of translating and using How to Think Like a Computer Scientist for the past two
years has confirmed Python’s suitability for teaching beginning students. Python greatly simplifies

1.3. Preface 7

http://openbookproject.net
http://openbookproject.net/py4fun

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

programming examples and makes important programming ideas easier to teach.

The first example from the text illustrates this point. It is the traditional hello, world program,
which in the Java version of the book looks like this:

class Hello {

public static void main (String[] args) {
System.out.println ("Hello, world.");

}
}

in the Python version it becomes:

print "Hello, World!"

Even though this is a trivial example, the advantages of Python stand out. Yorktown’s Computer
Science I course has no prerequisites, so many of the students seeing this example are looking at
their first program. Some of them are undoubtedly a little nervous, having heard that computer
programming is difficult to learn. The Java version has always forced me to choose between two
unsatisfying options: either to explain the class Hello, public static void main, String[] args, {,
and }, statements and risk confusing or intimidating some of the students right at the start, or to
tell them, Just don’t worry about all of that stuff now; we will talk about it later, and risk the same
thing. The educational objectives at this point in the course are to introduce students to the idea of
a programming statement and to get them to write their first program, thereby introducing them to
the programming environment. The Python program has exactly what is needed to do these things,
and nothing more.

Comparing the explanatory text of the program in each version of the book further illustrates what
this means to the beginning student. There are seven paragraphs of explanation of Hello, world!
in the Java version; in the Python version, there are only a few sentences. More importantly,
the missing six paragraphs do not deal with the big ideas in computer programming but with the
minutia of Java syntax. I found this same thing happening throughout the book. Whole paragraphs
simply disappear from the Python version of the text because Python’s much clearer syntax renders
them unnecessary.

Using a very high-level language like Python allows a teacher to postpone talking about low-level
details of the machine until students have the background that they need to better make sense of the
details. It thus creates the ability to put first things first pedagogically. One of the best examples
of this is the way in which Python handles variables. In Java a variable is a name for a place
that holds a value if it is a built-in type, and a reference to an object if it is not. Explaining this
distinction requires a discussion of how the computer stores data. Thus, the idea of a variable is
bound up with the hardware of the machine. The powerful and fundamental concept of a variable
is already difficult enough for beginning students (in both computer science and algebra). Bytes
and addresses do not help the matter. In Python a variable is a name that refers to a thing. This is
a far more intuitive concept for beginning students and is much closer to the meaning of variable
that they learned in their math courses. I had much less difficulty teaching variables this year than
I did in the past, and I spent less time helping students with problems using them.

8 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Another example of how Python aids in the teaching and learning of programming is in its syntax
for functions. My students have always had a great deal of difficulty understanding functions. The
main problem centers around the difference between a function definition and a function call, and
the related distinction between a parameter and an argument. Python comes to the rescue with
syntax that is nothing short of beautiful. Function definitions begin with the keyword def, so
I simply tell my students, When you define a function, begin with def, followed by the name
of the function that you are defining; when you call a function, simply call (type) out its name.
Parameters go with definitions; arguments go with calls. There are no return types, parameter
types, or reference and value parameters to get in the way, so I am now able to teach functions in
less than half the time that it previously took me, with better comprehension.

Using Python improved the effectiveness of our computer science program for all students. I saw
a higher general level of success and a lower level of frustration than I experienced teaching with
either C++ or Java. I moved faster with better results. More students left the course with the ability
to create meaningful programs and with the positive attitude toward the experience of programming
that this engenders.

Building a community

I have received email from all over the globe from people using this book to learn or to teach pro-
gramming. A user community has begun to emerge, and many people have been contributing to the
project by sending in materials for the companion Website at http://openbookproject.net/pybiblio.

With the continued growth of Python, I expect the growth in the user community to continue
and accelerate. The emergence of this user community and the possibility it suggests for similar
collaboration among educators have been the most exciting parts of working on this project for
me. By working together, we can increase the quality of materials available for our use and save
valuable time. I invite you to join our community and look forward to hearing from you. Please
write to me at jeff@elkner.net.

Jeffrey Elkner
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

Contributor List

To paraphrase the philosophy of the Free Software Foundation, this book is free like free speech,
but not necessarily free like free pizza. It came about because of a collaboration that would not
have been possible without the GNU Free Documentation License. So we would like to thank the
Free Software Foundation for developing this license and, of course, making it available to us.

1.4. Contributor List 9

http://openbookproject.net/pybiblio
mailto:jeff@elkner.net

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We would also like to thank the more than 100 sharp-eyed and thoughtful readers who have sent
us suggestions and corrections over the past few years. In the spirit of free software, we decided to
express our gratitude in the form of a contributor list. Unfortunately, this list is not complete, but
we are doing our best to keep it up to date. It was also getting too large to include everyone who
sends in a typo or two. You have our gratitude, and you have the personal satisfaction of making a
book you found useful better for you and everyone else who uses it. New additions to the list for
the 2nd edition will be those who have made on-going contributions.

If you have a chance to look through the list, you should realize that each person here has spared
you and all subsequent readers from the confusion of a technical error or a less-than-transparent
explanation, just by sending us a note.

Impossible as it may seem after so many corrections, there may still be errors in this book. If
you should stumble across one, we hope you will take a minute to contact us. The email address
is jeff@elkner.net . Substantial changes made due to your suggestions will add you to the next
version of the contributor list (unless you ask to be omitted). Thank you!

Second Edition

• An email from Mike MacHenry set me straight on tail recursion. He not only pointed out an
error in the presentation, but suggested how to correct it.

• It wasn’t until 5th Grade student Owen Davies came to me in a Saturday morning Python
enrichment class and said he wanted to write the card game, Gin Rummy, in Python that
I finally knew what I wanted to use as the case study for the object oriented programming
chapters.

• A special thanks to pioneering students in Jeff’s Python Programming class at GCTAA dur-
ing the 2009-2010 school year: Safath Ahmed, Howard Batiste, Louis Elkner-Alfaro, and
Rachel Hancock. Your continual and thoughtfull feedback led to changes in most of the
chapters of the book. You set the standard for the active and engaged learners that will help
make the new Governor’s Academy what it is to become. Thanks to you this is truly a student
tested text.

• Thanks in a similar vein to the students in Jeff’s Computer Science class at the HB-
Woodlawn program during the 2007-2008 school year: James Crowley, Joshua Eddy, Eric
Larson, Brian McGrail, and Iliana Vazuka.

• Ammar Nabulsi sent in numerous corrections from Chapters 1 and 2.

• Aldric Giacomoni pointed out an error in our definition of the Fibonacci sequence in Chapter
5.

• Roger Sperberg sent in several spelling corrections and pointed out a twisted piece of logic
in Chapter 3.

• Adele Goldberg sat down with Jeff at PyCon 2007 and gave him a list of suggestions and
corrections from throughout the book.

10 Chapter 1. Learning with Python

mailto:jeff@elkner.net
http://www.arlington.k12.va.us/1540108115320583/blank/browse.asp?A=383&BMDRN=2000&BCOB=0&C=59085

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

• Ben Bruno sent in corrections for chapters 4, 5, 6, and 7.

• Carl LaCombe pointed out that we incorrectly used the term commutative in chapter 6 where
symmetric was the correct term.

• Alessandro Montanile sent in corrections for errors in the code examples and text in chapters
3, 12, 15, 17, 18, 19, and 20.

• Emanuele Rusconi found errors in chapters 4, 8, and 15.

• Michael Vogt reported an indentation error in an example in chapter 6, and sent in a sugges-
tion for improving the clarity of the shell vs. script section in chapter 1.

First Edition

• Lloyd Hugh Allen sent in a correction to Section 8.4.

• Yvon Boulianne sent in a correction of a semantic error in Chapter 5.

• Fred Bremmer submitted a correction in Section 2.1.

• Jonah Cohen wrote the Perl scripts to convert the LaTeX source for this book into beautiful
HTML.

• Michael Conlon sent in a grammar correction in Chapter 2 and an improvement in style in
Chapter 1, and he initiated discussion on the technical aspects of interpreters.

• Benoit Girard sent in a correction to a humorous mistake in Section 5.6.

• Courtney Gleason and Katherine Smith wrote horsebet.py, which was used as a case study
in an earlier version of the book. Their program can now be found on the website.

• Lee Harr submitted more corrections than we have room to list here, and indeed he should
be listed as one of the principal editors of the text.

• James Kaylin is a student using the text. He has submitted numerous corrections.

• David Kershaw fixed the broken catTwice function in Section 3.10.

• Eddie Lam has sent in numerous corrections to Chapters 1, 2, and 3. He also fixed the
Makefile so that it creates an index the first time it is run and helped us set up a versioning
scheme.

• Man-Yong Lee sent in a correction to the example code in Section 2.4.

• David Mayo pointed out that the word unconsciously in Chapter 1 needed to be changed to
subconsciously .

• Chris McAloon sent in several corrections to Sections 3.9 and 3.10.

• Matthew J. Moelter has been a long-time contributor who sent in numerous corrections and
suggestions to the book.

1.4. Contributor List 11

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

• Simon Dicon Montford reported a missing function definition and several typos in Chapter
3. He also found errors in the increment function in Chapter 13.

• John Ouzts corrected the definition of return value in Chapter 3.

• Kevin Parks sent in valuable comments and suggestions as to how to improve the distribution
of the book.

• David Pool sent in a typo in the glossary of Chapter 1, as well as kind words of encourage-
ment.

• Michael Schmitt sent in a correction to the chapter on files and exceptions.

• Robin Shaw pointed out an error in Section 13.1, where the printTime function was used in
an example without being defined.

• Paul Sleigh found an error in Chapter 7 and a bug in Jonah Cohen’s Perl script that generates
HTML from LaTeX.

• Craig T. Snydal is testing the text in a course at Drew University. He has contributed several
valuable suggestions and corrections.

• Ian Thomas and his students are using the text in a programming course. They are the
first ones to test the chapters in the latter half of the book, and they have make numerous
corrections and suggestions.

• Keith Verheyden sent in a correction in Chapter 3.

• Peter Winstanley let us know about a longstanding error in our Latin in Chapter 3.

• Chris Wrobel made corrections to the code in the chapter on file I/O and exceptions.

• Moshe Zadka has made invaluable contributions to this project. In addition to writing the
first draft of the chapter on Dictionaries, he provided continual guidance in the early stages
of the book.

• Christoph Zwerschke sent several corrections and pedagogic suggestions, and explained the
difference between gleich and selbe.

• James Mayer sent us a whole slew of spelling and typographical errors, including two in the
contributor list.

• Hayden McAfee caught a potentially confusing inconsistency between two examples.

• Angel Arnal is part of an international team of translators working on the Spanish version of
the text. He has also found several errors in the English version.

• Tauhidul Hoque and Lex Berezhny created the illustrations in Chapter 1 and improved many
of the other illustrations.

• Dr. Michele Alzetta caught an error in Chapter 8 and sent some interesting pedagogic com-
ments and suggestions about Fibonacci and Old Maid.

• Andy Mitchell caught a typo in Chapter 1 and a broken example in Chapter 2.

12 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

• Kalin Harvey suggested a clarification in Chapter 7 and caught some typos.

• Christopher P. Smith caught several typos and is helping us prepare to update the book for
Python 2.2.

• David Hutchins caught a typo in the Foreword.

• Gregor Lingl is teaching Python at a high school in Vienna, Austria. He is working on a
German translation of the book, and he caught a couple of bad errors in Chapter 5.

• Julie Peters caught a typo in the Preface.

The way of the program

The goal of this book is to teach you to think like a computer scientist. This way of thinking
combines some of the best features of mathematics, engineering, and natural science. Like math-
ematicians, computer scientists use formal languages to denote ideas (specifically computations).
Like engineers, they design things, assembling components into systems and evaluating tradeoffs
among alternatives. Like scientists, they observe the behavior of complex systems, form hypothe-
ses, and test predictions.

The single most important skill for a computer scientist is problem solving. Problem solving
means the ability to formulate problems, think creatively about solutions, and express a solution
clearly and accurately. As it turns out, the process of learning to program is an excellent opportu-
nity to practice problem-solving skills. That’s why this chapter is called, The way of the program.

On one level, you will be learning to program, a useful skill by itself. On another level, you will
use programming as a means to an end. As we go along, that end will become clearer.

The Python programming language

The programming language you will be learning is Python. Python is an example of a high-level
language; other high-level languages you might have heard of are C++, PHP, and Java.

As you might infer from the name high-level language, there are also low-level languages, some-
times referred to as machine languages or assembly languages. Loosely speaking, computers can
only execute programs written in low-level languages. Thus, programs written in a high-level lan-
guage have to be processed before they can run. This extra processing takes some time, which is a
small disadvantage of high-level languages.

But the advantages are enormous. First, it is much easier to program in a high-level language.
Programs written in a high-level language take less time to write, they are shorter and easier to
read, and they are more likely to be correct. Second, high-level languages are portable, meaning
that they can run on different kinds of computers with few or no modifications. Low-level programs
can run on only one kind of computer and have to be rewritten to run on another.

1.5. The way of the program 13

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Due to these advantages, almost all programs are written in high-level languages. Low-level lan-
guages are used only for a few specialized applications.

Two kinds of programs process high-level languages into low-level languages: interpreters and
compilers. An interpreter reads a high-level program and executes it, meaning that it does what the
program says. It processes the program a little at a time, alternately reading lines and performing
computations.

A compiler reads the program and translates it completely before the program starts running. In
this case, the high-level program is called the source code, and the translated program is called the
object code or the executable. Once a program is compiled, you can execute it repeatedly without
further translation.

Many modern languages use both processes. They are first compiled into a lower level language,
called byte code, and then interpreted by a program called a virtual machine. Python uses both
processes, but because of the way programmers interact with it, it is usually considered an inter-
preted language.

There are two ways to use the Python interpreter: shell mode and script mode. In shell mode, you
type Python statements into the Python shell and the interpreter immediately prints the result:

$ python
Python 2.5.1 (r251:54863, May 2 2007, 16:56:35)
[GCC 4.1.2 (Ubuntu 4.1.2-0ubuntu4)] on linux2
Type "help", "copyright", "credits" or "license" for more information.
>>> print(1 + 1)
2

The first line of this example is the command that starts the Python interpreter at a Unix command
prompt. The next three lines are messages from the interpreter. The fourth line starts with >>>,
which is the Python prompt. The interpreter uses the prompt to indicate that it is ready for
instructions. We typed print(1 + 1), and the interpreter replied 2.

Alternatively, you can write a program in a file and use the interpreter to execute the contents of
the file. Such a file is called a script. For example, we used a text editor to create a file named
firstprogram.py with the following contents:

print(1 + 1)

By convention, files that contain Python programs have names that end with .py.

14 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

To execute the program, we have to tell the interpreter the name of the script:

$ python firstprogram.py
2

These examples show Python being run from a Unix command line. In other development envi-
ronments, the details of executing programs may differ. Also, most programs are more interesting
than this one.

The examples in this book use both the Python interpreter and scripts. You will be able to tell
which is intended since shell mode examples will always start with the Python prompt.

Working in shell mode is convenient for testing short bits of code because you get immediate
feedback. Think of it as scratch paper used to help you work out problems. Anything longer than
a few lines should be put into a script.

What is a program?

A program is a sequence of instructions that specifies how to perform a computation. The com-
putation might be something mathematical, such as solving a system of equations or finding the
roots of a polynomial, but it can also be a symbolic computation, such as searching and replacing
text in a document or (strangely enough) compiling a program.

The details look different in different languages, but a few basic instructions appear in just about
every language:

input Get data from the keyboard, a file, or some other device.

output Display data on the screen or send data to a file or other device.

math Perform basic mathematical operations like addition and multiplication.

conditional execution Check for certain conditions and execute the appropriate sequence of state-
ments.

repetition Perform some action repeatedly, usually with some variation.

Believe it or not, that’s pretty much all there is to it. Every program you’ve ever used, no matter
how complicated, is made up of instructions that look more or less like these. Thus, we can
describe programming as the process of breaking a large, complex task into smaller and smaller
subtasks until the subtasks are simple enough to be performed with one of these basic instructions.

That may be a little vague, but we will come back to this topic later when we talk about algorithms.

What is debugging?

Programming is a complex process, and because it is done by human beings, it often leads to errors.
For whimsical reasons, programming errors are called bugs and the process of tracking them down
and correcting them is called debugging.

1.5. The way of the program 15

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Three kinds of errors can occur in a program: syntax errors, runtime errors, and semantic errors. It
is useful to distinguish between them in order to track them down more quickly.

Syntax errors

Python can only execute a program if the program is syntactically correct; otherwise, the process
fails and returns an error message. syntax refers to the structure of a program and the rules about
that structure. For example, in English, a sentence must begin with a capital letter and end with a
period. this sentence contains a syntax error. So does this one

For most readers, a few syntax errors are not a significant problem, which is why we can read the
poetry of e. e. cummings without spewing error messages. Python is not so forgiving. If there
is a single syntax error anywhere in your program, Python will print an error message and quit,
and you will not be able to run your program. During the first few weeks of your programming
career, you will probably spend a lot of time tracking down syntax errors. As you gain experience,
though, you will make fewer errors and find them faster.

Runtime errors

The second type of error is a runtime error, so called because the error does not appear until you run
the program. These errors are also called exceptions because they usually indicate that something
exceptional (and bad) has happened.

Runtime errors are rare in the simple programs you will see in the first few chapters, so it might be
a while before you encounter one.

Semantic errors

The third type of error is the semantic error. If there is a semantic error in your program, it will
run successfully, in the sense that the computer will not generate any error messages, but it will
not do the right thing. It will do something else. Specifically, it will do what you told it to do.

The problem is that the program you wrote is not the program you wanted to write. The meaning of
the program (its semantics) is wrong. Identifying semantic errors can be tricky because it requires
you to work backward by looking at the output of the program and trying to figure out what it is
doing.

Experimental debugging

One of the most important skills you will acquire is debugging. Although it can be frustrating,
debugging is one of the most intellectually rich, challenging, and interesting parts of programming.

16 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Syntax_error
http://en.wikipedia.org/wiki/Runtime_error
http://en.wikipedia.org/wiki/Logic_error

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

In some ways, debugging is like detective work. You are confronted with clues, and you have to
infer the processes and events that led to the results you see.

Debugging is also like an experimental science. Once you have an idea what is going wrong, you
modify your program and try again. If your hypothesis was correct, then you can predict the result
of the modification, and you take a step closer to a working program. If your hypothesis was
wrong, you have to come up with a new one. As Sherlock Holmes pointed out, When you have
eliminated the impossible, whatever remains, however improbable, must be the truth. (A. Conan
Doyle, The Sign of Four)

For some people, programming and debugging are the same thing. That is, programming is the
process of gradually debugging a program until it does what you want. The idea is that you should
start with a program that does something and make small modifications, debugging them as you
go, so that you always have a working program.

For example, Linux is an operating system kernel that contains millions of lines of code, but it
started out as a simple program Linus Torvalds used to explore the Intel 80386 chip. According to
Larry Greenfield, one of Linus’s earlier projects was a program that would switch between printing
AAAA and BBBB. This later evolved to Linux (The Linux Users’ Guide Beta Version 1).

Later chapters will make more suggestions about debugging and other programming practices.

Formal and natural languages

Natural languages are the languages that people speak, such as English, Spanish, and French.
They were not designed by people (although people try to impose some order on them); they
evolved naturally.

Formal languages are languages that are designed by people for specific applications. For exam-
ple, the notation that mathematicians use is a formal language that is particularly good at denoting
relationships among numbers and symbols. Chemists use a formal language to represent the chem-
ical structure of molecules. And most importantly:

Programming languages are formal languages that have been designed to express
computations.

Formal languages tend to have strict rules about syntax. For example, 3+3=6 is a syntactically
correct mathematical statement, but 3=+6$ is not. H2O is a syntactically correct chemical name,
but 2Zz is not.

Syntax rules come in two flavors, pertaining to tokens and structure. Tokens are the basic elements
of the language, such as words, numbers, and chemical elements. One of the problems with 3=+6$
is that $ is not a legal token in mathematics (at least as far as we know). Similarly, 2Zz is not legal
because there is no element with the abbreviation Zz.

The second type of syntax rule pertains to the structure of a statement— that is, the way the tokens
are arranged. The statement 3=+6$ is structurally illegal because you can’t place a plus sign

1.5. The way of the program 17

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

immediately after an equal sign. Similarly, molecular formulas have to have subscripts after the
element name, not before.

When you read a sentence in English or a statement in a formal language, you have to figure out
what the structure of the sentence is (although in a natural language you do this subconsciously).
This process is called parsing.

For example, when you hear the sentence, The other shoe fell, you understand that the other shoe is
the subject and fell is the verb. Once you have parsed a sentence, you can figure out what it means,
or the semantics of the sentence. Assuming that you know what a shoe is and what it means to fall,
you will understand the general implication of this sentence.

Although formal and natural languages have many features in common — tokens, structure, syntax,
and semantics — there are many differences:

ambiguity Natural languages are full of ambiguity, which people deal with by using contextual
clues and other information. Formal languages are designed to be nearly or completely un-
ambiguous, which means that any statement has exactly one meaning, regardless of context.

redundancy In order to make up for ambiguity and reduce misunderstandings, natural languages
employ lots of redundancy. As a result, they are often verbose. Formal languages are less
redundant and more concise.

literalness Natural languages are full of idiom and metaphor. If someone says, The other shoe
fell, there is probably no shoe and nothing falling. Formal languages mean exactly what they
say.

People who grow up speaking a natural language—everyone—often have a hard time adjusting to
formal languages. In some ways, the difference between formal and natural language is like the
difference between poetry and prose, but more so:

Poetry Words are used for their sounds as well as for their meaning, and the whole poem together
creates an effect or emotional response. Ambiguity is not only common but often deliberate.

Prose The literal meaning of words is more important, and the structure contributes more mean-
ing. Prose is more amenable to analysis than poetry but still often ambiguous.

Programs The meaning of a computer program is unambiguous and literal, and can be understood
entirely by analysis of the tokens and structure.

Here are some suggestions for reading programs (and other formal languages). First, remember
that formal languages are much more dense than natural languages, so it takes longer to read them.
Also, the structure is very important, so it is usually not a good idea to read from top to bottom, left
to right. Instead, learn to parse the program in your head, identifying the tokens and interpreting
the structure. Finally, the details matter. Little things like spelling errors and bad punctuation,
which you can get away with in natural languages, can make a big difference in a formal language.

18 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The first program

Traditionally, the first program written in a new language is called Hello, World! because all it
does is display the words, Hello, World! In Python, it looks like this:

print("Hello, World!")

This is an example of a print statement, which doesn’t actually print anything on paper. It displays
a value on the screen. In this case, the result is the words

Hello, World!

The quotation marks in the program mark the beginning and end of the value; they don’t appear in
the result.

Some people judge the quality of a programming language by the simplicity of the Hello, World!
program. By this standard, Python does about as well as possible.

Glossary

algorithm A general process for solving a category of problems.

bug An error in a program.

byte code An intermediate language between source code and object code. Many modern lan-
guages first compile source code into byte code and then interpret the byte code with a
program called a virtual machine.

compile To translate a program written in a high-level language into a low-level language all at
once, in preparation for later execution.

debugging The process of finding and removing any of the three kinds of programming errors.

exception Another name for a runtime error.

executable Another name for object code that is ready to be executed.

formal language Any one of the languages that people have designed for specific purposes, such
as representing mathematical ideas or computer programs; all programming languages are
formal languages.

high-level language A programming language like Python that is designed to be easy for humans
to read and write.

interpret To execute a program in a high-level language by translating it one line at a time.

low-level language A programming language that is designed to be easy for a computer to exe-
cute; also called machine language or assembly language.

natural language Any one of the languages that people speak that evolved naturally.

1.5. The way of the program 19

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

object code The output of the compiler after it translates the program.

parse To examine a program and analyze the syntactic structure.

portability A property of a program that can run on more than one kind of computer.

print statement An instruction that causes the Python interpreter to display a value on the screen.

problem solving The process of formulating a problem, finding a solution, and expressing the
solution.

program a sequence of instructions that specifies to a computer actions and computations to be
performed.

Python shell An interactive user interface to the Python interpreter. The user of a Python shell
types commands at the prompt (>>>), and presses the return key to send these commands
immediately to the interpreter for processing.

runtime error An error that does not occur until the program has started to execute but that
prevents the program from continuing.

script A program stored in a file (usually one that will be interpreted).

semantic error An error in a program that makes it do something other than what the programmer
intended.

semantics The meaning of a program.

source code A program in a high-level language before being compiled.

syntax The structure of a program.

syntax error An error in a program that makes it impossible to parse — and therefore impossible
to interpret.

token One of the basic elements of the syntactic structure of a program, analogous to a word in a
natural language.

Exercises

1. Write an English sentence with understandable semantics but incorrect syntax. Write another
English sentence which has correct syntax but has semantic errors.

2. Start a Python shell. Type 1 + 2 and then hit return. Python evaluates this expression,
prints the result, and then prints another prompt. * is the multiplication operator, and **
is the exponentiation operator. Experiment by entering different expressions and recording
what is printed by the Python interpreter. What happens if you use the / operator? Are the
results what you expect? Explain.

3. Type 1 2 and then hit return. Python tries to evaluate the expression, but it can’t because
the expression is not syntactically legal. Instead, it prints the error message:

20 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

File "<stdin>", line 1
1 2

^
SyntaxError: invalid syntax

In many cases, Python indicates where the syntax error occurred, but it is not always right,
and it doesn’t give you much information about what is wrong.

So, for the most part, the burden is on you to learn the syntax rules.

In this case, Python is complaining because there is no operator between the numbers.

See if you can find a few more examples of things that will produce error messages when
you enter them at the Python prompt. Write down what you enter at the prompt and the last
line of the error message that Python reports back to you.

4. Type print(’hello’). Python executes this statement, which has the effect of printing
the letters h-e-l-l-o. Notice that the quotation marks that you used to enclose the string are
not part of the output. Now type "hello" and describe your result. Make note of when
you see the quotation marks and when you don’t.

5. Type print(cheese) without the quotation marks. The output will look something like
this:

Traceback (most recent call last):
File "<stdin>", line 1, in ?

NameError: name 'cheese' is not defined

This is a run-time error; specifically, it is a NameError, and even more specifically, it is an
error because the name cheese is not defined. If you don’t know what that means yet, you
will soon.

6. Type ’This is a test...’ at the Python prompt and hit enter. Record what happens.

Now create a python script named test1.py with the following contents (be sure to save
it before you try to run it):

'This is a test...'

What happens when you run this script? Now change the contents to:

print('This is a test...')

and run it again.

What happened this time?

Whenever an expression is typed at the Python prompt, it is evaluated and the result is
printed on the line below. ’This is a test...’ is an expression, which evaluates
to ’This is a test...’ (just like the expression 42 evaluates to 42). In a script,
however, evaluations of expressions are not sent to the program output, so it is necessary to
explicitly print them.

1.5. The way of the program 21

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Variables, expressions and statements

Values and data types

A value is one of the fundamental things — like a letter or a number — that a program manipu-
lates. The values we have seen so far are 2 (the result when we added 1 + 1), and "Hello,
World!".

These values belong to different data types: 2 is an integer, and "Hello, World!" is a string,
so-called because it contains a string of letters. You (and the interpreter) can identify strings
because they are enclosed in quotation marks.

The print statement also works for integers.

>>> print(4)
4

If you are not sure what type a value has, the interpreter can tell you.

>>> type("Hello, World!")
<type 'str'>
>>> type(17)
<type 'int'>

Not surprisingly, strings belong to the type str and integers belong to the type int. Less obviously,
numbers with a decimal point belong to a type called float, because these numbers are represented
in a format called floating-point.

>>> type(3.2)
<type 'float'>

What about values like "17" and "3.2"? They look like numbers, but they are in quotation
marks like strings.

>>> type("17")
<type 'str'>
>>> type("3.2")
<type 'str'>

They’re strings.

Strings in Python can be enclosed in either single quotes (‘) or double quotes (”):

>>> type('This is a string.')
<type 'str'>
>>> type("And so is this.")
<type 'str'>

22 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Double quoted strings can contain single quotes inside them, as in "Bruce’s beard", and
single quoted strings can have double quotes inside them, as in ’The knights who say
"Ni!"’.

When you type a large integer, you might be tempted to use commas between groups of three
digits, as in 1,000,000. This is not a legal integer in Python, but it is legal:

>>> print(1,000,000)
(1, 0, 0)

Well, that’s not what we expected at all! Python interprets 1,000,000 as a three separate items
to be printed. So remember not to put commas in your integers.

Variables

One of the most powerful features of a programming language is the ability to manipulate vari-
ables. A variable is a name that refers to a value.

The assignment statement creates new variables and gives them values:

>>> message = "What's up, Doc?"
>>> n = 17
>>> pi = 3.14159

This example makes three assignments. The first assigns the string "What’s up, Doc?" to
a new variable named message. The second gives the integer 17 to n, and the third gives the
floating-point number 3.14159 to pi.

The assignment operator, =, should not be confused with an equals sign (even though it uses the
same character). Assignment operators link a name, on the left hand side of the operator, with a
value, on the right hand side. This is why you will get an error if you enter:

>>> 17 = n

A common way to represent variables on paper is to write the name with an arrow pointing to the
variable’s value. This kind of figure is called a state diagram because it shows what state each of
the variables is in (think of it as the variable’s state of mind). This diagram shows the result of the
assignment statements:

The print statement also works with variables.

>>> print(message)
What's up, Doc?
>>> print(n)

1.6. Variables, expressions and statements 23

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

17
>>> print(pi)
3.14159

In each case the result is the value of the variable. Variables also have types; again, we can ask the
interpreter what they are.

>>> type(message)
<type 'str'>
>>> type(n)
<type 'int'>
>>> type(pi)
<type 'float'>

The type of a variable is the type of the value it refers to.

Variable names and keywords

Programmers generally choose names for their variables that are meaningful — they document
what the variable is used for.

Variable names can be arbitrarily long. They can contain both letters and numbers, but they have
to begin with a letter. Although it is legal to use uppercase letters, by convention we don’t. If you
do, remember that case matters. Bruce and bruce are different variables.

The underscore character (_) can appear in a name. It is often used in names with multiple words,
such as my_name or price_of_tea_in_china.

If you give a variable an illegal name, you get a syntax error:

>>> 76trombones = "big parade"
SyntaxError: invalid syntax
>>> more$ = 1000000
SyntaxError: invalid syntax
>>> class = "Computer Science 101"
SyntaxError: invalid syntax

76trombones is illegal because it does not begin with a letter. more$ is illegal because it
contains an illegal character, the dollar sign. But what’s wrong with class?

It turns out that class is one of the Python keywords. Keywords define the language’s rules and
structure, and they cannot be used as variable names.

Python has thirty-one keywords:

24 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

and as assert break class continue
def del elif else except exec
finally for from global if import
in is lambda not or pass
print raise return try while with
yield

You might want to keep this list handy. If the interpreter complains about one of your variable
names and you don’t know why, see if it is on this list.

Statements

A statement is an instruction that the Python interpreter can execute. We have seen two kinds of
statements: print and assignment.

When you type a statement on the command line, Python executes it and displays the result, if
there is one. The result of a print statement is a value. Assignment statements don’t produce a
result.

A script usually contains a sequence of statements. If there is more than one statement, the results
appear one at a time as the statements execute.

For example, the script

print(1)
x = 2
print(x)

produces the output:

1
2

Again, the assignment statement produces no output.

Evaluating expressions

An expression is a combination of values, variables, and operators. If you type an expression on
the command line, the interpreter evaluates it and displays the result:

>>> 1 + 1
2

The evaluation of an expression produces a value, which is why expressions can appear on the
right hand side of assignment statements. A value all by itself is a simple expression, and so is a
variable.

1.6. Variables, expressions and statements 25

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> 17
17
>>> x
2

Confusingly, evaluating an expression is not quite the same thing as printing a value.

>>> message = "What's up, Doc?"
>>> message
"What's up, Doc?"
>>> print(message)
What's up, Doc?

When the Python shell displays the value of an expression, it uses the same format you would use
to enter a value. In the case of strings, that means that it includes the quotation marks. But the
print statement prints the value of the expression, which in this case is the contents of the string.

In a script, an expression all by itself is a legal statement, but it doesn’t do anything. The script

17
3.2
"Hello, World!"
1 + 1

produces no output at all. How would you change the script to display the values of these four
expressions?

Operators and operands

Operators are special symbols that represent computations like addition and multiplication. The
values the operator uses are called operands.

The following are all legal Python expressions whose meaning is more or less clear:

20+32 hour-1 hour*60+minute minute/60 5**2 (5+9)*(15-7)

The symbols +, -, and /, and the use of parenthesis for grouping, mean in Python what they
mean in mathematics. The asterisk (*) is the symbol for multiplication, and ** is the symbol for
exponentiation.

When a variable name appears in the place of an operand, it is replaced with its value before the
operation is performed.

Addition, subtraction, multiplication, and exponentiation all do what you expect, but you might be
surprised by division. The following operation has an unexpected result:

>>> minute = 59
>>> minute/60
0

26 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The value of minute is 59, and 59 divided by 60 is 0.98333, not 0. The reason for the discrepancy
is that Python is performing integer division.

When both of the operands are integers, the result must also be an integer, and by convention,
integer division always rounds down, even in cases like this where the next integer is very close.

A possible solution to this problem is to calculate a percentage rather than a fraction:

>>> minute*100/60
98

Again the result is rounded down, but at least now the answer is approximately correct. Another
alternative is to use floating-point division. We’ll see in the Chapter 4 how to convert integer values
and variables to floating-point values.

Order of operations

When more than one operator appears in an expression, the order of evaluation depends on the
rules of precedence. Python follows the same precedence rules for its mathematical operators that
mathematics does. The acronym PEMDAS is a useful way to remember the order of operations:

1. Parentheses have the highest precedence and can be used to force an expression to evaluate
in the order you want. Since expressions in parentheses are evaluated first, 2 * (3-1) is
4, and (1+1)**(5-2) is 8. You can also use parentheses to make an expression easier to
read, as in (minute * 100) / 60, even though it doesn’t change the result.

2. Exponentiation has the next highest precedence, so 2**1+1 is 3 and not 4, and 3*1**3 is
3 and not 27.

3. Multiplication and Division have the same precedence, which is higher than Addition and
Subtraction, which also have the same precedence. So 2*3-1 yields 5 rather than 4, and
2/3-1 is -1, not 1 (remember that in integer division, 2/3=0).

4. Operators with the same precedence are evaluated from left to right. So in the expression
minute*100/60, the multiplication happens first, yielding 5900/60, which in turn yields
98. If the operations had been evaluated from right to left, the result would have been 59*1,
which is 59, which is wrong.

Operations on strings

In general, you cannot perform mathematical operations on strings, even if the strings look like
numbers. The following are illegal (assuming that message has type string):

message-1 "Hello"/123 message*"Hello" "15"+2

1.6. Variables, expressions and statements 27

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Interestingly, the + operator does work with strings, although it does not do exactly what you
might expect. For strings, the + operator represents concatenation, which means joining the two
operands by linking them end-to-end. For example:

fruit = "banana"
baked_good = " nut bread"
print(fruit + baked_good)

The output of this program is banana nut bread. The space before the word nut is part of
the string, and is necessary to produce the space between the concatenated strings.

The * operator also works on strings; it performs repetition. For example, ’Fun’*3 is
’FunFunFun’. One of the operands has to be a string; the other has to be an integer.

On one hand, this interpretation of + and * makes sense by analogy with addition and mul-
tiplication. Just as 4*3 is equivalent to 4+4+4, we expect "Fun"*3 to be the same as
"Fun"+"Fun"+"Fun", and it is. On the other hand, there is a significant way in which string
concatenation and repetition are different from integer addition and multiplication. Can you think
of a property that addition and multiplication have that string concatenation and repetition do not?

Input

The built-in function raw_input() can be used for getting keyboard input. This function takes
one argument (the string used as a prompt to the user) and returns whatever the user enters as a
string:

name = raw_input("Please enter your name: ")
print(name)
age = raw_input("Please enter your age: ")
print(age)

A sample run of this script would look something like this:

$ python tryinput.py
Please enter your name: Jeff
Jeff
Please enter your age: 50
50

NOTE: in the above example, the variable age is assigned the string “50”. It’s easy to see this using
the interactive python shell and the type() function. If you need an integer or a float, you could
convert the given user input:

>>> age = raw_input("How old are you? ")
How old are you? 50
>>> type(age)
<type 'str'>
>>> age = int(age)

28 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> type(age)
<type 'int'>
>>>

Composition

So far, we have looked at the elements of a program — variables, expressions, and statements —
in isolation, without talking about how to combine them.

One of the most useful features of programming languages is their ability to take small building
blocks and compose them. For example, we know how to add numbers and we know how to print;
it turns out we can do both at the same time:

>>> print(17 + 3)
20

In reality, the addition has to happen before the printing, so the actions aren’t actually happening
at the same time. The point is that any expression involving numbers, strings, and variables can be
used inside a print statement. You’ve already seen an example of this:

print("Number of minutes since midnight: ")
print(hour*60+minute)

You can also put arbitrary expressions on the right-hand side of an assignment statement:

percentage = (minute * 100) / 60

This ability may not seem impressive now, but you will see other examples where composition
makes it possible to express complex computations neatly and concisely.

Warning: There are limits on where you can use certain expressions. For example, the
left-hand side of an assignment statement has to be a variable name, not an expression.
So, the following is illegal: minute+1 = hour.

Comments

As programs get bigger and more complicated, they get more difficult to read. Formal languages
are dense, and it is often difficult to look at a piece of code and figure out what it is doing, or why.

For this reason, it is a good idea to add notes to your programs to explain in natural language what
the program is doing. These notes are called comments, and they are marked with the # symbol:

compute the percentage of the hour that has elapsed
percentage = (minute * 100) / 60

In this case, the comment appears on a line by itself. You can also put comments at the end of a
line:

1.6. Variables, expressions and statements 29

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

percentage = (minute * 100) / 60 # caution: integer division

Everything from the # to the end of the line is ignored — it has no effect on the program. The
message is intended for the programmer or for future programmers who might use this code. In
this case, it reminds the reader about the ever-surprising behavior of integer division.

Glossary

assignment operator = is Python’s assignment operator, which should not be confused with the
mathematical comparison operator using the same symbol.

assignment statement A statement that assigns a value to a name (variable). To the left of the
assignment operator, =, is a name. To the right of the assignment operator is an expression
which is evaluated by the Python interpreter and then assigned to the name. The difference
between the left and right hand sides of the assignment statement is often confusing to new
programmers. In the following assignment:

n = n + 1

n plays a very different role on each side of the =. On the right it is a value and makes up
part of the expression which will be evaluated by the Python interpreter before assigning it
to the name on the left.

comment Information in a program that is meant for other programmers (or anyone reading the
source code) and has no effect on the execution of the program.

composition The ability to combine simple expressions and statements into compound statements
and expressions in order to represent complex computations concisely.

concatenate To join two strings end-to-end.

data type A set of values. The type of a value determines how it can be used in expressions. So
far, the types you have seen are integers (type int), floating-point numbers (type float),
and strings (type str).

evaluate To simplify an expression by performing the operations in order to yield a single value.

expression A combination of variables, operators, and values that represents a single result value.

float A Python data type which stores floating-point numbers. Floating-point numbers are stored
internally in two parts: a base and an exponent. When printed in the standard format, they
look like decimal numbers. Beware of rounding errors when you use floats, and remember
that they are only approximate values.

int A Python data type that holds positive and negative whole numbers.

integer division An operation that divides one integer by another and yields an integer. Inte-
ger division yields only the whole number of times that the numerator is divisible by the
denominator and discards any remainder.

30 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

keyword A reserved word that is used by the compiler to parse program; you cannot use keywords
like if, def, and while as variable names.

operand One of the values on which an operator operates.

operator A special symbol that represents a simple computation like addition, multiplication, or
string concatenation.

rules of precedence The set of rules governing the order in which expressions involving multiple
operators and operands are evaluated.

state diagram A graphical representation of a set of variables and the values to which they refer.

statement An instruction that the Python interpreter can execute. Examples of statements include
the assignment statement and the print statement.

str A Python data type that holds a string of characters.

value A number or string (or other things to be named later) that can be stored in a variable or
computed in an expression.

variable A name that refers to a value.

variable name A name given to a variable. Variable names in Python consist of a sequence of
letters (a..z, A..Z, and _) and digits (0..9) that begins with a letter. In best programming
practice, variable names should be chosen so that they describe their use in the program,
making the program self documenting.

Exercises

1. Record what happens when you print an assignment statement:

>>> print(n = 9)

How about this?

>>> print(7 + 5)

Or this?

>>> print("this"+"that")

Can you think of a general rule for what can follow the print statement? What does the
print statement return?

2. Take the sentence: All work and no play makes Jack a dull boy. Store each word in a separate
variable, then print out the sentence on one line using print.

3. Add parenthesis to the expression 6 * 1 - 2 to change its value from 4 to -6.

4. Place a comment before a line of code that previously worked, and record what happens
when you rerun the program.

1.6. Variables, expressions and statements 31

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

5. Start the Python interpreter and enter bruce + 4 at the prompt. This will give you an
error:

NameError: name 'bruce' is not defined

Assign a value to bruce so that bruce + 4 evaluates to 10.

6. Write a program (Python script) named madlib.py, which asks the user to enter a series
of nouns, verbs, adjectives, adverbs, plural nouns, past tense verbs, etc., and then generates
a paragraph which is syntactically correct but semantically ridiculous (see http://madlibs.org
for examples).

Functions

Definitions and use

In the context of programming, a function is a named sequence of statements that performs a
desired operation. This operation is specified in a function definition. In Python, the syntax for a
function definition is:

def NAME(LIST OF PARAMETERS):
STATEMENTS

You can make up any names you want for the functions you create, except that you can’t use a
name that is a Python keyword. The list of parameters specifies what information, if any, you have
to provide in order to use the new function.

There can be any number of statements inside the function, but they have to be indented from the
def. In the examples in this book, we will use the standard indentation of four spaces. Function
definitions are the first of several compound statements we will see, all of which have the same
pattern:

1. A header, which begins with a keyword and ends with a colon.

2. A body consisting of one or more Python statements, each indented the same amount – 4
spaces is the Python standard – from the header.

In a function definition, the keyword in the header is def, which is followed by the name of the
function and a list of parameters enclosed in parentheses. The parameter list may be empty, or it
may contain any number of parameters. In either case, the parentheses are required.

The first couple of functions we are going to write have no parameters, so the syntax looks like
this:

def new_line():
print("") # a print statement with an empty string prints a new line

32 Chapter 1. Learning with Python

http://madlibs.org

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

This function is named new_line. Its body contains only a single statement, which outputs a
newline character. (That’s what happens when you use a print command with an empty string.)

Defining a new function does not make the function run. To do that we need a function call.
Function calls contain the name of the function being executed followed by a list of values, called
arguments, which are assigned to the parameters in the function definition. Our first examples have
an empty parameter list, so the function calls do not take any arguments. Notice, however, that the
parentheses are required in the function call:

print("First Line.")
new_line()
print("Second Line.")

The output of this program is:

First line.

Second line.

The extra space between the two lines is a result of the new_line() function call. What if we
wanted more space between the lines? We could call the same function repeatedly:

print("First Line.")
new_line()
new_line()
new_line()
print("Second Line.")

Or we could write a new function named three_lines that prints three new lines:

def three_lines():
new_line()
new_line()
new_line()

print("First Line.")
three_lines()
print("Second Line.")

This function contains three statements, all of which are indented by four spaces. Since the next
statement is not indented, Python knows that it is not part of the function.

You should notice a few things about this program:

• You can call the same procedure repeatedly. In fact, it is quite common and useful to do so.

• You can have one function call another function; in this case three_lines calls
new_line.

So far, it may not be clear why it is worth the trouble to create all of these new functions. Actually,
there are a lot of reasons, but this example demonstrates two:

1.7. Functions 33

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

1. Creating a new function gives you an opportunity to name a group of statements. Functions
can simplify a program by hiding a complex computation behind a single command and by
using English words in place of arcane code.

2. Creating a new function can make a program smaller by eliminating repetitive code. For
example, a short way to print nine consecutive new lines is to call three_lines three
times.

Pulling together the code fragments from the previous section into a script named tryme1.py,
the whole program looks like this:

def new_line():
print("")

def three_lines():
new_line()
new_line()
new_line()

print("First Line.")
three_lines()
print("Second Line.")

This program contains two function definitions: new_line and three_lines. Function def-
initions get executed just like other statements, but the effect is to create the new function. The
statements inside the function do not get executed until the function is called, and the function
definition generates no output.

As you might expect, you have to create a function before you can execute it. In other words, the
function definition has to be executed before the first time it is called.

Flow of execution

In order to ensure that a function is defined before its first use, you have to know the order in which
statements are executed, which is called the flow of execution.

Execution always begins at the first statement of the program. Statements are executed one at a
time, in order from top to bottom.

Function definitions do not alter the flow of execution of the program, but remember that statements
inside the function are not executed until the function is called. Although it is not common, you
can define one function inside another. In this case, the inner definition isn’t executed until the
outer function is called.

Function calls are like a detour in the flow of execution. Instead of going to the next statement, the
flow jumps to the first line of the called function, executes all the statements there, and then comes
back to pick up where it left off.

34 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

That sounds simple enough, until you remember that one function can call another. While in the
middle of one function, the program might have to execute the statements in another function. But
while executing that new function, the program might have to execute yet another function!

Fortunately, Python is adept at keeping track of where it is, so each time a function completes,
the program picks up where it left off in the function that called it. When it gets to the end of the
program, it terminates.

What’s the moral of this sordid tale? When you read a program, don’t read from top to bottom.
Instead, follow the flow of execution.

Parameters, arguments, and the import statement

Most functions require arguments, values that control how the function does its job. For example,
if you want to find the absolute value of a number, you have to indicate what the number is. Python
has a built-in function for computing the absolute value:

>>> abs(5)
5
>>> abs(-5)
5

In this example, the arguments to the abs function are 5 and -5.

Some functions take more than one argument. For example the built-in function pow takes two
arguments, the base and the exponent. Inside the function, the values that are passed get assigned
to variables called parameters.

>>> pow(2, 3)
8
>>> pow(7, 4)
2401

Another built-in function that takes more than one argument is max.

>>> max(7, 11)
11
>>> max(4, 1, 17, 2, 12)
17
>>> max(3 * 11, 5**3, 512 - 9, 1024**0)
503

max can be sent any number of arguments, separated by commas, and will return the maximum
value sent. The arguments can be either simple values or expressions. In the last example, 503 is
returned, since it is larger than 33, 125, and 1.

Here is an example of a user-defined function that has a parameter:

1.7. Functions 35

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def print_twice(param):
print(param)
print(param)

This function takes a single argument and assigns it to the parameter named param. The value
of the parameter (at this point we have no idea what it will be) is printed twice, each followed by a
newline. The name param was chosen to reinforce the idea that it is a parameter, but in general,
you will want to choose a name for your parameters that describes their use in the function.

The interactive Python shell provides us with a convenient way to test our functions. We can
use the import statement to bring the functions we have defined in a script into the interpreter
session. To see how this works, assume the print_twice function is defined in a script named
chap03.py. We can now test it interactively by importing it into our Python shell session:

>>> from chap03 import *
>>> print_twice('Spam')
Spam
Spam
>>> print_twice(5)
5
5
>>> print_twice(3.14159)
3.14159
3.14159

In a function call, the value of the argument is assigned to the corresponding parame-
ter in the function definition. In effect, it is if param = ’Spam’ is executed when
print_twice(’Spam’) is called, param = 5 in print_twice(5), and param =
3.14159 in print_twice(3.14159).

Any type of argument that can be printed can be sent to print_twice In the first function call,
the argument is a string. In the second, it’s an integer. In the third, it’s a float.

As with built-in functions, we can use an expression as an argument for print_twice:

>>> print_twice('Spam' * 4)
SpamSpamSpamSpam
SpamSpamSpamSpam

’Spam’*4 is first evaluated to ’SpamSpamSpamSpam’, which is then passed as an argument
to print_twice.

Composition

Just as with mathematical functions, Python functions can be composed, meaning that you use the
result of one function as the input to another.

36 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> print_twice(abs(-7))
7
7
>>> print_twice(max(3, 1, abs(-11), 7))
11
11

In the first example, abs(-7) evaluates to 7, which then becomes the argument to
print_twice. In the second example we have two levels of composition, since abs(-11) is
first evaluated to 11 before max(3, 1, 11, 7) is evaluated to 11 and print_twice(11)
then displays the result.

We can also use a variable as an argument:

>>> sval = 'Eric, the half a bee.'
>>> print_twice(sval)
Eric, the half a bee.
Eric, the half a bee.

Notice something very important here. The name of the variable we pass as an argument (sval)
has nothing to do with the name of the parameter (param). Again, it is as if param = sval is
executed when print_twice(sval) is called. It doesn’t matter what the value was named in
the caller, in print_twice its name is param.

Variables and parameters are local

When you create a local variable inside a function, it only exists inside the function, and you
cannot use it outside. For example:

def cat_twice(part1, part2):
cat = part1 + part2
print_twice(cat)

This function takes two arguments, concatenates them, and then prints the result twice. We can
call the function with two strings:

>>> chant1 = "Pie Jesu domine, "
>>> chant2 = "Dona eis requiem."
>>> cat_twice(chant1, chant2)
Pie Jesu domine, Dona eis requiem.
Pie Jesu domine, Dona eis requiem.

When cat_twice terminates, the variable cat is destroyed. If we try to print it, we get an error:

>>> print(cat)
NameError: name 'cat' is not defined

1.7. Functions 37

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Parameters are also local. For example, outside the function print_twice, there is no such
thing as param. If you try to use it, Python will complain.

Stack diagrams

To keep track of which variables can be used where, it is sometimes useful to draw a stack dia-
gram. Like state diagrams, stack diagrams show the value of each variable, but they also show the
function to which each variable belongs.

Each function is represented by a frame. A frame is a box with the name of a function beside
it and the parameters and variables of the function inside it. The stack diagram for the previous
example looks like this:

The order of the stack shows the flow of execution. print_twice was called by cat_twice,
and cat_twice was called by __main__, which is a special name for the topmost function.
When you create a variable outside of any function, it belongs to __main__.

Each parameter refers to the same value as its corresponding argument. So, part1 has the same
value as chant1, part2 has the same value as chant2, and param has the same value as cat.

If an error occurs during a function call, Python prints the name of the function, and the name of
the function that called it, and the name of the function that called that, all the way back to the top
most function.

To see how this works, create a Python script named tryme2.py that looks like this:

def print_twice(param):
print(param)
print(param)
print(cat)

def cat_twice(part1, part2):
cat = part1 + part2
print_twice(cat)

chant1 = "Pie Jesu domine, "
chant2 = "Dona eis requim."
cat_twice(chant1, chant2)

38 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We’ve added the statement, print(cat) inside the print_twice function, but cat is not
defined there. Running this script will produce an error message like this:

Traceback (innermost last):
File "tryme2.py", line 12, in <module>
cat_twice(chant1, chant2)

File "tryme2.py", line 8, in cat_twice
print_twice(cat)

File "tryme2.py", line 4, in print_twice
print(cat)

NameError: global name 'cat' is not defined

This list of functions is called a traceback. It tells you what program file the error occurred in,
and what line, and what functions were executing at the time. It also shows the line of code that
caused the error.

Notice the similarity between the traceback and the stack diagram. It’s not a coincidence. In fact,
another common name for a traceback is a stack trace.

Glossary

argument A value provided to a function when the function is called. This value is assigned to
the corresponding parameter in the function.

body The second part of a compound statement. The body consists of a sequence of statements
all indented the same amount from the beginning of the header. The standard amount of
indentation used within the Python community is 4 spaces.

compound statement A statement that consists of two parts:

1. header - which begins with a keyword determining the statement type, and ends with a
colon.

2. body - containing one or more statements indented the same amount from the header.

The syntax of a compound statement looks like this:

keyword expression:
statement
statement ...

flow of execution The order in which statements are executed during a program run.

frame A box in a stack diagram that represents a function call. It contains the local variables and
parameters of the function.

function A named sequence of statements that performs some useful operation. Functions may
or may not take parameters and may or may not produce a result.

1.7. Functions 39

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

function call A statement that executes a function. It consists of the name of the function followed
by a list of arguments enclosed in parentheses.

function composition Using the output from one function call as the input to another.

function definition A statement that creates a new function, specifying its name, parameters, and
the statements it executes.

header The first part of a compound statement. Headers begin with a keyword and end with a
colon (:)

import A statement which permits functions and variables defined in a Python script to be brought
into the environment of another script or a running Python shell. For example, assume the
following is in a script named tryme.py:

def print_thrice(thing):
print(thing)
print(thing)
print(thing)

n = 42
s = "And now for something completely different..."

Now begin a python shell from within the same directory where tryme.py is located:

$ ls
tryme.py
$ python
>>>

Three names are defined in tryme.py: print_thrice, n, and s. If we try to access any
of these in the shell without first importing, we get an error:

>>> n
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'n' is not defined
>>> print_thrice("ouch!")
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'print_thrice' is not defined

If we import everything from tryme.py, however, we can use everything defined in it:

>>> from tryme import *
>>> n
42
>>> s
'And now for something completely different...'
>>> print_thrice("Yipee!")

40 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Yipee!
Yipee!
Yipee!
>>>

Note that you do not include the .py from the script name in the import statement.

local variable A variable defined inside a function. A local variable can only be used inside its
function.

parameter A name used inside a function to refer to the value passed as an argument.

stack diagram A graphical representation of a stack of functions, their variables, and the values
to which they refer.

traceback A list of the functions that are executing, printed when a runtime error occurs. A
traceback is also commonly refered to as a stack trace, since it lists the functions in the order
in which they are stored in the runtime stack.

Exercises

1. Using a text editor, create a Python script named tryme3.py . Write a function in this
file called nine_lines that uses three_lines to print nine blank lines. Now add a
function named clear_screen that prints out twenty-five blank lines. The last line of
your program should be a call to clear_screen.

2. Move the last line of tryme3.py to the top of the program, so the function call to
clear_screen appears before the function definition. Run the program and record what
error message you get. Can you state a rule about function definitions and function calls
which describes where they can appear relative to each other in a program?

3. Starting with a working version of tryme3.py , move the definition of new_line after
the definition of three_lines. Record what happens when you run this program. Now
move the definition of new_line below a call to three_lines(). Explain how this is
an example of the rule you stated in the previous exercise.

4. Fill in the body of the function definition for cat_n_times so that it will print the string,
s, n times:

def cat_n_times(s, n):
<fill in your code here>

Save this function in a script named import_test.py. Now at a unix prompt, make sure
you are in the same directory where the import_test.py is located (ls should show
import_test.py). Start a Python shell and try the following:

1.7. Functions 41

http://en.wikipedia.org/wiki/Runtime_stack

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> from import_test import *
>>> cat_n_times('Spam', 7)
SpamSpamSpamSpamSpamSpamSpam

If all is well, your session should work the same as this one. Experiment with other calls to
cat_n_times until you feel comfortable with how it works.

Conditionals

The modulus operator

The modulus operator works on integers (and integer expressions) and yields the remainder when
the first operand is divided by the second. In Python, the modulus operator is a percent sign (%).
The syntax is the same as for other operators:

>>> quotient = 7 / 3
>>> print(quotient)
2
>>> remainder = 7 % 3
>>> print(remainder)
1

So 7 divided by 3 is 2 with 1 left over.

The modulus operator turns out to be surprisingly useful. For example, you can check whether one
number is divisible by another—if x % y is zero, then x is divisible by y.

Also, you can extract the right-most digit or digits from a number. For example, x % 10 yields
the right-most digit of x (in base 10). Similarly x % 100 yields the last two digits.

Boolean values and expressions

The Python type for storing true and false values is called bool, named after the British mathe-
matician, George Boole. George Boole created Boolean algebra, which is the basis of all modern
computer arithmetic.

There are only two boolean values: True and False. Capitalization is important, since true
and false are not boolean values.

>>> type(True)
<type 'bool'>
>>> type(true)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined

42 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

A boolean expression is an expression that evaluates to a boolean value. The operator == com-
pares two values and produces a boolean value:

>>> 5 == 5
True
>>> 5 == 6
False

In the first statement, the two operands are equal, so the expression evaluates to True; in the
second statement, 5 is not equal to 6, so we get False.

The == operator is one of the comparison operators; the others are:

x != y # x is not equal to y
x > y # x is greater than y
x < y # x is less than y
x >= y # x is greater than or equal to y
x <= y # x is less than or equal to y

Although these operations are probably familiar to you, the Python symbols are different from the
mathematical symbols. A common error is to use a single equal sign (=) instead of a double equal
sign (==). Remember that = is an assignment operator and == is a comparison operator. Also,
there is no such thing as =< or =>.

Logical operators

There are three logical operators: and, or, and not. The semantics (meaning) of these operators
is similar to their meaning in English. For example, x > 0 and x < 10 is true only if x is
greater than 0 and less than 10.

n % 2 == 0 or n % 3 == 0 is true if either of the conditions is true, that is, if the number
is divisible by 2 or 3.

Finally, the not operator negates a boolean expression, so not(x > y) is true if (x > y) is
false, that is, if x is less than or equal to y.

Conditional execution

In order to write useful programs, we almost always need the ability to check conditions and
change the behavior of the program accordingly. Conditional statements give us this ability. The
simplest form is the ** if statement**:

if x > 0:
print("%s is positive" % (x))

(See Chapter 7.13 for more information on string formatting.)

1.8. Conditionals 43

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The boolean expression after the if statement is called the condition. If it is true, then the indented
statement gets executed. If not, nothing happens.

The syntax for an if statement looks like this:

if BOOLEAN EXPRESSION:
STATEMENTS

As with the function definition from last chapter and other compound statements, the if statement
consists of a header and a body. The header begins with the keyword if followed by a boolean
expression and ends with a colon (:).

The indented statements that follow are called a block. The first unindented statement marks
the end of the block. A statement block inside a compound statement is called the body of the
statement.

Each of the statements inside the body are executed in order if the boolean expression evaluates to
True. The entire block is skipped if the boolean expression evaluates to False.

There is no limit on the number of statements that can appear in the body of an if statement, but
there has to be at least one. Occasionally, it is useful to have a body with no statements (usually
as a place keeper for code you haven’t written yet). In that case, you can use the pass statement,
which does nothing.

if True: # This is always true
pass # so this is always executed, but it does nothing

Alternative execution

A second form of the if statement is alternative execution, in which there are two possibilities and
the condition determines which one gets executed. The syntax looks like this:

if x % 2 == 0:
print("%s is even" % (x))

else:
print("%s is odd" % (x))

If the remainder when x is divided by 2 is 0, then we know that x is even, and the program displays
a message to that effect. If the condition is false, the second set of statements is executed. Since the
condition must be true or false, exactly one of the alternatives will be executed. The alternatives
are called branches, because they are branches in the flow of execution.

As an aside, if you need to check the parity (evenness or oddness) of numbers often, you might
wrap this code in a function:

def print_parity(x):
if x % 2 == 0:

print("%s is even" % (x))

44 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

else:
print("%s is odd" % (x))

For any value of x, print_parity displays an appropriate message. When you call it, you can
provide any integer expression as an argument.

>>> print_parity(17)
17 is odd
>>> y = 41
>>> print_parity(y+1)
42 is even

Chained conditionals

Sometimes there are more than two possibilities and we need more than two branches. One way
to express a computation like that is a chained conditional:

if x < y:
print("%s is less than %s" % (x, y))

elif x > y:
print("%s is greater than %s" % (x, y))

else:
print("%s and %s are equal" % (x,y))

elif is an abbreviation of else if . Again, exactly one branch will be executed. There is no limit
of the number of elif statements but only a single (and optional) else statement is allowed and
it must be the last branch in the statement:

if choice == 'a':
function_a()

elif choice == 'b':
function_b()

elif choice == 'c':
function_c()

else:
print("Invalid choice.")

Each condition is checked in order. If the first is false, the next is checked, and so on. If one of
them is true, the corresponding branch executes, and the statement ends. Even if more than one
condition is true, only the first true branch executes.

Nested conditionals

One conditional can also be nested within another. We could have written the trichotomy example
as follows:

1.8. Conditionals 45

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

if x == y:
print("%s and %s are equal" % (x,y))

else:
if x < y:

print("%s is less than %s" % (x, y))
else:

print("%s is greater than %s" % (x, y))

The outer conditional contains two branches. The first branch contains a simple output statement.
The second branch contains another if statement, which has two branches of its own. Those two
branches are both output statements, although they could have been conditional statements as well.

Although the indentation of the statements makes the structure apparent, nested conditionals be-
come difficult to read very quickly. In general, it is a good idea to avoid them when you can.

Logical operators often provide a way to simplify nested conditional statements. For example, we
can rewrite the following code using a single conditional:

if 0 < x:
if x < 10:

print("x is a positive single digit.")

The print statement is executed only if we make it past both the conditionals, so we can use the
and operator:

if 0 < x and x < 10:
print("x is a positive single digit.")

These kinds of conditions are common, so Python provides an alternative syntax that is similar to
mathematical notation:

if 0 < x < 10:
print("x is a positive single digit.")

This condition is semantically the same as the compound boolean expression and the nested con-
ditional.

The return statement

The return statement allows you to terminate the execution of a function before you reach the
end. One reason to use it is if you detect an error condition:

def print_square_root(x):
if x <= 0:

print("Positive numbers only, please.")
return

46 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

result = x**0.5
print("The square root of %s is %s" % (x, result))

The function print_square_root has a parameter named x. The first thing it does is check
whether x is less than or equal to 0, in which case it displays an error message and then uses
return to exit the function. The flow of execution immediately returns to the caller, and the
remaining lines of the function are not executed.

Keyboard input

In Input we were introduced to Python’s built-in function that gets input from the keyboard:
raw_input(). Let’s look at this again in greater depth.

When raw_input() is called, the program stops and waits for the user to type something. When
the user presses Return or the Enter key, the program resumes and raw_input() returns what
the user typed as a string:

>>> my_input = raw_input()
3.14159
>>> print(my_input)
3.14159
>>> type(my_input)
<type 'str'>

It is always a good idea to tell the user what to input. We can supply a prompt as a single argument
to raw_input():

>>> name = raw_input("What...is your name? ")
What...is your name? Arthur, King of the Britons!
>>> print(name)
Arthur, King of the Britons!

Notice that the prompt is a string, so it must be enclosed in quotation marks.

If we expect the user response to be an integer or a float, we can still call raw_input(), and
then use conversion functions to convert what raw_input() returns to other types.

Type conversion

Each Python type comes with a built-in command that attempts to convert values of another type
into that type. The int(ARGUMENT) command, for example, takes any value and converts it to
an integer, if possible, or complains otherwise:

>>> int("32")
32

1.8. Conditionals 47

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> int("Hello")
ValueError: invalid literal for int() with base 10: 'Hello'

int can also convert floating-point values to integers, but remember that it truncates the fractional
part:

>>> int(-2.3)
-2
>>> int(3.99999)
3
>>> int("42")
42
>>> int(1.0)
1

The float(ARGUMENT) command converts integers and strings to floating-point numbers:

>>> float(32)
32.0
>>> float("3.14159")
3.14159
>>> float(1)
1.0

It may seem odd that Python distinguishes the integer value 1 from the floating-point value 1.0.
They may represent the same number, but they belong to different types. The reason is that they
are represented differently inside the computer.

The str(ARGUMENT) command converts any argument given to it to type string:

>>> str(32)
'32'
>>> str(3.14149)
'3.14149'
>>> str(True)
'True'
>>> str(true)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
NameError: name 'true' is not defined

str(ARGUMENT) will work with any value and convert it into a string. As mentioned earlier,
True is boolean value; true is not.

For boolean values, the situation is especially interesting:

>>> bool(1)
True
>>> bool(0)
False

48 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> bool("Ni!")
True
>>> bool("")
False
>>> bool(3.14159)
True
>>> bool(0.0)
False

Python assigns boolean values to values of other types. For numerical types like integers and
floating-points, zero values are false and non-zero values are true. For strings, empty strings are
false and non-empty strings are true.

NOTE: calling one of these conversion functions on data stored in a variable does not change
what’s stored in the variable! It takes what is stored in the variable and converts it, but does not
automatically reassign the result back to the variable:

>>> x = "3.14159"
>>> float(x)
3.14159
>>> type(x)
<type 'str'>

If you want x to contain the float 3.14159, you can convert it and reassign it like this:

>>> x = float(x)
>>> print(x)
3.14159
>>> type(x)
<type 'float'>

GASP

GASP (Graphics API for Students of Python) will enable us to write programs involving graphics.
Before you can use GASP, it needs to be installed on your machine. If you are running Ubuntu
GNU/Linux, see GASP in Appendix A. Current instructions for installing GASP on other platforms
can be found at http://dev.laptop.org/pub/gasp/downloads.

After installing gasp, try the following python script:

from gasp import *

begin_graphics()

Circle((200, 200), 60)
Line((100, 400), (580, 200))
Box((400, 350), 120, 100)

1.8. Conditionals 49

http://dev.laptop.org/pub/gasp/downloads

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

update_when('key_pressed')
end_graphics()

The second to the last command pauses and waits until a key is pressed. Without it, the screen
would flash by so quickly you wouldn’t see it.

Running this script, you should see a graphics window that looks like this:

We will be using gasp from here on to illustrate (pun intended) computer programming concepts
and to add to our fun while learning. You can find out more about the GASP module by reading
Appendix B.

Glossary

block A group of consecutive statements with the same indentation.

body The block of statements in a compound statement that follows the header.

boolean expression An expression that is either true or false.

boolean value There are exactly two boolean values: True and False. Boolean values result
when a boolean expression is evaluated by the Python interepreter. They have type bool.

branch One of the possible paths of the flow of execution determined by conditional execution.

50 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

chained conditional A conditional branch with more than two possible flows of execution. In
Python chained conditionals are written with if ... elif ... else statements.

comparison operator One of the operators that compares two values: ==, !=, >, <, >=, and <=.

condition The boolean expression in a conditional statement that determines which branch is
executed.

conditional statement A statement that controls the flow of execution depending on some con-
dition. In Python the keywords if, elif, and else are used for conditional statements.

logical operator One of the operators that combines boolean expressions: and, or, and not.

modulus operator An operator, denoted with a percent sign (%), that works on integers and
yields the remainder when one number is divided by another.

nesting One program structure within another, such as a conditional statement inside a branch of
another conditional statement.

prompt A visual cue that tells the user to input data.

type conversion An explicit statement that takes a value of one type and computes a correspond-
ing value of another type.

wrapping code in a function The process of adding a function header and parameters to a se-
quence of program statements is often refered to as “wrapping the code in a function”. This
process is very useful whenever the program statements in question are going to be used
multiple times.

Exercises

1. Try to evaluate the following numerical expressions in your head, then use the Python inter-
preter to check your results:

(a) >>> 5 % 2

(b) >>> 9 % 5

(c) >>> 15 % 12

(d) >>> 12 % 15

(e) >>> 6 % 6

(f) >>> 0 % 7

(g) >>> 7 % 0

What happened with the last example? Why? If you were able to correctly anticipate the
computer’s response in all but the last one, it is time to move on. If not, take time now to
make up examples of your own. Explore the modulus operator until you are confident you
understand how it works.

1.8. Conditionals 51

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

2. if x < y:
print("%s is less than %s" % (x, y))

elif x > y:
print("%s is greater than %s" % (x, y))

else:
print("%s and %s are equal" % (x, y))

Wrap this code in a function called compare(x, y). Call compare three times: one
each where the first argument is less than, greater than, and equal to the second argument.

3. To better understand boolean expressions, it is helpful to construct truth tables. Two boolean
expressions are logically equivalent if and only if they have the same truth table.

The following Python script prints out the truth table for any boolean expression in two
variables: p and q:

expression = raw_input("Enter a boolean expression in two variables, p and q: ")

print(" p q %s" % (expression))
length = len(" p q %s" % (expression))
print(length*"=")

for p in True, False:
for q in True, False:

print("%-7s %-7s %-7s" % (p, q, eval(expression)))

You will learn how this script works in later chapters. For now, you will use it to learn about
boolean expressions. Copy this program to a file named p_and_q.py, then run it from the
command line and give it: p or q, when prompted for a boolean expression. You should
get the following output:

p q p or q
=====================
True True True
True False True
False True True
False False False

Now that we see how it works, let’s wrap it in a function to make it easier to use:

def truth_table(expression):
print(" p q %s" % (expression))
length = len(" p q %s" % expression)
print(length*"=")

for p in True, False:
for q in True, False:

print("%-7s %-7s %-7s" % (p, q, eval(expression)))

52 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We can import it into a Python shell and call truth_table with a string containing our
boolean expression in p and q as an argument:

>>> from p_and_q import *
>>> truth_table("p or q")
p q p or q
=====================
True True True
True False True
False True True
False False False
>>>

Use the truth_table functions with the following boolean expressions, recording the
truth table produced each time:

(a) not(p or q)

(b) p and q

(c) not(p and q)

(d) not(p) or not(q)

(e) not(p) and not(q)

Which of these are logically equivalent?

4. Enter the following expressions into the Python shell:

True or False
True and False
not(False) and True
True or 7
False or 7
True and 0
False or 8
"happy" and "sad"
"happy" or "sad"
"" and "sad"
"happy" and ""

Analyze these results. What observations can you make about values of different types and
logical operators? Can you write these observations in the form of simple rules about and
and or expressions?

5. if choice == 'a':
function_a()

elif choice == 'b':
function_b()

elif choice == 'c':

1.8. Conditionals 53

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

function_c()
else:

print("Invalid choice.")

Wrap this code in a function called dispatch(choice). Then define function_a,
function_b, and function_c so that they print out a message saying they were called.
For example:

def function_a():
print("function_a was called...")

Put the four functions (dispatch, function_a, function_b, and function_c
into a script named ch04e05.py. At the bottom of this script add a call to
dispatch(’b’). Your output should be:

function_b was called...

Finally, modify the script so that user can enter ‘a’, ‘b’, or ‘c’. Test it by importing your
script into the Python shell.

6. Write a function named is_divisible_by_3 that takes a single integer as an argument
and prints “This number is divisible by three.” if the argument is evenly divisible by 3 and
“This number is not divisible by three.” otherwise.

Now write a similar function named is_divisible_by_5.

7. Generalize the functions you wrote in the previous exercise into a function named
is_divisible_by_n(x, n) that takes two integer arguments and prints out whether
the first is divisible by the second. Save this in a file named ch04e07.py. Import it into a
shell and try it out. A sample session might look like this:

>>> from ch04e07 import *
>>> is_divisible_by_n(20, 4)
Yes, 20 is divisible by 4
>>> is_divisible_by_n(21, 8)
No, 21 is not divisible by 8

8. What will be the output of the following?

if "Ni!":
print('We are the Knights who say, "Ni!"')

else:
print("Stop it! No more of this!")

if 0:
print("And now for something completely different...")

else:
print("What's all this, then?")

Explain what happened and why it happened.

54 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

9. The following gasp script, in a file named house.py, draws a simple house on a gasp
canvas:

from gasp import * # import everything from the gasp library

begin_graphics() # open the graphics canvas

Box((20, 20), 100, 100) # the house
Box((55, 20), 30, 50) # the door
Box((40, 80), 20, 20) # the left window
Box((80, 80), 20, 20) # the right window
Line((20, 120), (70, 160)) # the left roof
Line((70, 160), (120, 120)) # the right roof

update_when('key_pressed') # keep the canvas open until a key is pressed
end_graphics() # close the canvas (which would happen

anyway, since the script ends here, but it
is better to be explicit).

Run this script and confirm that you get a window that looks like this:

(a) Wrap the house code in a function named draw_house().

(b) Run the script now. Do you see a house? Why not?

(c) Add a call to draw_house() at the botton of the script so that the house returns to
the screen.

1.8. Conditionals 55

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

(d) Parameterize the function with x and y parameters – the header should then become
def draw_house(x, y):, so that you can pass in the location of the house on the
canvas.

(e) Use draw_house to place five houses on the canvas in different locations.

10. Exploration: Read over Appendix B and write a script named houses.py that produces
the following when run:

hint: You will need to use a Polygon for the roof instead of two Lines to get
filled=True to work with it.

Fruitful functions

Return values

The built-in functions we have used, such as abs, pow, and max, have produced results. Calling
each of these functions generates a value, which we usually assign to a variable or use as part of
an expression.

biggest = max(3, 7, 2, 5)
x = abs(3 - 11) + 10

But so far, none of the functions we have written has returned a value.

In this chapter, we are going to write functions that return values, which we will call fruitful
functions, for want of a better name. The first example is area, which returns the area of a circle
with the given radius:

def area(radius):
temp = 3.14159 * radius**2
return temp

56 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We have seen the return statement before, but in a fruitful function the return statement
includes a return value. This statement means: Return immediately from this function and use
the following expression as a return value. The expression provided can be arbitrarily complicated,
so we could have written this function more concisely:

def area(radius):
return 3.14159 * radius**2

On the other hand, temporary variables like temp often make debugging easier.

Sometimes it is useful to have multiple return statements, one in each branch of a conditional. We
have already seen the built-in abs, now we see how to write our own:

def absolute_value(x):
if x < 0:

return -x
else:

return x

Since these return statements are in an alternative conditional, only one will be executed. As
soon as one is executed, the function terminates without executing any subsequent statements.

Another way to write the above function is to leave out the else and just follow the if condition
by the second return statement.

def absolute_value(x):
if x < 0:

return -x
return x

Think about this version and convince yourself it works the same as the first one.

Code that appears after a return statement, or any other place the flow of execution can never
reach, is called dead code.

In a fruitful function, it is a good idea to ensure that every possible path through the program hits
a return statement. The following version of absolute_value fails to do this:

def absolute_value(x):
if x < 0:

return -x
elif x > 0:

return x

This version is not correct because if x happens to be 0, neither condition is true, and the function
ends without hitting a return statement. In this case, the return value is a special value called
None:

>>> print(absolute_value(0))
None

1.9. Fruitful functions 57

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

None is the unique value of a type called the NoneType:

>>> type(None)

All Python functions return None whenever they do not return another value.

Program development

At this point, you should be able to look at complete functions and tell what they do. Also, if
you have been doing the exercises, you have written some small functions. As you write larger
functions, you might start to have more difficulty, especially with runtime and semantic errors.

To deal with increasingly complex programs, we are going to suggest a technique called incre-
mental development. The goal of incremental development is to avoid long debugging sessions
by adding and testing only a small amount of code at a time.

As an example, suppose you want to find the distance between two points, given by the coordinates
(x1, y1) and (x2, y2). By the Pythagorean theorem, the distance is:

The first step is to consider what a distance function should look like in Python. In other words,
what are the inputs (parameters) and what is the output (return value)?

In this case, the two points are the inputs, which we can represent using four parameters. The
return value is the distance, which is a floating-point value.

Already we can write an outline of the function:

def distance(x1, y1, x2, y2):
return 0.0

Obviously, this version of the function doesn’t compute distances; it always returns zero. But it
is syntactically correct, and it will run, which means that we can test it before we make it more
complicated.

To test the new function, we call it with sample values:

>>> distance(1, 2, 4, 6)
0.0

We chose these values so that the horizontal distance equals 3 and the vertical distance equals 4;
that way, the result is 5 (the hypotenuse of a 3-4-5 triangle). When testing a function, it is useful
to know the right answer.

At this point we have confirmed that the function is syntactically correct, and we can start adding
lines of code. After each incremental change, we test the function again. If an error occurs at any
point, we know where it must be — in the last line we added.

58 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

A logical first step in the computation is to find the differences x2- x1 and y2- y1. We will store
those values in temporary variables named dx and dy and print them.

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
print("dx is", dx)
print("dy is", dy)
return 0.0

If the function is working, the outputs should be 3 and 4. If so, we know that the function is getting
the right parameters and performing the first computation correctly. If not, there are only a few
lines to check.

Next we compute the sum of squares of dx and dy:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
print("dsquared is: %s" % (dsquared))
return 0.0

Notice that we removed the print statements we wrote in the previous step. Code like that is
called scaffolding because it is helpful for building the program but is not part of the final product.

Again, we would run the program at this stage and check the output (which should be 25).

Finally, using the fractional exponent 0.5 to find the square root, we compute and return the result:

def distance(x1, y1, x2, y2):
dx = x2 - x1
dy = y2 - y1
dsquared = dx**2 + dy**2
result = dsquared**0.5
return result

If that works correctly, you are done. Otherwise, you might want to print the value of result
before the return statement.

When you start out, you should add only a line or two of code at a time. As you gain more expe-
rience, you might find yourself writing and debugging bigger chunks. Either way, the incremental
development process can save you a lot of debugging time.

The key aspects of the process are:

1. Start with a working program and make small incremental changes. At any point, if there is
an error, you will know exactly where it is.

2. Use temporary variables to hold intermediate values so you can output and check them.

1.9. Fruitful functions 59

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3. Once the program is working, you might want to remove some of the scaffolding or con-
solidate multiple statements into compound expressions, but only if it does not make the
program difficult to read.

Composition

As you should expect by now, you can call one function from within another. This ability is called
composition.

As an example, we’ll write a function that takes two points, the center of the circle and a point on
the perimeter, and computes the area of the circle.

Assume that the center point is stored in the variables xc and yc, and the perimeter point is in
xp and yp. The first step is to find the radius of the circle, which is the distance between the two
points. Fortunately, we’ve just written a function, distance, that does just that, so now all we
have to do is use it:

radius = distance(xc, yc, xp, yp)

The second step is to find the area of a circle with that radius and return it. Again we will use one
of our earlier functions:

result = area(radius)
return result

Wrapping that up in a function, we get:

def area2(xc, yc, xp, yp):
radius = distance(xc, yc, xp, yp)
result = area(radius)
return result

We called this function area2 to distinguish it from the area function defined earlier. There can
only be one function with a given name within a given module.

The temporary variables radius and result are useful for development and debugging, but
once the program is working, we can make it more concise by composing the function calls:

def area2(xc, yc, xp, yp):
return area(distance(xc, yc, xp, yp))

Boolean functions

Functions can return boolean values, which is often convenient for hiding complicated tests inside
functions. For example:

60 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def is_divisible(x, y):
if x % y == 0:

return True
else:

return False

The name of this function is is_divisible. It is common to give boolean functions names
that sound like yes/no questions. is_divisible returns either True or False to indicate
whether the x is or is not divisible by y.

We can make the function more concise by taking advantage of the fact that the condition of the
if statement is itself a boolean expression. We can return it directly, avoiding the if statement
altogether:

def is_divisible(x, y):
return x % y == 0

This session shows the new function in action:

>>> is_divisible(6, 4)
False
>>> is_divisible(6, 3)
True

Boolean functions are often used in conditional statements:

if is_divisible(x, y):
print("x is divisible by y")

else:
print("x is not divisible by y")

It might be tempting to write something like:

if is_divisible(x, y) == True:

but the extra comparison is unnecessary.

The function type

A function is another type in Python, joining int, float, str, bool, and NoneType.

>>> def func():
... return "function func was called..."
...
>>> type(func)
<type 'function'>
>>>

1.9. Fruitful functions 61

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Just like the other types, functions can be passed as arguments to other functions:

def f(n):
return 3*n - 6

def g(n):
return 5*n + 2

def h(n):
return -2*n + 17

def doto(value, func):
return func(value)

print(doto(7, f))
print(doto(7, g))
print(doto(7, h))

doto is called three times. 7 is the argument for value each time, and the functions f, g, and h
are passed in for func in turn. The output of this script is:

15
37
3

This example is a bit contrived, but we will see situations later where it is quite useful to pass a
function to a function.

Programming with style

Readability is very important to programmers, since in practice programs are read and modified
far more often than they are written. All the code examples in this book will be consistent with the
Python Enhancement Proposal 8 (PEP 8), a style guide developed by the Python community.

We’ll have more to say about style as our programs become more complex, but a few pointers will
be helpful already:

• use 4 spaces for indentation

• imports should go at the top of the file

• separate function definitions with two blank lines

• keep function definitions together

• keep top level statements, including function calls, together at the bottom of the program

62 Chapter 1. Learning with Python

http://www.python.org/dev/peps/pep-0008/

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Triple quoted strings

In addition to the single and double quoted strings we first saw in Values and data types, Python
also has triple quoted strings:

>>> type("""This is a triple quoted string using 3 double quotes.""")
<type 'str'>
>>> type('''This triple quoted strings uses 3 single quotes.''')
<type 'str'>
>>>

Triple quoted strings can contain both single and double quotes inside them:

>>> print('''"Oh no", she exclaimed, "Ben's bike is broken!"''')
"Oh no", she exclaimed, "Ben's bike is broken!"
>>>

Finally, triple quoted strings can span multiple lines:

>>> message = """This message will
... span several
... lines."""
>>> print(message)
This message will
span several
lines.
>>>

Unit testing with doctest

It is a common best practice in software development these days to include automatic unit testing
of source code. Unit testing provides a way to automatically verify that individual pieces of code,
such as functions, are working properly. This makes it possible to change the implementation of a
function at a later time and quickly test that it still does what it was intended to do.

Python has a built-in doctest module for easy unit testing. Doctests can be written within a
triple quoted string on the first line of the body of a function or script. They consist of sample
interpreter sessions with a series of inputs to a Python prompt followed by the expected output
from the Python interpreter.

The doctest module automatically runs any statement begining with >>> and compares the
following line with the output from the interpreter.

To see how this works, put the following in a script named myfunctions.py:

def is_divisible_by_2_or_5(n):
"""
>>> is_divisible_by_2_or_5(8)

1.9. Fruitful functions 63

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

True
"""

if __name__ == '__main__':
import doctest
doctest.testmod()

The last three lines are what make doctest run. Put them at the bottom of any file that includes
doctests. We will explain how they work in Chapter 10 when we discuss modules.

Running the script will produce the following output:

$ python myfunctions.py

**
File "myfunctions.py", line 3, in __main__.is_divisible_by_2_or_5
Failed example:

is_divisible_by_2_or_5(8)
Expected:

True
Got nothing

**
1 items had failures:

1 of 1 in __main__.is_divisible_by_2_or_5

Test Failed 1 failures.
$

This is an example of a failing test. The test says: if you call is_divisible_by_2_or_5(8)
the result should be True. Since is_divisible_by_2_or_5 as written doesn’t return any-
thing at all, the test fails, and doctest tells us that it expected True but got nothing.

We can make this test pass by returning True:

def is_divisible_by_2_or_5(n):
"""
>>> is_divisible_by_2_or_5(8)
True

"""
return True

if __name__ == '__main__':
import doctest
doctest.testmod()

If we run it now, there will be no output, which indicates that the test passed. Note again that the
doctest string must be placed immediately after the function definition header in order to run.

To see more detailed out put, call the script with the -v command line option:

64 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

$ python myfunctions.py -v
Trying:

is_divisible_by_2_or_5(8)
Expecting:

True
ok
1 items had no tests:

__main__
1 items passed all tests:

1 tests in __main__.is_divisible_by_2_or_5
1 tests in 2 items.
1 passed and 0 failed.
Test passed.
$

While the test passed, our test suite is clearly inadequete, since is_divisible_by_2_or_5
will now return True no matter what argument is passed to it. Here is a completed version with a
more complete test suite and code that makes the tests pass:

def is_divisible_by_2_or_5(n):
"""
>>> is_divisible_by_2_or_5(8)
True
>>> is_divisible_by_2_or_5(7)
False
>>> is_divisible_by_2_or_5(5)
True
>>> is_divisible_by_2_or_5(9)
False

"""
return n % 2 == 0 or n % 5 == 0

if __name__ == '__main__':
import doctest
doctest.testmod()

Run this script now with the -v command line option and see what you get.

Glossary

boolean function A function that returns a boolean value.

composition (of functions) Calling one function from within the body of another, or using the
return value of one function as an argument to the call of another.

dead code Part of a program that can never be executed, often because it appears after a return
statement.

1.9. Fruitful functions 65

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

fruitful function A function that yields a return value.

incremental development A program development plan intended to avoid debugging by adding
and testing only a small amount of code at a time.

None A special Python value returned by functions that have no return statement, or a return
statement without an argument. None is the only value of the type, NoneType.

return value The value provided as the result of a function call.

scaffolding Code that is used during program development but is not part of the final version.

temporary variable A variable used to store an intermediate value in a complex calculation.

unit testing An automatic procedure used to validate that individual units of code are working
properly. Python has doctest built in for this purpose.

Exercises

All of the exercises below should be added to a file named ch05.py that contains the following
at the bottom:

if __name__ == '__main__':
import doctest
doctest.testmod()

After completing each exercise in turn, run the program to confirm that the doctests for your new
function pass.

1. Write a compare function that returns 1 if a > b, 0 if a == b, and -1 if a < b.

def compare(a, b):
"""
>>> compare(5, 4)
1
>>> compare(7, 7)
0
>>> compare(2, 3)
-1
>>> compare(42, 1)
1

"""
Your function body should begin here.

Fill in the body of the function so the doctests pass.

2. Use incremental development to write a function called hypotenuse that returns the length
of the hypotenuse of a right triangle given the lengths of the two legs as parameters. Record
each stage of the incremental development process as you go.

66 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def hypotenuse(a, b):
"""
>>> hypotenuse(3, 4)
5.0
>>> hypotenuse(12, 5)
13.0
>>> hypotenuse(7, 24)
25.0
>>> hypotenuse(9, 12)
15.0

"""

When you are finished add your completed function with the doctests to ch05.py and
confirm that the doctests pass.

3. Write a function slope(x1, y1, x2, y2) that returns the slope of the line through the
points (x1, y1) and (x2, y2). Be sure your implementation of slope can pass the following
doctests:

def slope(x1, y1, x2, y2):
"""
>>> slope(5, 3, 4, 2)
1.0
>>> slope(1, 2, 3, 2)
0.0
>>> slope(1, 2, 3, 3)
0.5
>>> slope(2, 4, 1, 2)
2.0

"""

Then a call to slope in a new function named intercept(x1, y1, x2, y2) that
returns the y-intercept of the line through the points (x1, y1) and (x2, y2).

def intercept(x1, y1, x2, y2):
"""
>>> intercept(1, 6, 3, 12)
3.0
>>> intercept(6, 1, 1, 6)
7.0
>>> intercept(4, 6, 12, 8)
5.0

"""

intercept should pass the doctests above.

4. Write a function called is_even(n) that takes an integer as an argument and returns True
if the argument is an even number and False if it is odd.

1.9. Fruitful functions 67

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Add your own doctests to this function.

5. Now write the function is_odd(n) that returns True when n is odd and False other-
wise. Include doctests for this function as you write it.

Finally, modify it so that it uses a call to is_even to determine if its argument is an odd
integer.

6. Add the following function definition header and doctests to ch05.py:

def is_factor(f, n):
"""
>>> is_factor(3, 12)
True
>>> is_factor(5, 12)
False
>>> is_factor(7, 14)
True
>>> is_factor(2, 14)
True
>>> is_factor(7, 15)
False

"""

Add a body to is_factor to make the doctests pass.

7. Add the following function definition header and doctests to ch05.py:

def is_multiple(m, n):
"""
>>> is_multiple(12, 3)
True
>>> is_multiple(12, 4)
True
>>> is_multiple(12, 5)
False
>>> is_multiple(12, 6)
True
>>> is_multiple(12, 7)
False

"""

Add a body to is_multiple to make the doctests pass. Can you find a way to use
is_factor in your definition of is_multiple?

8. Add the following function definition header and doctests to ch05.py:

def f2c(t):
"""
>>> f2c(212)
100

68 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> f2c(32)
0
>>> f2c(-40)
-40
>>> f2c(36)
2
>>> f2c(37)
3
>>> f2c(38)
3
>>> f2c(39)
4

"""

Write a body for the function definition of f2c designed to return the integer value of the
nearest degree Celsius for given tempurature in Fahrenheit. (hint: you may want to make
use of the built-in function, round. Try printing round.__doc__ in a Python shell and
experimenting with round until you are comfortable with how it works.)

9. Add the following function definition header and doctests to ch05.py:

def c2f(t):
"""
>>> c2f(0)
32
>>> c2f(100)
212
>>> c2f(-40)
-40
>>> c2f(12)
54
>>> c2f(18)
64
>>> c2f(-48)
-54

"""

Add a function body for c2f to convert from Celsius to Fahrenheit.

Iteration

Multiple assignment

As you may have discovered, it is legal to make more than one assignment to the same variable.
A new assignment makes an existing variable refer to a new value (and stop referring to the old

1.10. Iteration 69

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

value).

bruce = 5
print(bruce)
bruce = 7
print(bruce)

The output of this program is 5 on one line and 7 on the next because the first time bruce is
printed, its value is 5, and the second time, its value is 7.

Here is what multiple assignment looks like in a state diagram:

With multiple assignment it is especially important to distinguish between an assignment operation
and a statement of equality. Because Python uses the equal sign (=) for assignment, it is tempting
to interpret a statement like a = b as a statement of equality. It is not!

First, equality is symmetric and assignment is not. For example, in mathematics, if a = 7 then 7 =
a. But in Python, the statement a = 7 is legal and 7 = a is not.

Furthermore, in mathematics, a statement of equality is always true. If a = b now, then a will
always equal b. In Python, an assignment statement can make two variables equal, but they don’t
have to stay that way:

a = 5
b = a # a and b are now equal
a = 3 # a and b are no longer equal

The third line changes the value of a but does not change the value of b, so they are no longer
equal. (In some programming languages, a different symbol is used for assignment, such as <- or
:=, to avoid confusion.)

Updating variables

One of the most common forms of multiple assignment is an update, where the new value of the
variable depends on the old.

x = x + 1

This means get the current value of x, add one, and then update x with the new value.

If you try to update a variable that doesn’t exist, you get an error, because Python evaluates the
expression on the right side of the assignment operator before it assigns the resulting value to the
name on the left:

70 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> x = x + 1
Traceback (most recent call last):

File "", line 1, in
NameError: name 'x' is not defined

Before you can update a variable, you have to initialize it, usually with a simple assignment:

>>> x = 0
>>> x = x + 1
>>>

Updating a variable by adding 1 is called an increment; subtracting 1 is called a decrement.

The while statement

Computers are often used to automate repetitive tasks. Repeating identical or similar tasks without
making errors is something that computers do well and people do poorly.

Repeated execution of a set of statements is called iteration. Because iteration is so common,
Python provides several language features to make it easier. The first feature we are going to look
at is the while statement.

Here is a function called countdown that demonstrates the use of the while statement:

def countdown(n):
while n > 0:

print(n)
n = n-1

print("Blastoff!")

You can almost read the while statement as if it were English. It means, While n is greater than
0, continue displaying the value of n and then reducing the value of n by 1. When you get to 0,
display the word Blastoff!

More formally, here is the flow of execution for a while statement:

1. Evaluate the condition, yielding False or True.

2. If the condition is false, exit the while statement and continue execution at the next state-
ment (after the while loop code block).

3. If the condition is true, execute each of the statements in the body and then go back to step
1.

The body consists of all of the statements below the header with the same indentation (and some-
times called the while loop code block).

This type of flow is called a loop because the third step loops back around to the top. Notice that
if the condition is false the first time through the loop, the statements inside the loop are never
executed.

1.10. Iteration 71

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The body of the loop should change the value of one or more variables so that eventually the
condition becomes false and the loop terminates. Otherwise the loop will repeat forever, which is
called an infinite loop. An endless source of amusement for computer scientists is the observation
that the directions on shampoo, Lather, rinse, repeat, are an infinite loop.

In the case of countdown, we can prove that the loop terminates because we know that the
value of n is finite, and we can see that the value of n gets smaller each time through the loop,
so eventually we have to get to 0. In other cases, it is not so easy to tell. Look at the following
function, defined for all positive integers n:

def sequence(n):
while n != 1:

print(n)
if n % 2 == 0: # n is even

n = n / 2
else: # n is odd

n = n * 3 + 1

The condition for this loop is n != 1, so the loop will continue until n is 1, which will make the
condition false.

Each time through the loop, the program outputs the value of n and then checks whether it is even
or odd. If it is even, the value of n is divided by 2. If it is odd, the value is replaced by n * 3 +
1. For example, if the starting value (the argument passed to sequence) is 3, the resulting sequence
is 3, 10, 5, 16, 8, 4, 2, 1.

Since n sometimes increases and sometimes decreases, there is no obvious proof that n will ever
reach 1, or that the program terminates. For some particular values of n, we can prove termination.
For example, if the starting value is a power of two, then the value of n will be even each time
through the loop until it reaches 1. The previous example ends with such a sequence, starting with
16.

Particular values aside, the interesting question is whether we can prove that this program termi-
nates for all values of n. So far, no one has been able to prove it or disprove it!

Tracing a program

To write effective computer programs a programmer needs to develop the ability to trace the
execution of a computer program. Tracing involves becoming the computer and following the flow
of execution through a sample program run, recording the state of all variables and any output the
program generates after each instruction is executed.

To understand this process, let’s trace the call to sequence(3) from the previous section. At
the start of the trace, we have a local variable, n (the parameter), with an initial value of 3. Since
3 is not equal to 1, the while loop body is executed. 3 is printed and 3 % 2 == 0 is evaluated.
Since it evaluates to False, the else branch is executed and 3 * 3 + 1 is evaluated and
assigned to n.

72 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

To keep track of all this as you hand trace a program, make a column heading on a piece of paper
for each variable created as the program runs and another one for output. Our trace so far would
look something like this:

n output
-- ------
3 3
10

Since 10 != 1 evaluates to True, the loop body is again executed, and 10 is printed. 10 % 2
== 0 is true, so the if branch is executed and n becomes 5. By the end of the trace we have:

n output
-- ------
3 3
10 10
5 5
16 16
8 8
4 4
2 2
1

Tracing can be a bit tedious and error prone (that’s why we get computers to do this stuff in the
first place!), but it is an essential skill for a programmer to have. From this trace we can learn a
lot about the way our code works. We can observe that as soon as n becomes a power of 2, for
example, the program will require log2(n) executions of the loop body to complete. We can also
see that the final 1 will not be printed as output.

Counting digits

The following function counts the number of decimal digits in a positive integer expressed in
decimal format:

def num_digits(n):
count = 0
while n > 0:

count = count + 1
n = n / 10

return count

A call to num_digits(710) will return 3. Trace the execution of this function call to convince
yourself that it works.

This function demonstrates another pattern of computation called a counter or accumulator. The
variable count is initialized to 0 and then incremented each time the loop body is executed. When
the loop exits, count contains the result – the total number of times the loop body was executed,
which is the same as the number of digits.

1.10. Iteration 73

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If we wanted to only count digits that are either 0 or 5, adding a conditional before incrementing
the counter will do the trick:

def num_zero_and_five_digits(n):
count = 0
while n > 0:

digit = n % 10
if digit == 0 or digit == 5:

count = count + 1
n = n / 10

return count

Confirm that num_zero_and_five_digits(1055030250) returns 7.

Abbreviated assignment

Incrementing a variable is so common that Python provides an abbreviated syntax for it:

>>> count = 0
>>> count += 1
>>> count
1
>>> count += 1
>>> count
2
>>>

count += 1 is an abreviation for count = count + 1 . The increment value does not have
to be 1:

>>> n = 2
>>> n += 5
>>> n
7
>>>

There are also abbreviations for -=, *=, /=, and %=:

>>> n = 2
>>> n *= 5
>>> n
10
>>> n -= 4
>>> n
6
>>> n /= 2
>>> n
3

74 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> n %= 2
>>> n
1

Tables

One of the things loops are good for is generating tabular data. Before computers were readily
available, people had to calculate logarithms, sines and cosines, and other mathematical functions
by hand. To make that easier, mathematics books contained long tables listing the values of these
functions. Creating the tables was slow and boring, and they tended to be full of errors.

When computers appeared on the scene, one of the initial reactions was, This is great! We can
use the computers to generate the tables, so there will be no errors. That turned out to be true
(mostly) but shortsighted. Soon thereafter, computers and calculators were so pervasive that the
tables became obsolete.

Well, almost. For some operations, computers use tables of values to get an approximate an-
swer and then perform computations to improve the approximation. In some cases, there have
been errors in the underlying tables, most famously in the table the Intel Pentium used to perform
floating-point division.

Although a log table is not as useful as it once was, it still makes a good example of iteration. The
following program outputs a sequence of values in the left column and 2 raised to the power of that
value in the right column:

x = 1
while x < 13:

print("%d\t%d" % (x, 2**x))
x += 1

The string ’\t’ represents a tab character. The backslash character in ’\t’ indicates the be-
ginning of an escape sequence. Escape sequences are used to represent invisible characters like
tabs and newlines. The sequence \n represents a newline.

NOTE: if you are confused by the %d string formatting, see str_formatting in Section 7.13.

An escape sequence can appear anywhere in a string; in this example, the tab escape sequence is
the only thing in the string. How do you think you represent a backslash in a string?

As characters and strings are displayed on the screen, an invisible marker called the cursor keeps
track of where the next character will go. After a print statement, the cursor normally goes to
the beginning of the next line.

The tab character shifts the cursor to the right until it reaches one of the tab stops. Tabs are useful
for making columns of text line up, as in the output of the previous program:

1 2
2 4

1.10. Iteration 75

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3 8
4 16
5 32
6 64
7 128
8 256
9 512
10 1024
11 2048
12 4096

Because of the tab characters between the columns, the position of the second column does not
depend on the number of digits in the first column.

Two-dimensional tables

In this next example, we’d like to use a loop to print multiple elements on the same line. Unfor-
tunately, the print statement as we have been using it does not allow us to print without also
printing a blank line. For example:

x = 1
while x <= 6:

print("%d " % (x))
x += 1

This produces the following output, with each of the numbers on the same line:

1
2
3
4
5
6

We would like a solution that allows all of those numbers on the same line. One way to do this is
to accumulate a string, then print out the final string.

In the example below, output is initialized to the empty string. Then, each time through the
while loop, we add the value of x (converted to a string) plus a space.

x = 1
output = ""
while x <= 6:
output += str(x) + " "
x += 1

print(output)

This produces the following output, with each of the numbers on the same line:

76 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

1 2 3 4 5 6

Now that you can print multiple items on the same line, let’s continue with building a two-
dimensional table.

A two-dimensional table is a table where you read the value at the intersection of a row and a
column. A multiplication table is a good example. Let’s say you want to print a multiplication
table for the values from 1 to 6. A good way to start is to write a loop that prints the multiples of
2, all on one line.

i = 1
output = ""
while i <= 6:
output += str(2*i) + "\t"
i += 1

print(output)

The first line initializes a variable named i, which acts as a counter or loop variable. The second
line initializes our string accumulator variable. As the loop executes, the value of i increases from
1 to 6. When i is 7, the loop terminates. Each time through the loop, it add the value of 2 * i,
followed by a tab character, to the output string.

After the loop completes, the print statement displays the output:

2 4 6 8 10 12

So far, so good. The next step is to encapsulate and generalize.

Encapsulation and generalization

Encapsulation is the process of wrapping a piece of code in a function, allowing you to take advan-
tage of all the things functions are good for. You have already seen two examples of encapsulation:
print_parity in chapter 4; and is_divisible in chapter 5.

Generalization means taking something specific, such as printing the multiples of 2, and making it
more general, such as printing the multiples of any integer.

This function encapsulates the previous loop and generalizes it to print multiples of n:

def print_multiples(n):
i = 1
output = ""
while i <= 6:
output += str(n*i) + "\t"
i += 1

print(output)

To encapsulate, all we had to do was add the first line, which declares the name of the function and
the parameter list. To generalize, all we had to do was replace the value 2 with the parameter n.

1.10. Iteration 77

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If we call this function with the argument 2 (i.e., print_multiples(2)), we get the same
output as before. With the argument 3 (i.e., print_multiples(3)), the output is:

3 6 9 12 15 18

With the argument 4, the output is:

4 8 12 16 20 24

By now you can probably guess how to print a multiplication table — by calling
print_multiples repeatedly with different arguments. In fact, we can use another loop:

i = 1
while i <= 6:

print_multiples(i)
i += 1

The output of this program is a multiplication table from 1 to 6:

1 2 3 4 5 6
2 4 6 8 10 12
3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36

More encapsulation

To demonstrate encapsulation again, let’s take the code from the last section and wrap it up in a
function:

def print_mult_table():
i = 1
while i <= 6:

print_multiples(i)
i += 1

This process is a common development plan. We develop code by writing lines of code outside
any function, or typing them in to the interpreter. When we get the code working, we extract it and
wrap it up in a function.

This development plan is particularly useful if you don’t know how to divide the program into
functions when you start writing. This approach lets you design as you go.

Local variables

You might be wondering how we can use the same variable, i, in both print_multiples and
print_mult_table. Doesn’t it cause problems when one of the functions changes the value

78 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

of the variable?

The answer is no, because the i in print_multiples and the i in print_mult_table are
not the same variable.

Variables created inside a function definition are local; you can’t access a local variable from
outside its home function. That means you are free to have multiple variables with the same name
as long as they are not in the same function.

The stack diagram for this program shows that the two variables named i are not the same variable.
They can refer to different values, and changing one does not affect the other.

The value of i in print_mult_table goes from 1 to 6. In the diagram it happens to be 3. The
next time through the loop it will be 4. Each time through the loop, print_mult_table calls
print_multiples with the current value of i as an argument. That value gets assigned to the
parameter n.

Inside print_multiples, the value of i goes from 1 to 6. In the diagram, it happens to be 2.
Changing this variable has no effect on the value of i in print_mult_table.

It is common and perfectly legal to have different local variables with the same name. In particular,
names like i and j are used frequently as loop variables. If you avoid using them in one function
just because you used them somewhere else, you will probably make the program harder to read.

More generalization

As another example of generalization, imagine you wanted a program that would print a mul-
tiplication table of any size, not just the six-by-six table. You could add a parameter to
print_mult_table:

def print_mult_table(high):
i = 1
while i <= high:

print_multiples(i)
i += 1

We replaced the value 6 with the parameter high. If we call print_mult_table with the
argument 7, it displays:

1 2 3 4 5 6
2 4 6 8 10 12

1.10. Iteration 79

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3 6 9 12 15 18
4 8 12 16 20 24
5 10 15 20 25 30
6 12 18 24 30 36
7 14 21 28 35 42

This is fine, except that we probably want the table to be square — with the same number of rows
and columns. To do that, we add another parameter to print_multiples to specify how many
columns the table should have.

Just to be annoying, we call this parameter high, demonstrating that different functions can have
parameters with the same name (just like local variables). Here’s the whole program:

def print_multiples(n, high):
i = 1
output = ""
while i <= high:
output += str(n*i) + "\t"
i += 1

print(output)

def print_mult_table(high):
i = 1
while i <= high:
print_multiples(i,high)
i += 1

Notice that when we added a new parameter, we had to change the first line of the function
(the function heading), and we also had to change the place where the function is called in
print_mult_table.

As expected, this program (i.e., print_mult_table(7)) generates a square seven-by-seven
table:

1 2 3 4 5 6 7
2 4 6 8 10 12 14
3 6 9 12 15 18 21
4 8 12 16 20 24 28
5 10 15 20 25 30 35
6 12 18 24 30 36 42
7 14 21 28 35 42 49

Calling it with a different argument (e.g., 12), generates a different square table:

1 2 3 4 5 6 7 8 9 10 11 12
2 4 6 8 10 12 14 16 18 20 22 24
3 6 9 12 15 18 21 24 27 30 33 36
4 8 12 16 20 24 28 32 36 40 44 48
5 10 15 20 25 30 35 40 45 50 55 60

80 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

6 12 18 24 30 36 42 48 54 60 66 72
7 14 21 28 35 42 49 56 63 70 77 84
8 16 24 32 40 48 56 64 72 80 88 96
9 18 27 36 45 54 63 72 81 90 99 108
10 20 30 40 50 60 70 80 90 100 110 120
11 22 33 44 55 66 77 88 99 110 121 132
12 24 36 48 60 72 84 96 108 120 132 144

When you generalize a function appropriately, you often get a program with capabilities you didn’t
plan. For example, you might notice that, because ab = ba, all the entries in the table appear twice.
You could save ink by printing only half the table. To do that, you only have to change one line of
print_mult_table. Change

print_multiples(i, high)

to

print_multiples(i, i)

and you get:

1
2 4
3 6 9
4 8 12 16
5 10 15 20 25
6 12 18 24 30 36
7 14 21 28 35 42 49

Functions

A few times now, we have mentioned all the things functions are good for. By now, you might be
wondering what exactly those things are. Here are some of them:

1. Giving a name to a sequence of statements makes your program easier to read and debug.

2. Dividing a long program into functions allows you to separate parts of the program, debug
them in isolation, and then compose them into a whole.

3. Functions facilitate the use of iteration.

4. Well-designed functions are often useful for many programs. Once you write and debug one,
you can reuse it.

1.10. Iteration 81

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Newton’s Method

Loops are often used in programs that compute numerical results by starting with an approximate
answer and iteratively improving it.

For example, one way of computing square roots is Newton’s method. Suppose that you want to
know the square root of n. If you start with almost any approximation, you can compute a better
approximation with the following formula:

better = (approx + n/approx)/2

By repeatedly applying this formula until the better approximation is equal to the previous one, we
can write a function for computing the square root:

def sqrt(n):
approx = n/2.0
better = (approx + n/approx)/2.0
while better != approx:

approx = better
better = (approx + n/approx)/2.0

return approx

Try calling this function with 25 as an argument to confirm that it returns 5.0.

Algorithms

Newton’s method is an example of an algorithm: it is a mechanical process for solving a category
of problems (in this case, computing square roots).

It is not easy to define an algorithm. It might help to start with something that is not an algorithm.
When you learned to multiply single-digit numbers, you probably memorized the multiplication
table. In effect, you memorized 100 specific solutions. That kind of knowledge is not algorithmic.

But if you were lazy, you probably cheated by learning a few tricks. For example, to find the
product of n and 9, you can write n - 1 as the first digit and 10 - n as the second digit. This trick is
a general solution for multiplying any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing, and
long division are all algorithms. One of the characteristics of algorithms is that they do not require
any intelligence to carry out. They are mechanical processes in which each step follows from the
last according to a simple set of rules.

In our opinion, it is embarrassing that humans spend so much time in school learning to execute
algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually challenging,
and a central part of what we call programming.

82 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Some of the things that people do naturally, without difficulty or conscious thought, are the hardest
to express algorithmically. Understanding natural language is a good example. We all do it, but so
far no one has been able to explain how we do it, at least not in the form of an algorithm.

Glossary

algorithm A step-by-step process for solving a category of problems.

body The statements inside a loop.

counter A variable used to count something, usually initialized to zero and incremented in the
body of a loop.

cursor An invisible marker that keeps track of where the next character will be printed.

decrement Decrease by 1.

development plan A process for developing a program. In this chapter, we demonstrated a style
of development based on developing code to do simple, specific things and then encapsulat-
ing and generalizing.

encapsulate To divide a large complex program into components (like functions) and isolate the
components from each other (by using local variables, for example).

escape sequence An escape character, \, followed by one or more printable characters used to
designate a nonprintable character.

generalize To replace something unnecessarily specific (like a constant value) with something ap-
propriately general (like a variable or parameter). Generalization makes code more versatile,
more likely to be reused, and sometimes even easier to write.

increment Both as a noun and as a verb, increment means to increase by 1.

infinite loop A loop in which the terminating condition is never satisfied.

initialization (of a variable) To initialize a variable is to give it an initial value, usually in the
context of multiple assignment. Since in Python variables don’t exist until they are assigned
values, they are initialized when they are created. In other programming languages this is
not the case, and variables can be created without being initialized, in which case they have
either default or garbage values.

iteration Repeated execution of a set of programming statements.

loop A statement or group of statements that execute repeatedly until a terminating condition is
satisfied.

loop variable A variable used as part of the terminating condition of a loop.

multiple assignment Making more than one assignment to the same variable during the execution
of a program.

newline A special character that causes the cursor to move to the beginning of the next line.

1.10. Iteration 83

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

tab A special character that causes the cursor to move to the next tab stop on the current line.

trace To follow the flow of execution of a program by hand, recording the change of state of the
variables and any output produced.

Exercises

1. Write a single string that:

produces
this
output.

2. Add a print statement to the sqrt function defined in section 6.14 that prints out better
each time it is calculated. Call your modified function with 25 as an argument and record
the results.

3. Trace the execution of the last version of print_mult_table and figure out how it
works.

4. Write a function print_triangular_numbers(n) that prints out the first n triangular
numbers. A call to print_triangular_numbers(5) would produce the following
output:

1 1
2 3
3 6
4 10
5 15

(hint: use a web search to find out what a triangular number is.)

5. Open a file named ch06.py and add the following:

if __name__ == '__main__':
import doctest
doctest.testmod()

Write a function, is_prime, which takes a single integral argument and returns True
when the argument is a prime number and False otherwise. Add doctests to your function
as you develop it.

6. What will num_digits(0) return? Modify it to return 1 for this case. Why does a call
to num_digits(-24) result in an infinite loop (hint: -1/10 evaluates to -1)? Modify
num_digits so that it works correctly with any integer value. Add the following to the
ch06.py file you created in the previous exercise:

def num_digits(n):
"""

84 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> num_digits(12345)
5
>>> num_digits(0)
1
>>> num_digits(-12345)
5

"""

Add your function body to num_digits and confirm that it passes the doctests.

7. Add the following to the ch06.py:

def num_even_digits(n):
"""
>>> num_even_digits(123456)
3
>>> num_even_digits(2468)
4
>>> num_even_digits(1357)
0
>>> num_even_digits(2)
1
>>> num_even_digits(20)
2

"""

Write a body for num_even_digits so that it works as expected.

8. Add the following to ch06.py:

def print_digits(n):
"""
>>> print_digits(13789)
9 8 7 3 1
>>> print_digits(39874613)
3 1 6 4 7 8 9 3
>>> print_digits(213141)
1 4 1 3 1 2

"""

Write a body for print_digits so that it passes the given doctests.

9. Write a function sum_of_squares_of_digits that computes the sum of the squares of
the digits of an integer passed to it. For example, sum_of_squares_of_digits(987)
should return 194, since 9**2 + 8**2 + 7**2 == 81 + 64 + 49 == 194.

def sum_of_squares_of_digits(n):
"""
>>> sum_of_squares_of_digits(1)
1

1.10. Iteration 85

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> sum_of_squares_of_digits(9)
81
>>> sum_of_squares_of_digits(11)
2
>>> sum_of_squares_of_digits(121)
6
>>> sum_of_squares_of_digits(987)
194

"""

Check your solution against the doctests above.

Strings

A compound data type

So far we have seen five types: int, float, bool, NoneType and str. Strings are qualitatively
different from the other four because they are made up of smaller pieces — characters.

Types that comprise smaller pieces are called compound data types. Depending on what we are
doing, we may want to treat a compound data type as a single thing, or we may want to access its
parts. This ambiguity is useful.

The bracket operator selects a single character from a string:

>>> fruit = "banana"
>>> letter = fruit[1]
>>> print(letter)

The expression fruit[1] selects character number 1 from fruit. The variable letter refers
to the result. When we display letter, we get a surprise:

a

The first letter of "banana" is not a, unless you are a computer scientist. For perverse reasons,
computer scientists always start counting from zero. The 0th letter (zero-eth) of "banana" is b.
The 1th letter (one-eth) is a, and the 2th (two-eth) letter is n.

If you want the zero-eth letter of a string, you just put 0, or any expression with the value 0, in the
brackets:

>>> letter = fruit[0]
>>> print(letter)
b

The expression in brackets is called an index. An index specifies a member of an ordered set, in
this case the set of characters in the string. The index indicates which one you want, hence the

86 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

name. It can be any integer expression.

Length

The len function returns the number of characters in a string:

>>> fruit = "banana"
>>> len(fruit)
6

To get the last letter of a string, you might be tempted to try something like this:

length = len(fruit)
last = fruit[length] # ERROR!

That won’t work. It causes the runtime error IndexError: string index out of
range. The reason is that there is no 6th letter in "banana". Since we started counting at
zero, the six letters are numbered 0 to 5. To get the last character, we have to subtract 1 from
length:

length = len(fruit)
last = fruit[length-1]

Alternatively, we can use negative indices, which count backward from the end of the string. The
expression fruit[-1] yields the last letter, fruit[-2] yields the second to last, and so on.

Traversal and the for loop

A lot of computations involve processing a string one character at a time. Often they start at the
beginning, select each character in turn, do something to it, and continue until the end. This pattern
of processing is called a traversal. One way to encode a traversal is with a while statement:

index = 0
while index < len(fruit):

letter = fruit[index]
print(letter)
index += 1

This loop traverses the string and displays each letter on a line by itself. The loop condition is
index < len(fruit), so when index is equal to the length of the string, the condition is
false, and the body of the loop is not executed. The last character accessed is the one with the
index len(fruit)-1, which is the last character in the string.

Using an index to traverse a set of values is so common that Python provides an alternative, simpler
syntax — the for loop:

1.11. Strings 87

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

for char in fruit:
print(char)

Each time through the loop, the next character in the string is assigned to the variable char. The
loop continues until no characters are left.

The following example shows how to use concatenation and a for loop to generate an abecedarian
series. Abecedarian refers to a series or list in which the elements appear in alphabetical order. For
example, in Robert McCloskey’s book Make Way for Ducklings, the names of the ducklings are
Jack, Kack, Lack, Mack, Nack, Ouack, Pack, and Quack. This loop outputs these names in order:

prefixes = "JKLMNOPQ"
suffix = "ack"

for letter in prefixes:
print(letter + suffix)

The output of this program is:

Jack
Kack
Lack
Mack
Nack
Oack
Pack
Qack

Of course, that’s not quite right because Ouack and Quack are misspelled. You’ll fix this as an
exercise below.

String slices

A substring of a string is called a slice. Selecting a slice is similar to selecting a character:

>>> s = "Peter, Paul, and Mary"
>>> print(s[0:5])
Peter
>>> print(s[7:11])
Paul
>>> print(s[17:21])
Mary

The operator [n:m] returns the part of the string from the n-eth character to the m-eth character,
including the first but excluding the last. This behavior is counterintuitive; it makes more sense if
you imagine the indices pointing between the characters, as in the following diagram:

88 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If you omit the first index (before the colon), the slice starts at the beginning of the string. If you
omit the second index, the slice goes to the end of the string. Thus:

>>> fruit = "banana"
>>> fruit[:3]
'ban'
>>> fruit[3:]
'ana'

What do you think s[:] means?

String comparison

The comparison operators work on strings. To see if two strings are equal:

if word == "banana":
print("Yes, we have no bananas!")

Other comparison operations are useful for putting words in lexigraphical order:

if word < "banana":
print("Your word, " + word + ", comes before banana.")

elif word > "banana":
print("Your word, " + word + ", comes after banana.")

else:
print("Yes, we have no bananas!")

This is similar to the alphabetical order you would use with a dictionary, except that all the upper-
case letters come before all the lowercase letters. As a result:

Your word, Zebra, comes before banana.

A common way to address this problem is to convert strings to a standard format, such as all
lowercase, before performing the comparison. A more difficult problem is making the program
realize that zebras are not fruit.

Strings are immutable

It is tempting to use the [] operator on the left side of an assignment, with the intention of changing
a character in a string. For example:

1.11. Strings 89

http://en.wikipedia.org/wiki/Lexicographic_order

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

greeting = "Hello, world!"
greeting[0] = 'J' # ERROR!
print(greeting)

Instead of producing the output Jello, world!, this code produces the runtime error
TypeError: ’str’ object doesn’t support item assignment.

Strings are immutable, which means you can’t change an existing string. The best you can do is
create a new string that is a variation on the original:

greeting = "Hello, world!"
new_greeting = 'J' + greeting[1:]
print(new_greeting)

The solution here is to concatenate a new first letter onto a slice of greeting. This operation has
no effect on the original string.

The in operator

The in operator tests if one string is a substring of another:

>>> 'p' in 'apple'
True
>>> 'i' in 'apple'
False
>>> 'ap' in 'apple'
True
>>> 'pa' in 'apple'
False

Note that a string is a substring of itself:

>>> 'a' in 'a'
True
>>> 'apple' in 'apple'
True

Combining the in operator with string concatenation using +, we can write a function that removes
all the vowels from a string:

def remove_vowels(s):
vowels = "aeiouAEIOU"
s_without_vowels = ""
for letter in s:

if letter not in vowels:
s_without_vowels += letter

return s_without_vowels

90 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Test this function to confirm that it does what we wanted it to do.

A find function

What does the following function do?

def find(strng, ch):
index = 0
while index < len(strng):

if strng[index] == ch:
return index

index += 1
return -1

In a sense, find is the opposite of the [] operator. Instead of taking an index and extracting the
corresponding character, it takes a character and finds the index where that character appears. If
the character is not found, the function returns -1.

This is the first example we have seen of a return statement inside a loop. If strng[index]
== ch, the function returns immediately, breaking out of the loop prematurely.

If the character doesn’t appear in the string, then the program exits the loop normally and returns
-1.

This pattern of computation is sometimes called a eureka traversal because as soon as we find what
we are looking for, we can cry Eureka! and stop looking.

Looping and counting

The following program counts the number of times the letter a appears in a string, and is another
example of the counter pattern introduced in Counting digits:

fruit = "banana"
count = 0
for char in fruit:

if char == 'a':
count += 1

print(count)

Optional parameters

To find the locations of the second or third occurence of a character in a string, we can modify the
find function, adding a third parameter for the starting postion in the search string:

1.11. Strings 91

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def find2(strng, ch, start):
index = start
while index < len(strng):

if strng[index] == ch:
return index

index += 1
return -1

The call find2(’banana’, ’a’, 2) now returns 3, the index of the first occurance of ‘a’ in
‘banana’ after index 2. What does find2(’banana’, ’n’, 3) return? If you said, 4, there
is a good chance you understand how find2 works.

Better still, we can combine find and find2 using an optional parameter:

def find(strng, ch, start=0):
index = start
while index < len(strng):

if strng[index] == ch:
return index

index += 1
return -1

The call find(’banana’, ’a’, 2) to this version of find behaves just like find2, while
in the call find(’banana’, ’a’), start will be set to the default value of 0.

If we add another optional parameter to find we can use it to search either forward or backward:

def find(strng, ch, start=0, step=1):
index = start
while 0 <= index < len(strng):

if strng[index] == ch:
return index

index += step
return -1

Passing in a value of len(strng)-1 for start and -1 for step will make find search from the
end of the string toward the beginning. Note that we needed to check a lower bound for index in
the while loop as well as an upper bound to accomodate this change.

The string module

The string module contains useful functions that manipulate strings. As usual, we have to
import the module before we can use it:

>>> import string

To see what is inside it, use the dir function with the module name as an argument.

92 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> dir(string)

which will return the list of items inside the string module:

[’Template’, ’_TemplateMetaclass’, ’__builtins__’, ’__doc__’,
’__file__’, ’__name__’, ’_float’, ’_idmap’, ’_idmapL’, ’_int’,
’_long’, ’_multimap’, ’_re’, ’ascii_letters’, ’ascii_lowercase’,
’ascii_uppercase’, ’atof’, ’atof_error’, ’atoi’, ’atoi_error’,
’atol’, ’atol_error’, ’capitalize’, ’capwords’, ’center’,
’count’, ’digits’, ’expandtabs’, ’find’, ’hexdigits’, ’index’,
’index_error’, ’join’, ’joinfields’, ’letters’, ’ljust’,
’lower’, ’lowercase’, ’lstrip’, ’maketrans’, ’octdigits’,
’printable’, ’punctuation’, ’replace’, ’rfind’, ’rindex’,
’rjust’, ’rsplit’, ’rstrip’, ’split’, ’splitfields’, ’strip’,
’swapcase’, ’translate’, ’upper’, ’uppercase’, ’whitespace’,
’zfill’]

To find out more about an item in this list, we can use the type command. We need to specify the
module name followed by the item using dot notation.

>>> type(string.digits)
<type 'str'>
>>> type(string.find)
<type 'function'>

Since string.digits is a string, we can print it to see what it contains:

>>> print(string.digits)
0123456789

Not surprisingly, it contains each of the decimal digits.

string.find is a function which does much the same thing as the function we wrote. To find
out more about it, we can print out its docstring, __doc__, which contains documentation on the
function:

>>> print(string.find.__doc__)
find(s, sub [,start [,end]]) -> in

Return the lowest index in s where substring sub is found,
such that sub is contained within s[start,end]. Optional
arguments start and end are interpreted as in slice notation.

Return -1 on failure.

The parameters in square brackets are optional parameters. We can use string.find much as
we did our own find:

1.11. Strings 93

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> fruit = "banana"
>>> index = string.find(fruit, "a")
>>> print(index)
1

This example demonstrates one of the benefits of modules — they help avoid collisions between
the names of built-in functions and user-defined functions. By using dot notation we can specify
which version of find we want.

Actually, string.find is more general than our version. it can find substrings, not just charac-
ters:

>>> string.find("banana", "na")
2

Like ours, it takes an additional argument that specifies the index at which it should start:

>>> string.find("banana", "na", 3)
4

Unlike ours, its second optional parameter specifies the index at which the search should end:

>>> string.find("bob", "b", 1, 2)
-1

In this example, the search fails because the letter b does not appear in the index range from 1 to
2 (not including 2).

Character classification

It is often helpful to examine a character and test whether it is upper- or lowercase, or whether it
is a character or a digit. The string module provides several constants that are useful for these
purposes. One of these, string.digits, we have already seen.

The string string.lowercase contains all of the letters that the system considers to be low-
ercase. Similarly, string.uppercase contains all of the uppercase letters. Try the following
and see what you get:

print(string.lowercase)
print(string.uppercase)
print(string.digits)

We can use these constants and find to classify characters. For example, if find(lowercase,
ch) returns a value other than -1, then ch must be lowercase:

def is_lower(ch):
return string.find(string.lowercase, ch) != -1

Alternatively, we can take advantage of the in operator:

94 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def is_lower(ch):
return ch in string.lowercase

As yet another alternative, we can use the comparison operator:

def is_lower(ch):
return 'a' <= ch <= 'z'

If ch is between a and z, it must be a lowercase letter.

Another constant defined in the string module may surprise you when you print it:

>>> print(string.whitespace)

Whitespace characters move the cursor without printing anything. They create the white space be-
tween visible characters (at least on white paper). The constant string.whitespace contains
all the whitespace characters, including space, tab (\t), and newline (\n).

There are other useful functions in the string module, but this book isn’t intended to be a ref-
erence manual. On the other hand, the Python Library Reference is. Along with a wealth of other
documentation, it’s available from the Python website, http://www.python.org.

String formatting

The most concise and powerful way to format a string in Python is to use the string formatting
operator, %, together with Python’s string formatting operations. To see how this works, let’s start
with a few examples:

>>> "His name is %s." % "Arthur"
'His name is Arthur.'
>>> name = "Alice"
>>> age = 10
>>> "I am %s and I am %d years old." % (name, age)
'I am Alice and I am 10 years old.'
>>> n1 = 4
>>> n2 = 5
>>> "2**10 = %d and %d * %d = %f" % (2**10, n1, n2, n1 * n2)
'2**10 = 1024 and 4 * 5 = 20.000000'
>>>

The syntax for the string formatting operation looks like this:

"<FORMAT>" % (<VALUES>)

It begins with a format string which contains a sequence of characters and conversion specifica-
tions. Conversion specifications always start with a %. In the previous examples we saw three
conversion specifications: %s, %d, and %f. Following the format string is a single % and then a

1.11. Strings 95

http://www.python.org

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

sequence of values, one per conversion specification, seperated by commas and enclosed in paren-
theses. The parentheses are optional if there is only a single value. The conversion specifications
indicate where in the formatted string the values should be placed and in some cases how the values
should be converted to strings.

In the first example above, there is a single conversion specification, %s, which indicates a string.
The single value, "Arthur", maps to it, and is not enclosed in parenthesis.

In the second example, name has string value, "Alice", and age has integer value, 10. These
map to the two converstion specifications, %s and %d. The d in the second converstion specifica-
tion indicates that the value is a decimal (base 10) integer.

In the third example, variables n1 and n2 have integer values 4 and 5, respectively. There are four
conversion specifications in the format string: three %d‘s and a %f. The f indicates that the value
should be represented as a floating point number. The four values that map to the four converstion
specifications are: 2**10, n1, n2, and n1 * n2.

s, d, and f are all the conversion types we will need for this book. To see a complete list, see the
String Formatting Operations section of the Python Library Reference.

We can also use padding to specify the minimum number of characters a value should occupy
when it is formatted. If the formatted value is too short extra blank space characters will be added.
For example:

>>> "%6s" % "hi"
' hi'
>>> "%-6s" % "hi"
'hi '
>>> "%6s" % "hi there, pythonista!"
'hi there, pythonista!'

The numbers in the conversion spefications indicate the minimum size of the resulting string. The
- in the second example tells the formatter to put any necessary padding to the right. This is
also called left-justification because the value ends up on the left side of the formatted string. The
final example shows that these numbers really are specifying a minimum width; the string we
supplied was longer than six characters, but python still prints the entire string, not just the first six
characters, "hi the".

Padding is useful if we want to display data in neatly aligned columns. Without string formatting
we might try to do something like this:

i = 1
print("i\ti**2\ti**3\ti**5\ti**10\ti**20")
while i <= 10:

print("%d\t%d\t%d\t%d\t%d\t%d" % (i, i**2, i**3, i**5, i**10, i**20))
i += 1

This program prints out a table of various powers of the numbers from 1 to 10. In its current form
it relies on the tab character (\t) to align the columns of values, but this breaks down when the
values in the table get larger than the 8 character tab width:

96 Chapter 1. Learning with Python

http://docs.python.org/2/library/stdtypes.html

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

i i**2 i**3 i**5 i**10 i**20
1 1 1 1 1 1
2 4 8 32 1024 1048576
3 9 27 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 10000000000 100000000000000000000

One possible solution would be to change the tab width, but the first column already has more
space than it needs. The best solution would be to set the width of each column independently. We
can use padding to accomplish this:

i = 1
print("%-4s%-5s%-6s%-8s%-13s%s" % ('i', 'i**2', 'i**3', 'i**5', 'i**10', 'i**20'))
while i <= 10:

print("%-4s%-5s%-6s%-8s%-13s%s" % (i, i**2, i**3, i**5, i**10, i**20))
i += 1

Running this code produces the following output:

i i**2 i**3 i**5 i**10 i**20
1 1 1 1 1 1
2 4 8 32 1024 1048576
3 9 27 243 59049 3486784401
4 16 64 1024 1048576 1099511627776
5 25 125 3125 9765625 95367431640625
6 36 216 7776 60466176 3656158440062976
7 49 343 16807 282475249 79792266297612001
8 64 512 32768 1073741824 1152921504606846976
9 81 729 59049 3486784401 12157665459056928801
10 100 1000 100000 10000000000 100000000000000000000

Here we have specified the width of each column by choosing padding values big enough to ac-
commodate all the numbers in that column. Notice that the specifier for the last column is just %s.
Can you explain why that is?

Finally, when formatting floats with %f, you can specify the precsion — i.e. the number of decimal
places:

>>> "%.3f" % 123.456789
'123.457'
>>> "%.3f" % 123.4
'123.400'

As you can see from the first example, python will round the float appropriately. You can also

1.11. Strings 97

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

combine all three of these options, specifying the padding, the justification, and the precision all at
once:

>>> "My number is %-10.3f" % 123.456789
'My number is 123.457 '

Summary and First Exercises

This chapter introduced a lot of new ideas. The following summary and set of exercises may prove
helpful in remembering what you learned:

indexing ([]) Access a single character in a string using its position (starting from 0). Example:
’This’[2] evaluates to ’i’.

length function (len) Returns the number of characters in a string. Example: len(’happy’)
evaluates to 5.

for loop traversal (for) Traversing a string means accessing each character in the string, one at
a time. For example, the following for loop:

for letter in 'Example':
print(2 * letter)

will print each letter of the string doubled (e.g. EE), each on its own line.

slicing ([:]) A slice is a substring of a string. Example: ’bananas and cream’[3:6]
evaluates to ana (so does ’bananas and cream’[1:4]).

string comparison (>, <, >=, <=, ==) The comparision operators work with strings, eval-
uating according to lexigraphical order. Examples: ’apple’ < ’banana’ evaluates to
True. ’Zeta’ < ’Appricot’ evaluates to False . ’Zebra’ <= ’aardvark’
evaluates to True because all upper case letters precede lower case letters.

in operator (in) The in operator tests whether one character or string is contained inside an-
other string. Examples: ’heck’ in "I’ll be checking for you." evaluates
to True. ’cheese’ in "I’ll be checking for you." evaluates to False.

First Exercises

1. Write the Python interpreter’s evaluation to each of the following expressions:

>>> 'Python'[1]

>>> "Strings are sequences of characters."[5]

>>> len("wonderful")

98 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Lexicographic_order

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> 'Mystery'[:4]

>>> 'p' in 'Pinapple'

>>> 'apple' in 'Pinapple'

>>> 'pear' in 'Pinapple'

>>> 'apple' > 'pinapple'

>>> 'pinapple' < 'Peach'

2. Write Python code to make each of the following doctests pass:

"""
>>> type(fruit)
<type 'str'>
>>> len(fruit)
8
>>> fruit[:3]
'ram'

"""

"""
>>> group = "John, Paul, George, and Ringo"
>>> group[12:x]
'George'
>>> group[n:m]
'Paul'
>>> group[:r]
'John'
>>> group[s:]
'Ringo'

"""

"""
>>> len(s)
8
>>> s[4:6] == 'on'
True

"""

Glossary

compound data type A data type in which the values are made up of components, or elements,
that are themselves values.

1.11. Strings 99

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

default value The value given to an optional parameter if no argument for it is provided in the
function call.

docstring A string constant on the first line of a function or module definition (and as we will
see later, in class and method definitions as well). Docstrings provide a convenient way to
associate documentation with code. Docstrings are also used by the doctest module for
automated testing.

dot notation Use of the dot operator, ., to access functions inside a module.

immutable A compound data type whose elements cannot be assigned new values.

index A variable or value used to select a member of an ordered set, such as a character from a
string.

optional parameter A parameter written in a function header with an assignment to a default
value which it will receive if no corresponding argument is given for it in the function call.

slice A part of a string (substring) specified by a range of indices. More generally, a
subsequence of any sequence type in Python can be created using the slice operator
(sequence[start:stop]).

traverse To iterate through the elements of a set, performing a similar operation on each.

whitespace Any of the characters that move the cursor without printing visible characters. The
constant string.whitespace contains all the white-space characters.

Exercises

1. Modify:

prefixes = "JKLMNOPQ"
suffix = "ack"

for letter in prefixes:
print(letter + suffix)

so that Ouack and Quack are spelled correctly.

2. Encapsulate

fruit = "banana"
count = 0
for char in fruit:

if char == 'a':
count += 1

print(count)

in a function named count_letters, and generalize it so that it accepts the string and
the letter as arguments.

100 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3. Now rewrite the count_letters function so that instead of traversing the string, it repeat-
edly calls find (the version from Optional parameters), with the optional third parameter
to locate new occurences of the letter being counted.

4. Which version of is_lower do you think will be fastest? Can you think of other reasons
besides speed to prefer one version or the other?

5. Create a file named stringtools.py and put the following in it:

def reverse(s):
"""
>>> reverse('happy')
'yppah'
>>> reverse('Python')
'nohtyP'
>>> reverse("")
''
>>> reverse("P")
'P'

"""

if __name__ == '__main__':
import doctest
doctest.testmod()

Add a function body to reverse to make the doctests pass.

6. Add mirror to stringtools.py .

def mirror(s):
"""
>>> mirror("good")
'gooddoog'
>>> mirror("yes")
'yessey'
>>> mirror('Python')
'PythonnohtyP'
>>> mirror("")
''
>>> mirror("a")
'aa'

"""

Write a function body for it that will make it work as indicated by the doctests.

7. Include remove_letter in stringtools.py .

def remove_letter(letter, strng):
"""
>>> remove_letter('a', 'apple')

1.11. Strings 101

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

'pple'
>>> remove_letter('a', 'banana')
'bnn'
>>> remove_letter('z', 'banana')
'banana'
>>> remove_letter('i', 'Mississippi')
'Msssspp'

"""

Write a function body for it that will make it work as indicated by the doctests.

8. Finally, add bodies to each of the following functions, one at a time

def is_palindrome(s):
"""
>>> is_palindrome('abba')
True
>>> is_palindrome('abab')
False
>>> is_palindrome('tenet')
True
>>> is_palindrome('banana')
False
>>> is_palindrome('straw warts')
True

"""

def count(sub, s):
"""
>>> count('is', 'Mississippi')
2
>>> count('an', 'banana')
2
>>> count('ana', 'banana')
2
>>> count('nana', 'banana')
1
>>> count('nanan', 'banana')
0

"""

def remove(sub, s):
"""
>>> remove('an', 'banana')
'bana'
>>> remove('cyc', 'bicycle')
'bile'
>>> remove('iss', 'Mississippi')

102 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

'Missippi'
>>> remove('egg', 'bicycle')
'bicycle'

"""

def remove_all(sub, s):
"""
>>> remove_all('an', 'banana')
'ba'
>>> remove_all('cyc', 'bicycle')
'bile'
>>> remove_all('iss', 'Mississippi')
'Mippi'
>>> remove_all('eggs', 'bicycle')
'bicycle'

"""

until all the doctests pass.

9. Try each of the following formatted string operations in a Python shell and record the results:

(a) “%s %d %f” % (5, 5, 5)

(b) “%-.2f” % 3

(c) “%-10.2f%-10.2f” % (7, 1.0/2)

(d) print(” $%5.2fn $%5.2fn $%5.2f” % (3, 4.5, 11.2))

10. The following formatted strings have errors. Fix them:

(a) “%s %s %s %s” % (‘this’, ‘that’, ‘something’)

(b) “%s %s %s” % (‘yes’, ‘no’, ‘up’, ‘down’)

(c) “%d %f %f” % (3, 3, ‘three’)

Case Study: Catch

Getting started

In our first case study we will build a small video game using the facilities in the GASP package.
The game will shoot a ball across a window from left to right and you will manipulate a mitt at the
right side of the window to catch it.

1.12. Case Study: Catch 103

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Using while to move a ball

while statements can be used with gasp to add motion to a program. The following program
moves a black ball across an 800 x 600 pixel graphics canvas. Add this to a file named pitch.py:

from gasp import *

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

ball_x = 10
ball_y = 300
ball = Circle((ball_x, ball_y), 10, filled=True)
dx = 4
dy = 1

while ball_x < 810:
ball_x += dx
ball_y += dy
move_to(ball, (ball_x, ball_y))
update_when('next_tick')

end_graphics()

As the ball moves across the screen, you will see a graphics window that looks like this:

Trace the first few iterations of this program to be sure you see what is happening to the variables
x and y.

Some new things to learn about GASP from this example:

• begin_graphics can take arguments for width, height, title, and background color of
the graphics canvas.

• set_speed can takes a frame rate in frames per second.

104 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

• Adding filled=True to Circle(...) makes the resulting circle solid.

• ball = Circle stores the circle (we will talk later about what a circle actually is) in a
variable named ball so that it can be referenced later.

• The move_to function in GASP allows a programmer to pass in a shape (the ball in this
case) and a location, and moves the shape to that location.

• The update_when function is used to delay the action in a gasp program until a spec-
ified event occurs. The event ’next_tick’ waits until the next frame, for an amount
of time determined by the frame rate set with set_speed. Other valid arguments for
update_when are ’key_pressed’ and ’mouse_clicked’.

Varying the pitches

To make our game more interesting, we want to be able to vary the speed and direction of the
ball. GASP has a function, random_between(low, high), that returns a random integer
between low and high. To see how this works, run the following program:

from gasp import *

i = 0
while i < 10:

print(random_between(-5, 5))
i += 1

Each time the function is called a more or less random integer is chosen between -5 and 5. When
we ran this program we got:

-2
-1
-4
1
-2
3
-5
-3
4
-5

You will probably get a different sequence of numbers.

Let’s use random_between to vary the direction of the ball. Replace the line in pitch.py
that assigns 1 to y:

dy = 1

with an assignment to a random number between -4 and 4:

1.12. Case Study: Catch 105

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

dy = random_between(-4, 4)

Making the ball bounce

Running this new version of the program, you will notice that ball frequently goes off either the
top or bottom edges of the screen before it completes its journey. To prevent this, let’s make the
ball bounce off the edges by changing the sign of dy and sending the ball back in the opposite
verticle direction.

Add the following as the first line of the body of the while loop in pitch.py:

if ball_y >= 590 or ball_y <= 10:
dy *= -1

Run the program several times to see how it behaves.

The break statement

The break statement is used to immediately leave the body of a loop. The following program
implements a simple guessing game:

from gasp import *

number = random_between(1, 1000)
guesses = 1
guess = int(raw_input("Guess the number between 1 and 1000: "))

while guess != number:
if guess > number:

print("Too high!")
else:

print("Too low!")
guess = int(raw_input("Guess the number between 1 and 1000: "))
guesses += 1

print("\n\nCongratulations, you got it in %d guesses!\n\n" % (guesses))

Using a break statement, we can rewrite this program to eliminate the duplication of the input
statement:

from gasp import *

number = random_between(1, 1000)
guesses = 0

106 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

while True:
guess = int(raw_input("Guess the number between 1 and 1000: "))
guesses += 1
if guess > number:

print("Too high!")
elif guess < number:

print("Too low!")
else:

print("\n\nCongratulations, you got it in %d guesses!\n\n" % (guesses))
break

This program makes use of the mathematical law of trichotomy (given real numbers a and b, a >
b, a < b, or a = b). While both versions of the program are 15 lines long, it could be argued that the
logic in the second version is clearer.

Put this program in a file named guess.py.

Responding to the keyboard

The following program creates a circle (or mitt) which responds to keyboard input. Pressing the
j or k keys moves the mitt up and down, respectively. Add this to a file named mitt.py:

from gasp import *

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

mitt_x = 780
mitt_y = 300
mitt = Circle((mitt_x, mitt_y), 20)

while True:
if key_pressed('k') and mitt_y <= 580:

mitt_y += 5
elif key_pressed('j') and mitt_y >= 20:

mitt_y -= 5

if key_pressed('escape'):
break

move_to(mitt, (mitt_x, mitt_y))
update_when('next_tick')

end_graphics()

Run mitt.py, pressing j and k to move up and down the screen.

1.12. Case Study: Catch 107

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Checking for collisions

The following program moves two balls toward each other from opposite sides of the screen. When
they collide , both balls disappear and the program ends:

from gasp import *

def distance(x1, y1, x2, y2):
return ((x2 - x1)**2 + (y2 - y1)**2)**0.5

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

ball1_x = 10
ball1_y = 300
ball1 = Circle((ball1_x, ball1_y), 10, filled=True)
ball1_dx = 4

ball2_x = 790
ball2_y = 300
ball2 = Circle((ball2_x, ball2_y), 10)
ball2_dx = -4

while ball1_x < 810:
ball1_x += ball1_dx
ball2_x += ball2_dx
move_to(ball1, (ball1_x, ball1_y))
move_to(ball2, (ball2_x, ball2_y))
if distance(ball1_x, ball1_y, ball2_x, ball2_y) <= 20:

remove_from_screen(ball1)
remove_from_screen(ball2)
break

update_when('next_tick')

sleep(1)
end_graphics()

Put this program in a file named collide.py and run it.

Putting the pieces together

In order to combine the moving ball, moving mitt, and collision detection, we need a single while
loop that does each of these things in turn:

from gasp import *

108 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def distance(x1, y1, x2, y2):
return ((x2 - x1)**2 + (y2 - y1)**2)**0.5

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

ball_x = 10
ball_y = 300
ball = Circle((ball_x, ball_y), 10, filled=True)
dx = 4
dy = random_between(-4, 4)

mitt_x = 780
mitt_y = 300
mitt = Circle((mitt_x, mitt_y), 20)

while True:
move the ball
if ball_y >= 590 or ball_y <= 10:

dy *= -1
ball_x += dx
if ball_x > 810: # the ball has gone off the screen

break
ball_y += dy
move_to(ball, (ball_x, ball_y))

check on the mitt
if key_pressed('k') and mitt_y <= 580:

mitt_y += 5
elif key_pressed('j') and mitt_y >= 20:

mitt_y -= 5

if key_pressed('escape'):
break

move_to(mitt, (mitt_x, mitt_y))

if distance(ball_x, ball_y, mitt_x, mitt_y) <= 30: # ball is caught
remove_from_screen(ball)
break

update_when('next_tick')

end_graphics()

Put this program in a file named catch.py and run it several times. Be sure to catch the ball on
some runs and miss it on others.

1.12. Case Study: Catch 109

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Displaying text

This program displays scores for both a player and the computer on the graphics screen. It gener-
ates a random number of 0 or 1 (like flipping a coin) and adds a point to the player if the value is 1
and to the computer if it is not. It then updates the display on the screen.

from gasp import *

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

player_score = 0
comp_score = 0

player = Text("Player: %d Points" % player_score, (10, 570), size=24)
computer = Text("Computer: %d Points" % comp_score, (640, 570), size=24)

while player_score < 5 and comp_score < 5:
sleep(1)
winner = random_between(0, 1)
if winner:

player_score += 1
remove_from_screen(player)
player = Text("Player: %d Points" % player_score, (10, 570), size=24)

else:
comp_score += 1
remove_from_screen(computer)
computer = Text("Computer: %d Points" % comp_score, (640, 570), size=24)

if player_score == 5:
Text("Player Wins!", (340, 290), size=32)

else:
Text("Computer Wins!", (340, 290), size=32)

sleep(4)

end_graphics()

Put this program in a file named scores.py and run it.

We can now modify catch.py to diplay the winner. Immediately after the if ball_x >
810: conditional, add the following:

Text("Computer Wins!", (340, 290), size=32)
sleep(2)

It is left as an excercise to display when the player wins.

110 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Abstraction

Our program is getting a bit complex. To make matters worse, we are about to increase its complex-
ity. The next stage of development requires a nested loop. The outer loop will handle repeating
rounds of play until either the player or the computer reaches a winning score. The inner loop will
be the one we already have, which plays a single round, moving the ball and mitt, and determining
if a catch or a miss has occured.

Research suggests there are clear limits to our ability to process cognitive tasks (see George A.
Miller’s The Magical Number Seven, Plus or Minus Two: Some Limits on our Capacity for Pro-
cessing Information). The more complex a program becomes, the more difficult it is for even an
experienced programmer to develop and maintain.

To handle increasing complexity, we can wrap groups of related statements in functions, using
abstraction to hide program details. This allows us to mentally treat a group of programming
statements as a single concept, freeing up mental bandwidth for further tasks. The ability to use
abstraction is one of the most powerful ideas in computer programming.

Here is a completed version of catch.py:

from gasp import *

COMPUTER_WINS = 1
PLAYER_WINS = 0
QUIT = -1

def distance(x1, y1, x2, y2):
return ((x2 - x1)**2 + (y2 - y1)**2)**0.5

def play_round():
ball_x = 10
ball_y = random_between(20, 280)
ball = Circle((ball_x, ball_y), 10, filled=True)
dx = 4
dy = random_between(-5, 5)

mitt_x = 780
mitt_y = random_between(20, 280)
mitt = Circle((mitt_x, mitt_y), 20)

while True:
if ball_y >= 590 or ball_y <= 10:

dy *= -1
ball_x += dx
ball_y += dy
if ball_x >= 810:

1.12. Case Study: Catch 111

http://psychclassics.yorku.ca/Miller
http://psychclassics.yorku.ca/Miller

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

remove_from_screen(ball)
remove_from_screen(mitt)
return COMPUTER_WINS

move_to(ball, (ball_x, ball_y))

if key_pressed('k') and mitt_y <= 580:
mitt_y += 5

elif key_pressed('j') and mitt_y >= 20:
mitt_y -= 5

if key_pressed('escape'):
return QUIT

move_to(mitt, (mitt_x, mitt_y))

if distance(ball_x, ball_y, mitt_x, mitt_y) <= 30:
remove_from_screen(ball)
remove_from_screen(mitt)
return PLAYER_WINS

update_when('next_tick')

def play_game():
player_score = 0
comp_score = 0

while True:
pmsg = Text("Player: %d Points" % player_score, (10, 570), size=24)
cmsg = Text("Computer: %d Points" % comp_score, (640, 570), size=24)
sleep(3)
remove_from_screen(pmsg)
remove_from_screen(cmsg)

result = play_round()

if result == PLAYER_WINS:
player_score += 1

elif result == COMPUTER_WINS:
comp_score += 1

else:
return QUIT

if player_score == 5:
return PLAYER_WINS

elif comp_score == 5:
return COMPUTER_WINS

112 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

begin_graphics(800, 600, title="Catch", background=color.YELLOW)
set_speed(120)

result = play_game()

if result == PLAYER_WINS:
Text("Player Wins!", (340, 290), size=32)

elif result == COMPUTER_WINS:
Text("Computer Wins!", (340, 290), size=32)

sleep(4)

end_graphics()

Some new things to learn from this example:

• Following good organizational practices makes programs easier to read. Use the following
organization in your programs:

– imports

– global constants

– function definitions

– main body of the program

• Symbolic constants like COMPUTER_WINS, PLAYER_WINS, and QUIT can be used to
enhance readability of the program. It is customary to name constants with all capital letters.
In Python it is up to the programmer to never assign a new value to a constant , since the
language does not provide an easy way to enforce this (many other programming languages
do).

• We took the version of the program developed in section 8.8 and wrapped it in a function
named play_round(). play_roundmakes use of the constants defined at the top of the
program. It is much easier to remember COMPUTER_WINS than it is the arbitrary numeric
value assigned to it.

• A new function, play_game(), creates variables for player_score and
comp_score. Using a while loop, it repeatedly calls play_round, checking
the result of each call and updating the score appropriately. Finally, when either the player
or computer reach 5 points, play_game returns the winner to the main body of the
program, which then displays the winner and then quits.

• There are two variables named result—one in the play_game function and one in the
main body of the program. While they have the same name, they are in different namespaces,
and bear no relation to each other. Each function creates its own namespace, and names
defined within the body of the function are not visible to code outside the function body.

1.12. Case Study: Catch 113

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Namespaces will be discussed in greater detail in the next chapter.

Glossary

abstraction Generalization by reducing the information content of a concept. Functions in
Python can be used to group a number of program statements with a single name, abstracting
out the details and making the program easier to understand.

constant A numerical value that does not change during the execution of a program. It is conven-
tional to use names with all uppercase letters to repesent constants, though Python programs
rely on the discipline of the programmers to enforce this, since there is no language mecha-
nism to support true constants in Python.

nested loop A loop inside the body of another loop.

random Having no specific pattern. Unpredictable. Computers are designed to be predicatable,
and it is not possible to get a truly random value from a computer. Certain functions produce
sequences of values that appear as if they were random, and it is these psuedorandom values
that we get from Python.

trichotomy Given any real numbers a and b, exactly one of the following relations holds: a <
b, a > b, or a = b. Thus when you can establish that two of the relations are false, you can
assume the remaining one is true.

Exercises

1. What happens when you press the key while running mitt.py? List the two lines from the
program that produce this behavior and explain how they work.

2. What is the name of the counter variable in guess.py? With a proper strategy, the maxi-
mum number of guesses required to arrive at the correct number should be 11. What is this
strategy?

3. What happens when the mitt in mitt.py gets to the top or bottom of the graphics window?
List the lines from the program that control this behavior and explain in detail how they
work.

4. Change the value of ball1_dx in collide.py to 2. How does the program behave
differently? Now change ball1_dx back to 4 and set ball2_dx to -2. Explain in detail
how these changes effect the behavior of the program.

5. Comment out (put a # in front of the statement) the break statement in collide.py.
Do you notice any change in the behavior of the program? Now also comment out the
remove_from_screen(ball1) statement. What happens now? Experiment with com-
menting and uncommenting the two remove_from_screen statements and the break
statement until you can describe specifically how these statements work together to produce
the desired behavior in the program.

114 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

6. Where can you add the lines

Text("Player Wins!", (340, 290), size=32)
sleep(2)

to the version of catch.py in section 8.8 so that the program displays this message when
the ball is caught?

7. Trace the flow of execution in the final version of catch.py when you press the escape
key during the execution of play_round. What happens when you press this key? Why?

8. List the main body of the final version of catch.py. Describe in detail what each line of
code does. Which statement calls the function that starts the game?

9. Identify the function responsible for displaying the ball and the mitt. What other operations
are provided by this function?

10. Which function keeps track of the score? Is this also the function that displays the score?
Justify your answer by discussing specific parts of the code which implement these opera-
tions.

Project: pong.py

Pong was one of the first commercial video games. With a capital P it is a registered trademark,
but pong is used to refer any of the table tennis like paddle and ball video games.

catch.py already contains all the programming tools we need to develop our own version of
pong. Incrementally changing catch.py into pong.py is the goal of this project, which you
will accomplish by completing the following series of exercises:

1. Copy catch.py to pong1.py and change the ball into a paddle by using Box instead
of the Circle. You can look at Appendix A for more information on Box. Make the
adjustments needed to keep the paddle on the screen.

2. Copy pong1.py to pong2.py. Replace the distance function with a boolean function
hit(bx, by, r, px, py, h) that returns True when the vertical coordinate of the
ball (by) is between the bottom and top of the paddle, and the horizontal location of the
ball (bx) is less than or equal to the radius (r) away from the front of the paddle. Use hit
to determine when the ball hits the paddle, and make the ball bounce back in the opposite
horizontal direction when hit returns True. Your completed function should pass these
doctests:

def hit(bx, by, r, px, py, h):
"""
>>> hit(760, 100, 10, 780, 100, 100)
False
>>> hit(770, 100, 10, 780, 100, 100)
True
>>> hit(770, 200, 10, 780, 100, 100)

1.12. Case Study: Catch 115

http://en.wikipedia.org/wiki/Pong

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

True
>>> hit(770, 210, 10, 780, 100, 100)
False

"""

Finally, change the scoring logic to give the player a point when the ball goes off the screen
on the left.

3. Copy pong2.py to pong3.py. Add a new paddle on the left side of the screen which
moves up when ’a’ is pressed and down when ’s’ is pressed. Change the starting point
for the ball to the center of the screen, (400, 300), and make it randomly move to the left or
right at the start of each round.

Lists

A list is an ordered set of values, where each value is identified by an index. The values that make
up a list are called its elements. Lists are similar to strings, which are ordered sets of characters,
except that the elements of a list can have any type. Lists and strings — and other things that
behave like ordered sets — are called sequences.

List values

There are several ways to create a new list; the simplest is to enclose the elements in square brackets
([and]):

[10, 20, 30, 40]
["spam", "bungee", "swallow"]

The first example is a list of four integers. The second is a list of three strings. The elements of
a list don’t have to be the same type. The following list contains a string, a float, an integer, and
(mirabile dictu) another list:

["hello", 2.0, 5, [10, 20]]

A list within another list is said to be nested.

Finally, there is a special list that contains no elements. It is called the empty list, and is denoted
[].

Like numeric 0 values and the empty string, the empty list is false in a boolean expression:

>>> if []:
... print('This is true.')
... else:
... print('This is false.')
...

116 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

This is false.
>>>

With all these ways to create lists, it would be disappointing if we couldn’t assign list values to
variables or pass lists as parameters to functions. We can:

>>> vocabulary = ["ameliorate", "castigate", "defenestrate"]
>>> numbers = [17, 123]
>>> empty = []
>>> print(vocabulary)
['ameliorate', 'castigate', 'defenestrate']
>>> print(numbers)
[17, 123]
>>> print(empty)
[]

Accessing elements

The syntax for accessing the elements of a list is the same as the syntax for accessing the characters
of a string—the bracket operator ([] – not to be confused with an empty list). The expression
inside the brackets specifies the index. Remember that the indices start at 0:

>>> print(numbers[0])
17

Any integer expression can be used as an index:

>>> numbers[9-8]
123
>>> numbers[1.0]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: list indices must be integers

If you try to read or write an element that does not exist, you get a runtime error:

>>> numbers[2]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: list index out of range

If an index has a negative value, it counts backward from the end of the list:

>>> numbers[-1]
123
>>> numbers[-2]
17
>>> numbers[-3]

1.13. Lists 117

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range

numbers[-1] is the last element of the list, numbers[-2] is the second to last, and
numbers[-3] doesn’t exist.

It is common to use a loop variable as a list index.

horsemen = ["war", "famine", "pestilence", "death"]

i = 0
while i < 4:

print(horsemen[i])
i += 1

This while loop counts from 0 to 4. When the loop variable i is 4, the condition fails and the
loop terminates. So the body of the loop is only executed when i is 0, 1, 2, and 3.

Each time through the loop, the variable i is used as an index into the list, printing the i-eth
element. This pattern of computation is called a list traversal.

List length

The function len returns the length of a list, which is equal to the number of its elements. It is
a good idea to use this value as the upper bound of a loop instead of a constant. That way, if the
size of the list changes, you won’t have to go through the program changing all the loops; they will
work correctly for any size list:

horsemen = ["war", "famine", "pestilence", "death"]

i = 0
num = len(horsemen)
while i < num:

print(horsemen[i])
i += 1

The last time the body of the loop is executed, i is len(horsemen) - 1, which is the index
of the last element. When i is equal to len(horsemen), the condition fails and the body is not
executed, which is a good thing, because len(horsemen) is not a legal index.

Although a list can contain another list, the nested list still counts as a single element. The length
of this list is 4:

['spam!', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

118 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

List membership

in is a boolean operator that tests membership in a sequence. We used it previously with strings,
but it also works with lists and other sequences:

>>> horsemen = ['war', 'famine', 'pestilence', 'death']
>>> 'pestilence' in horsemen
True
>>> 'debauchery' in horsemen
False

Since pestilence is a member of the horsemen list, the in operator returns True. Since de-
bauchery is not in the list, in returns False.

We can use the not in combination with in to test whether an element is not a member of a list:

>>> 'debauchery' not in horsemen
True

List operations

The + operator concatenates lists:

>>> a = [1, 2, 3]
>>> b = [4, 5, 6]
>>> c = a + b
>>> print(c)
[1, 2, 3, 4, 5, 6]

Similarly, the * operator repeats a list a given number of times:

>>> [0] * 4
[0, 0, 0, 0]
>>> [1, 2, 3] * 3
[1, 2, 3, 1, 2, 3, 1, 2, 3]

The first example repeats [0] four times. The second example repeats the list [1, 2, 3] three
times.

List slices

The slice operations we saw with strings also work on lists:

>>> a_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> a_list[1:3]
['b', 'c']
>>> a_list[:4]

1.13. Lists 119

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

['a', 'b', 'c', 'd']
>>> a_list[3:]
['d', 'e', 'f']
>>> a_list[:]
['a', 'b', 'c', 'd', 'e', 'f']

The range function

Lists that contain consecutive integers are common, so Python provides a simple way to create
them:

>>> range(1, 5)
[1, 2, 3, 4]

The range function takes two arguments and returns a list that contains all the integers from the
first to the second, including the first but not the second.

There are two other forms of range. With a single argument, it creates a list that starts at 0:

>>> range(10)
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

If there is a third argument, it specifies the space between successive values, which is called the
step size. This example counts from 1 to 10 by steps of 2:

>>> range(1, 10, 2)
[1, 3, 5, 7, 9]

If the step size is negative, then start must be greater than stop

>>> range(20, 4, -5)
[20, 15, 10, 5]

or the result will be an empty list.

>>> range(10, 20, -5)
[]

Lists are mutable

Unlike strings, lists are mutable, which means we can change their elements. Using the bracket
operator on the left side of an assignment, we can update one of the elements:

>>> fruit = ["banana", "apple", "quince"]
>>> fruit[0] = "pear"
>>> fruit[-1] = "orange"

120 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> print(fruit)
['pear', 'apple', 'orange']

The bracket operator applied to a list can appear anywhere in an expression. When it appears on the
left side of an assignment, it changes one of the elements in the list, so the first element of fruit
has been changed from ’banana’ to ’pear’, and the last from ’quince’ to ’orange’. An
assignment to an element of a list is called item assignment. Item assignment does not work for
strings:

>>> my_string = 'TEST'
>>> my_string[2] = 'X'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment

but it does for lists:

>>> my_list = ['T', 'E', 'S', 'T']
>>> my_list[2] = 'X'
>>> my_list
['T', 'E', 'X', 'T']

With the slice operator we can update several elements at once:

>>> a_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> a_list[1:3] = ['x', 'y']
>>> print(a_list)
['a', 'x', 'y', 'd', 'e', 'f']

We can also remove elements from a list by assigning the empty list to them:

>>> a_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> a_list[1:3] = []
>>> print(a_list)
['a', 'd', 'e', 'f']

And we can add elements to a list by squeezing them into an empty slice at the desired location:

>>> a_list = ['a', 'd', 'f']
>>> a_list[1:1] = ['b', 'c']
>>> print(a_list)
['a', 'b', 'c', 'd', 'f']
>>> a_list[4:4] = ['e']
>>> print(a_list)
['a', 'b', 'c', 'd', 'e', 'f']

1.13. Lists 121

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

List deletion

Using slices to delete list elements can be awkward, and therefore error-prone. Python provides an
alternative that is more readable.

del removes an element from a list:

>>> a = ['one', 'two', 'three']
>>> del a[1]
>>> a
['one', 'three']

As you might expect, del handles negative indices and causes a runtime error if the index is out
of range.

You can use a slice as an index for del:

>>> a_list = ['a', 'b', 'c', 'd', 'e', 'f']
>>> del a_list[1:5]
>>> print(a_list)
['a', 'f']

As usual, slices select all the elements up to, but not including, the second index.

Objects and values

If we execute these assignment statements,

a = "banana"
b = "banana"

we know that a and b will refer to a string with the letters "banana". But we don’t know yet
whether they point to the same string.

There are two possible states:

In one case, a and b refer to two different things that have the same value. In the second case,
they refer to the same thing. These things have names — they are called objects. An object is
something a variable can refer to.

We can test whether two names have the same value using ==:

>>> a == b
True

122 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We can test whether two names refer to the same object using the is operator:

>>> a is b
True

This tells us that both a and b refer to the same object, and that it is the second of the two state
diagrams that describes the relationship.

Since strings are immutable, Python optimizes resources by making two names that refer to the
same string value refer to the same object.

This is not the case with lists:

>>> a = [1, 2, 3]
>>> b = [1, 2, 3]
>>> a == b
True
>>> a is b
False

The state diagram here looks like this:

a and b have the same value but do not refer to the same object.

Aliasing

Since variables refer to objects, if we assign one variable to another, both variables refer to the
same object:

>>> a = [1, 2, 3]
>>> b = a
>>> a is b
True

In this case, the state diagram looks like this:

Because the same list has two different names, a and b, we say that it is aliased. Changes made
with one alias affect the other:

1.13. Lists 123

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> b[0] = 5
>>> print(a)
[5, 2, 3]

Although this behavior can be useful, it is sometimes unexpected or undesirable. In general, it
is safer to avoid aliasing when you are working with mutable objects. Of course, for immutable
objects, there’s no problem. That’s why Python is free to alias strings when it sees an opportunity
to economize.

Cloning lists

If we want to modify a list and also keep a copy of the original, we need to be able to make a
copy of the list itself, not just the reference. This process is sometimes called cloning, to avoid the
ambiguity of the word copy.

The easiest way to clone a list is to use the slice operator:

>>> a = [1, 2, 3]
>>> b = a[:]
>>> print(b)
[1, 2, 3]

Taking any slice of a creates a new list. In this case the slice happens to consist of the whole list.

Now we are free to make changes to b without worrying about a:

>>> b[0] = 5
>>> print(a)
[1, 2, 3]

Lists and for loops

The for loop also works with lists. The generalized syntax of a for loop is:

for VARIABLE in LIST:
BODY

This statement is equivalent to:

i = 0
while i < len(LIST):

VARIABLE = LIST[i]
BODY
i += 1

The for loop is more concise because we can eliminate the loop variable, i. Here is an equivalent
to the while loop from the Accessing elements section written with a for loop.

124 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

for horseman in horsemen:
print(horseman)

It almost reads like English: For (every) horseman in (the list of) horsemen, print (the name of the)
horseman.

Any list expression can be used in a for loop:

for number in range(20):
if number % 3 == 0:

print(number)

for fruit in ["banana", "apple", "quince"]:
print("I like to eat " + fruit + "s!")

The first example prints all the multiples of 3 between 0 and 19. The second example expresses
enthusiasm for various fruits.

Since lists are mutable, it is often desirable to traverse a list, modifying each of its elements. The
following squares all the numbers from 1 to 5:

numbers = [1, 2, 3, 4, 5]

for index in range(len(numbers)):
numbers[index] = numbers[index]**2

Take a moment to think about range(len(numbers)) until you understand how it works. We
are interested here in both the value and its index within the list, so that we can assign a new value
to it.

This pattern is common enough that Python provides a nicer way to implement it:

numbers = [1, 2, 3, 4, 5]

for index, value in enumerate(numbers):
numbers[index] = value**2

enumerate generates both the index and the value associated with it during the list traversal. Try
this next example to see more clearly how enumerate works:

>>> for index, value in enumerate(['banana', 'apple', 'pear', 'quince']):
... print("%d %s" % (index, value))
...
0 banana
1 apple
2 pear
3 quince
>>>

1.13. Lists 125

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

List parameters

Passing a list as an argument actually passes a reference to the list, not a copy of the list. Since
lists are mutable changes made to the parameter change the argument as well. For example, the
function below takes a list as an argument and multiplies each element in the list by 2:

def double_stuff(a_list):
for index, value in enumerate(a_list):

a_list[index] = 2 * value

If we put double_stuff in a file named ch09.py, we can test it out like this:

>>> from ch09 import double_stuff
>>> things = [2, 5, 'Spam', 9.5]
>>> double_stuff(things)
>>> things
[4, 10, 'SpamSpam', 19.0]
>>>

The parameter a_list and the variable things are aliases for the same object. The state dia-
gram looks like this:

Since the list object is shared by two frames, we drew it between them.

If a function modifies a list parameter, the caller sees the change.

Pure functions and modifiers

Functions which take lists as arguments and change them during execution are called modifiers
and the changes they make are called side effects.

A pure function does not produce side effects. It communicates with the calling program only
through parameters, which it does not modify, and a return value. Here is double_stuffwritten
as a pure function:

def double_stuff(a_list):
new_list = []
for value in a_list:

new_list += [2 * value]
return new_list

This version of double_stuff does not change its arguments:

126 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> from ch09 import double_stuff
>>> things = [2, 5, 'Spam', 9.5]
>>> double_stuff(things)
[4, 10, 'SpamSpam', 19.0]
>>> things
[2, 5, 'Spam', 9.5]
>>>

To use the pure function version of double_stuff to modify things, you would assign the
return value back to things:

>>> things = double_stuff(things)
>>> things
[4, 10, 'SpamSpam', 19.0]
>>>

Which is better?

Anything that can be done with modifiers can also be done with pure functions. In fact, some
programming languages only allow pure functions. There is some evidence that programs that
use pure functions are faster to develop and less error-prone than programs that use modifiers.
Nevertheless, modifiers are convenient at times, and in some cases, functional programs are less
efficient.

In general, we recommend that you write pure functions whenever it is reasonable to do so and
resort to modifiers only if there is a compelling advantage. This approach might be called a func-
tional programming style.

Nested lists

A nested list is a list that appears as an element in another list. In this list, the element with index
3 is a nested list:

>>> nested = ["hello", 2.0, 5, [10, 20]]

If we print nested[3], we get [10, 20]. To extract an element from the nested list, we can
proceed in two steps:

>>> elem = nested[3]
>>> elem[0]
10

Or we can combine them:

>>> nested[3][1]
20

1.13. Lists 127

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Bracket operators evaluate from left to right, so this expression gets the three-eth element of
nested and extracts the one-eth element from it.

Matrices

Nested lists are often used to represent matrices. For example, the matrix:

might be represented as:

>>> matrix = [[1, 2, 3], [4, 5, 6], [7, 8, 9]]

matrix is a list with three elements, where each element is a row of the matrix. We can select an
entire row from the matrix in the usual way:

>>> matrix[1]
[4, 5, 6]

Or we can extract a single element from the matrix using the double-index form:

>>> matrix[1][1]
5

The first index selects the row, and the second index selects the column. Although this way of
representing matrices is common, it is not the only possibility. A small variation is to use a list of
columns instead of a list of rows. Later we will see a more radical alternative using a dictionary.

Test-driven development (TDD)

Test-driven development (TDD) is a software development practice which arrives at a desired
feature through a series of small, iterative steps motivated by automated tests which are written
first that express increasing refinements of the desired feature.

Doctest enables us to easily demonstrate TDD. Let’s say we want a function which creates a rows
by columns matrix given arguments for rows and columns.

We first setup a test for this function in a file named matrices.py:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

"""

128 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

if __name__ == '__main__':
import doctest
doctest.testmod()

Running this returns in a failing test:

**
File "matrices.py", line 3, in __main__.make_matrix
Failed example:

make_matrix(3, 5)
Expected:

[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
Got nothing

**
1 items had failures:

1 of 1 in __main__.make_matrix

Test Failed 1 failures.

The test fails because the body of the function contains only a single triple quoted string and no
return statement, so it returns None. Our test indicates that we wanted it to return a matrix with 3
rows of 5 columns of zeros.

The rule in using TDD is to use the simplest thing that works in writing a solution to pass the test,
so in this case we can simply return the desired result:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

"""
return [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

Running this now the test passes, but our current implementation of make_matrix always re-
turns the same result, which is clearly not what we intended. To fix this, we first motivate our
improvement by adding a test:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
>>> make_matrix(4, 2)
[[0, 0], [0, 0], [0, 0], [0, 0]]

"""
return [[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

which as we expect fails:

**
File "matrices.py", line 5, in __main__.make_matrix

1.13. Lists 129

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Failed example:
make_matrix(4, 2)

Expected:
[[0, 0], [0, 0], [0, 0], [0, 0]]

Got:
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]

**
1 items had failures:

1 of 2 in __main__.make_matrix

Test Failed 1 failures.

This technique is called test-driven because code should only be written when there is a failing test
to make pass. Motivated by the failing test, we can now produce a more general solution:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
>>> make_matrix(4, 2)
[[0, 0], [0, 0], [0, 0], [0, 0]]

"""
return [[0] * columns] * rows

This solution appears to work, and we may think we are finished, but when we use the new function
later we discover a bug:

>>> from matrices import *
>>> m = make_matrix(4, 3)
>>> m
[[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]]
>>> m[1][2] = 7
>>> m
[[0, 0, 7], [0, 0, 7], [0, 0, 7], [0, 0, 7]]
>>>

We wanted to assign the element in the second row and the third column the value 7, instead, all
elements in the third column are 7!

Upon reflection, we realize that in our current solution, each row is an alias of the other rows. This
is definitely not what we intended, so we set about fixing the problem, first by writing a failing
test:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
>>> make_matrix(4, 2)
[[0, 0], [0, 0], [0, 0], [0, 0]]
>>> m = make_matrix(4, 2)

130 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> m[1][1] = 7
>>> m
[[0, 0], [0, 7], [0, 0], [0, 0]]

"""
return [[0] * columns] * rows

With a failing test to fix, we are now driven to a better solution:

def make_matrix(rows, columns):
"""
>>> make_matrix(3, 5)
[[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]]
>>> make_matrix(4, 2)
[[0, 0], [0, 0], [0, 0], [0, 0]]
>>> m = make_matrix(4, 2)
>>> m[1][1] = 7
>>> m
[[0, 0], [0, 7], [0, 0], [0, 0]]

"""
matrix = []
for row in range(rows):

matrix += [[0] * columns]
return matrix

Using TDD has several benefits to our software development process. It:

• helps us think concretely about the problem we are trying to solve before we attempt to solve
it.

• encourages breaking down complex problems into smaller, simpler problems and working
our way toward a solution of the larger problem step-by-step.

• assures that we have a well developed automated test suite for our software, facilitating later
additions and improvements.

Strings and lists

Python has a command called list that takes a sequence type as an argument and creates a list
out of its elements.

>>> list("Crunchy Frog")
['C', 'r', 'u', 'n', 'c', 'h', 'y', ' ', 'F', 'r', 'o', 'g']

There is also a str command that takes any Python value as an argument and returns a string
representation of it.

>>> str(5)
'5'

1.13. Lists 131

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> str(None)
'None'
>>> str(list("nope"))
"['n', 'o', 'p', 'e']"

As we can see from the last example, str can’t be used to join a list of characters together. To do
this we could use the join function in the string module:

>>> import string
>>> char_list = list("Frog")
>>> char_list
['F', 'r', 'o', 'g']
>>> string.join(char_list, '')
'Frog'

Two of the most useful functions in the string module involve lists of strings. The split
function breaks a string into a list of words. By default, any number of whitespace characters is
considered a word boundary:

>>> import string
>>> song = "The rain in Spain..."
>>> string.split(song)
['The', 'rain', 'in', 'Spain...']

An optional argument called a delimiter can be used to specify which characters to use as word
boundaries. The following example uses the string ai as the delimiter:

>>> string.split(song, 'ai')
['The r', 'n in Sp', 'n...']

Notice that the delimiter doesn’t appear in the list.

string.join is the inverse of string.split. It takes two arguments: a list of strings and a
separator which will be placed between each element in the list in the resultant string.

>>> import string
>>> words = ['crunchy', 'raw', 'unboned', 'real', 'dead', 'frog']
>>> string.join(words, ' ')
'crunchy raw unboned real dead frog'
>>> string.join(words, '**')
'crunchy**raw**unboned**real**dead**frog'

Glossary

aliases Multiple variables that contain references to the same object.

clone To create a new object that has the same value as an existing object. Copying a reference to
an object creates an alias but doesn’t clone the object.

132 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

delimiter A character or string used to indicate where a string should be split.

element One of the values in a list (or other sequence). The bracket operator selects elements of
a list.

index An integer variable or value that indicates an element of a list.

list A named collection of objects, where each object is identified by an index.

list traversal The sequential accessing of each element in a list.

modifier A function which changes its arguments inside the function body. Only mutable types
can be changed by modifiers.

mutable type A data type in which the elements can be modified. All mutable types are com-
pound types. Lists are mutable data types; strings are not.

nested list A list that is an element of another list.

object A thing to which a variable can refer.

pure function A function which has no side effects. Pure functions only make changes to the
calling program through their return values.

sequence Any of the data types that consist of an ordered set of elements, with each element
identified by an index.

side effect A change in the state of a program made by calling a function that is not a result of
reading the return value from the function. Side effects can only be produced by modifiers.

step size The interval between successive elements of a linear sequence. The third (and optional
argument) to the range function is called the step size. If not specified, it defaults to 1.

test-driven development (TDD) A software development practice which arrives at a desired fea-
ture through a series of small, iterative steps motivated by automated tests which are written
first that express increasing refinements of the desired feature. (see the Wikipedia article on
Test-driven development for more information.)

Exercises

1. Write a loop that traverses:

['spam!', 1, ['Brie', 'Roquefort', 'Pol le Veq'], [1, 2, 3]]

and prints the length of each element. What happens if you send an integer to len? Change
1 to ’one’ and run your solution again.

2. Open a file named ch09e02.py and with the following content:

Add your doctests here:
"""
"""

1.13. Lists 133

http://en.wikipedia.org/wiki/Test_driven_development

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Write your Python code here:

if __name__ == '__main__':
import doctest
doctest.testmod()

Add each of the following sets of doctests to the docstring at the top of the file and write
Python code to make the doctests pass.

"""
>>> a_list[3]
42
>>> a_list[6]
'Ni!'
>>> len(a_list)
8

"""

"""
>>> b_list[1:]
['Stills', 'Nash']
>>> group = b_list + c_list
>>> group[-1]
'Young'

"""

"""
>>> 'war' in mystery_list
False
>>> 'peace' in mystery_list
True
>>> 'justice' in mystery_list
True
>>> 'oppression' in mystery_list
False
>>> 'equality' in mystery_list
True

"""

"""
>>> range(a, b, c)
[5, 9, 13, 17]

"""

Only add one set of doctests at a time. The next set of doctests should not be added until the
previous set pass.

134 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3. What is the Python interpreter’s response to the following?

>>> range(10, 0, -2)

The three arguments to the range function are start, stop, and step, respectively. In this
example, start is greater than stop. What happens if start < stop and step <
0? Write a rule for the relationships among start, stop, and step.

4. Draw a state diagram for a and b before and after the third line of the following python code
is executed:

a = [1, 2, 3]
b = a[:]
b[0] = 5

5. What will be the output of the following program?

this = ['I', 'am', 'not', 'a', 'crook']
that = ['I', 'am', 'not', 'a', 'crook']
print("Test 1: %s" % (this is that))
that = this
print("Test 2: %s" % (this is that))

Provide a detailed explaination of the results.

6. Open a file named ch09e06.py and use the same procedure as in exercise 2 to make the
following doctests pass:

"""
>>> 13 in junk
True
>>> del junk[4]
>>> junk
[3, 7, 9, 10, 17, 21, 24, 27]
>>> del junk[a:b]
>>> junk
[3, 7, 27]

"""

"""
>>> nlist[2][1]
0
>>> nlist[0][2]
17
>>> nlist[1][1]
5

"""

"""
>>> import string

1.13. Lists 135

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> string.split(message, '??')
['this', 'and', 'that']

"""

7. Lists can be used to represent mathematical vectors. In this exercise and several that follow
you will write functions to perform standard operations on vectors. Create a file named
vectors.py and write Python code to make the doctests for each function pass.

Write a function add_vectors(u, v) that takes two lists of numbers of the same length,
and returns a new list containing the sums of the corresponding elements of each.

def add_vectors(u, v):
"""
>>> add_vectors([1, 0], [1, 1])
[2, 1]
>>> add_vectors([1, 2], [1, 4])
[2, 6]
>>> add_vectors([1, 2, 1], [1, 4, 3])
[2, 6, 4]
>>> add_vectors([11, 0, -4, 5], [2, -4, 17, 0])
[13, -4, 13, 5]

"""

add_vectors should pass the doctests above.

8. Write a function scalar_mult(s, v) that takes a number, s, and a list, v and returns
the scalar multiple of v by s.

def scalar_mult(s, v):
"""
>>> scalar_mult(5, [1, 2])
[5, 10]
>>> scalar_mult(3, [1, 0, -1])
[3, 0, -3]
>>> scalar_mult(7, [3, 0, 5, 11, 2])
[21, 0, 35, 77, 14]

"""

9. Write a function dot_product(u, v) that takes two lists of numbers of the same length,
and returns the sum of the products of the corresponding elements of each (the dot_product).

def dot_product(u, v):
"""
>>> dot_product([1, 1], [1, 1])
2
>>> dot_product([1, 2], [1, 4])
9
>>> dot_product([1, 2, 1], [1, 4, 3])
12

136 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Scalar_multiple
http://en.wikipedia.org/wiki/Dot_product

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> dot_product([2, 0, -1, 1], [1, 5, 2, 0])
0

"""

Verify that dot_product passes the doctests above.

10. Extra challenge for the mathematically inclined: Write a function cross_product(u,
v) that takes two lists of numbers of length 3 and returns their cross product. You should
write your own doctests and use the test driven development process described in the chapter.

11. Create a new module named matrices.py and add the following two functions intro-
duced in the section on test-driven development:

def add_row(matrix):
"""
>>> m = [[0, 0], [0, 0]]
>>> add_row(m)
[[0, 0], [0, 0], [0, 0]]
>>> n = [[3, 2, 5], [1, 4, 7]]
>>> add_row(n)
[[3, 2, 5], [1, 4, 7], [0, 0, 0]]
>>> n
[[3, 2, 5], [1, 4, 7]]

"""

def add_column(matrix):
"""
>>> m = [[0, 0], [0, 0]]
>>> add_column(m)
[[0, 0, 0], [0, 0, 0]]
>>> n = [[3, 2], [5, 1], [4, 7]]
>>> add_column(n)
[[3, 2, 0], [5, 1, 0], [4, 7, 0]]
>>> n
[[3, 2], [5, 1], [4, 7]]

"""

Your new functions should pass the doctests. Note that the last doctest in each function
assures that add_row and add_column are pure functions. (hint: Python has a copy
module with a function named deepcopy that could make your task easier here. We will
talk more about deepcopy in chapter 13, but google python copy module if you would like
to try it now.)

12. Write a function add_matrices(m1, m2) that adds m1 and m2 and returns a new matrix
containing their sum. You can assume that m1 and m2 are the same size. You add two
matrices by adding their corresponding values.

def add_matrices(m1, m2):
"""

1.13. Lists 137

http://en.wikipedia.org/wiki/Cross_product

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> a = [[1, 2], [3, 4]]
>>> b = [[2, 2], [2, 2]]
>>> add_matrices(a, b)
[[3, 4], [5, 6]]
>>> c = [[8, 2], [3, 4], [5, 7]]
>>> d = [[3, 2], [9, 2], [10, 12]]
>>> add_matrices(c, d)
[[11, 4], [12, 6], [15, 19]]
>>> c
[[8, 2], [3, 4], [5, 7]]
>>> d
[[3, 2], [9, 2], [10, 12]]

"""

Add your new function to matrices.py and be sure it passes the doctests above. The last
two doctests confirm that add_matrices is a pure function.

13. Write a function scalar_mult(s, m) that multiplies a matrix, m, by a scalar, s.

def scalar_mult(s, m):
"""
>>> a = [[1, 2], [3, 4]]
>>> scalar_mult(3, a)
[[3, 6], [9, 12]]
>>> b = [[3, 5, 7], [1, 1, 1], [0, 2, 0], [2, 2, 3]]
>>> scalar_mult(10, b)
[[30, 50, 70], [10, 10, 10], [0, 20, 0], [20, 20, 30]]
>>> b
[[3, 5, 7], [1, 1, 1], [0, 2, 0], [2, 2, 3]]

"""

Add your new function to matrices.py and be sure it passes the doctests above.

14. Write functions row_times_column and matrix_mult:

def row_times_column(m1, row, m2, column):
"""
>>> row_times_column([[1, 2], [3, 4]], 0, [[5, 6], [7, 8]], 0)
19
>>> row_times_column([[1, 2], [3, 4]], 0, [[5, 6], [7, 8]], 1)
22
>>> row_times_column([[1, 2], [3, 4]], 1, [[5, 6], [7, 8]], 0)
43
>>> row_times_column([[1, 2], [3, 4]], 1, [[5, 6], [7, 8]], 1)
50

"""

def matrix_mult(m1, m2):
"""

138 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> matrix_mult([[1, 2], [3, 4]], [[5, 6], [7, 8]])
[[19, 22], [43, 50]]
>>> matrix_mult([[1, 2, 3], [4, 5, 6]], [[7, 8], [9, 1], [2, 3]])
[[31, 19], [85, 55]]
>>> matrix_mult([[7, 8], [9, 1], [2, 3]], [[1, 2, 3], [4, 5, 6]])
[[39, 54, 69], [13, 23, 33], [14, 19, 24]]

"""

Add your new functions to matrices.py and be sure it passes the doctests above.

15. Create a new module named numberlists.py and add the following functions to the
module:

def only_evens(numbers):
"""
>>> only_evens([1, 3, 4, 6, 7, 8])
[4, 6, 8]
>>> only_evens([2, 4, 6, 8, 10, 11, 0])
[2, 4, 6, 8, 10, 0]
>>> only_evens([1, 3, 5, 7, 9, 11])
[]
>>> only_evens([4, 0, -1, 2, 6, 7, -4])
[4, 0, 2, 6, -4]
>>> nums = [1, 2, 3, 4]
>>> only_evens(nums)
[2, 4]
>>> nums
[1, 2, 3, 4]

"""

def only_odds(numbers):
"""
>>> only_odds([1, 3, 4, 6, 7, 8])
[1, 3, 7]
>>> only_odds([2, 4, 6, 8, 10, 11, 0])
[11]
>>> only_odds([1, 3, 5, 7, 9, 11])
[1, 3, 5, 7, 9, 11]
>>> only_odds([4, 0, -1, 2, 6, 7, -4])
[-1, 7]
>>> nums = [1, 2, 3, 4]
>>> only_odds(nums)
[1, 3]
>>> nums
[1, 2, 3, 4]

"""

Be sure these new functions pass the doctests.

1.13. Lists 139

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

16. Add a function multiples_of(num, numlist) to numberlists.py that takes an
integer (num), and a list of integers (numlist) as arguments and returns a list of those
integers in numlist that are multiples of num. Add your own doctests and use TDD to
develope this function.

17. Given:

import string

song = "The rain in Spain..."

Describe the relationship between string.join(string.split(song)) and song.
Are they the same for all strings? When would they be different?

18. Write a function replace(s, old, new) that replaces all occurences of oldwith new
in a string s.

def replace(s, old, new):
"""
>>> replace('Mississippi', 'i', 'I')
'MIssIssIppI'
>>> s = 'I love spom! Spom is my favorite food. Spom, spom, spom, yum!'
>>> replace(s, 'om', 'am')
'I love spam! Spam is my favorite food. Spam, spam, spam, yum!'
>>> replace(s, 'o', 'a')
'I lave spam! Spam is my favarite faad. Spam, spam, spam, yum!'

"""

Your solution should pass the doctests above. Hint: use string.split and
string.join.

Modules and files

Modules

A module is a file containing Python definitions and statements intended for use in other Python
programs. There are many Python modules that come with Python as part of the standard library.
We have seen two of these already, the doctest module and the string module.

pydoc

You can use pydoc to search through the Python libraries installed on your system. At the com-
mand prompt type the following:

140 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

$ pydoc -g

and the following will appear:

(note: see exercise 2 if you get an error)

Click on the open browser button to launch a web browser window containing the documentation
generated by pydoc:

This is a listing of all the python libraries found by Python on your system. Clicking on a module
name opens a new page with documenation for that module. Clicking keyword, for example,

1.14. Modules and files 141

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

opens the following page:

Documentation for most modules contains three color coded sections:

• Classes in pink

• Functions in orange

• Data in green

Classes will be discussed in later chapters, but for now we can use pydoc to see the functions and
data contained within modules.

The keyword module contains a single function, iskeyword, which as its name suggests is a
boolean function that returns True if a string passed to it is a keyword:

>>> from keyword import *
>>> iskeyword('for')
True
>>> iskeyword('all')
False
>>>

The data item, kwlist contains a list of all the current keywords in Python:

>>> from keyword import *
>>> print(kwlist)
['and', 'as', 'assert', 'break', 'class', 'continue', 'def', 'del', 'elif',
'else', 'except', 'exec', 'finally', 'for', 'from', 'global', 'if', 'import',
'in', 'is', 'lambda', 'not', 'or', 'pass', 'print', 'raise', 'return', 'try',
'while', 'with', 'yield']

142 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>>

We encourage you to use pydoc to explore the extensive libraries that come with Python. There
are so many treasures to discover!

Creating modules

All we need to create a module is a text file with a .py extension on the filename:

seqtools.py
#
def remove_at(pos, seq):

return seq[:pos] + seq[pos+1:]

We can now use our module in both scripts and the Python shell. To do so, we must first import
the module. There are two ways to do this:

>>> from seqtools import remove_at
>>> s = "A string!"
>>> remove_at(4, s)
'A sting!'

and:

>>> import seqtools
>>> s = "A string!"
>>> seqtools.remove_at(4, s)
'A sting!'

In the first example, remove_at is called just like the functions we have seen previously. In the
second example the name of the module and a dot (.) are written before the function name.

Notice that in either case we do not include the .py file extension when importing. Python expects
the file names of Python modules to end in .py, so the file extention is not included in the import
statement.

The use of modules makes it possible to break up very large programs into manageable sized parts,
and to keep related parts together.

Namespaces

A namespace is a syntactic container which permits the same name to be used in different modules
or functions (and as we will see soon, in classes and methods).

Each module determines its own namespace, so we can use the same name in multiple modules
without causing an identification problem.

1.14. Modules and files 143

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

module1.py

question = "What is the meaning of life, the Universe, and everything?"
answer = 42

module2.py

question = "What is your quest?"
answer = "To seek the holy grail."

We can now import both modules and access question and answer in each:

>>> import module1
>>> import module2
>>> print(module1.question)
What is the meaning of life, the Universe, and everything?
>>> print(module2.question)
What is your quest?
>>> print(module1.answer)
42
>>> print(module2.answer)
To seek the holy grail.
>>>

If we had used from module1 import * and from module2 import * instead, we
would have a naming collision and would not be able to access question and answer from
module1.

Functions also have their own namespace:

def f():
n = 7
print("printing n inside of f: %d" % (n))

def g():
n = 42
print("printing n inside of g: %d" % (n))

n = 11
print("printing n before calling f: %d" % (n))
f()
print("printing n after calling f: %d" % (n))
g()
print("printing n after calling g: %d" % (n))

Running this program produces the following output:

144 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

printing n before calling f: 11
printing n inside of f: 7
printing n after calling f: 11
printing n inside of g: 42
printing n after calling g: 11

The three n‘s here do not collide since they are each in a different namespace.

Namespaces permit several programmers to work on the same project without having naming
collisions.

Attributes and the dot operator

Variables defined inside a module are called attributes of the module. They are accessed by using
the dot operator (.). The question attribute of module1 and module2 are accessed using
module1.question and module2.question.

Modules contain functions as well as attributes, and the dot operator is used to access them in
the same way. seqtools.remove_at refers to the remove_at function in the seqtools
module.

In Chapter 7 we introduced the find function from the string module. The string module
contains many other useful functions:

>>> import string
>>> string.capitalize('maryland')
'Maryland'
>>> string.capwords("what's all this, then, amen?")
"What's All This, Then, Amen?"
>>> string.center('How to Center Text Using Python', 70)
' How to Center Text Using Python '
>>> string.upper('angola')
'ANGOLA'
>>>

You should use pydoc to browse the other functions and attributes in the string module.

String and list methods

As the Python language developed, most of functions from the string module have also been
added as methods of string objects. A method acts much like a function, but the syntax for calling
it is a bit different:

>>> 'maryland'.capitalize()
'Maryland'
>>> "what's all this, then, amen?".title()

1.14. Modules and files 145

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

"What'S All This, Then, Amen?"
>>> 'How to Center Text Using Python'.center(70)
' How to Center Text Using Python '
>>> 'angola'.upper()
'ANGOLA'
>>>

String methods are built into string objects, and they are invoked (called) by following the object
with the dot operator and the method name.

We will be learning how to create our own objects with their own methods in later chapters. For
now we will only be using methods that come with Python’s built-in objects.

The dot operator can also be used to access built-in methods of list objects:

>>> mylist = []
>>> mylist.append(5)
>>> mylist.append(27)
>>> mylist.append(3)
>>> mylist.append(12)
>>> mylist
[5, 27, 3, 12]
>>>

append is a list method which adds the argument passed to it to the end of the list. Continuing
with this example, we show several other list methods:

>>> mylist.insert(1, 12)
>>> mylist
[5, 12, 27, 3, 12]
>>> mylist.count(12)
2
>>> mylist.extend([5, 9, 5, 11])
>>> mylist
[5, 12, 27, 3, 12, 5, 9, 5, 11])
>>> mylist.index(9)
6
>>> mylist.count(5)
3
>>> mylist.reverse()
>>> mylist
[11, 5, 9, 5, 12, 3, 27, 12, 5]
>>> mylist.sort()
>>> mylist
[3, 5, 5, 5, 9, 11, 12, 12, 27]
>>> mylist.remove(12)
>>> mylist
[3, 5, 5, 5, 9, 11, 12, 27]
>>>

146 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Experiment with the list methods in this example until you feel confident that you understand how
they work.

Reading and writing text files

While a program is running, its data is stored in random access memory (RAM). RAM is fast and
inexpensive, but it is also volatile, which means that when the program ends, or the computer shuts
down, data in RAM disappears. To make data available the next time you turn on your computer
and start your program, you have to write it to a non-volatile storage medium, such as a hard drive,
usb drive, or CD-RW.

Data on non-volatile storage media is stored in named locations on the media called files. By
reading and writing files, programs can save information between program runs.

Working with files is a lot like working with a notebook. To use a notebook, you have to open it.
When you’re done, you have to close it. While the notebook is open, you can either write in it or
read from it. In either case, you know where you are in the notebook. You can read the whole
notebook in its natural order or you can skip around.

All of this applies to files as well. To open a file, you specify its name and indicate whether you
want to read or write.

Opening a file creates a file object. In this example, the variable myfile refers to the new file
object.

>>> myfile = open('test.dat', 'w')
>>> print(myfile)
<open file 'test.dat', mode 'w' at 0x2aaaaab80cd8>

The open function takes two arguments. The first is the name of the file, and the second is the
mode. Mode ’w’ means that we are opening the file for writing.

If there is no file named test.dat, it will be created. If there already is one, it will be replaced
by the file we are writing.

When we print the file object, we see the name of the file, the mode, and the location of the object.

To put data in the file we invoke the write method on the file object:

>>> myfile.write("Now is the time")
>>> myfile.write("to close the file")

Closing the file tells the system that we are done writing and makes the file available for reading:

>>> myfile.close()

Now we can open the file again, this time for reading, and read the contents into a string. This
time, the mode argument is ’r’ for reading:

1.14. Modules and files 147

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> myfile = open('test.dat', 'r')

If we try to open a file that doesn’t exist, we get an error:

>>> myfile = open('test.cat', 'r')
IOError: [Errno 2] No such file or directory: 'test.cat'

Not surprisingly, the read method reads data from the file. With no arguments, it reads the entire
contents of the file into a single string:

>>> text = myfile.read()
>>> print(text)
Now is the timeto close the file

There is no space between time and to because we did not write a space between the strings.

read can also take an argument that indicates how many characters to read:

>>> myfile = open('test.dat', 'r')
>>> print(myfile.read(5))
Now i

If not enough characters are left in the file, read returns the remaining characters. When we get
to the end of the file, read returns the empty string:

>>> print(myfile.read(1000006))
s the timeto close the file
>>> print(myfile.read())

>>>

The following function copies a file, reading and writing up to fifty characters at a time. The first
argument is the name of the original file; the second is the name of the new file:

def copy_file(oldfile, newfile):
infile = open(oldfile, 'r')
outfile = open(newfile, 'w')
while True:

text = infile.read(50)
if text == "":

break
outfile.write(text)

infile.close()
outfile.close()
return

This functions continues looping, reading 50 characters from infile and writing the same 50
charaters to outfile until the end of infile is reached, at which point text is empty and the
break statement is executed.

148 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Text files

A text file is a file that contains printable characters and whitespace, organized into lines sepa-
rated by newline characters. Since Python is specifically designed to process text files, it provides
methods that make the job easy.

To demonstrate, we’ll create a text file with three lines of text separated by newlines:

>>> outfile = open("test.dat","w")
>>> outfile.write("line one\nline two\nline three\n")
>>> outfile.close()

The readline method reads all the characters up to and including the next newline character:

>>> infile = open("test.dat","r")
>>> print(infile.readline())
line one

>>>

readlines returns all of the remaining lines as a list of strings:

>>> print(infile.readlines())
['line two\012', 'line three\012']

In this case, the output is in list format, which means that the strings appear with quotation marks
and the newline character appears as the escape sequence \\012.

At the end of the file, readline returns the empty string and readlines returns the empty
list:

>>> print(infile.readline())

>>> print(infile.readlines())
[]

The following is an example of a line-processing program. filter makes a copy of oldfile,
omitting any lines that begin with #:

def filter(oldfile, newfile):
infile = open(oldfile, 'r')
outfile = open(newfile, 'w')
while True:

text = infile.readline()
if text == "":

break
if text[0] == '#':

continue
outfile.write(text)

infile.close()

1.14. Modules and files 149

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

outfile.close()
return

The continue statement ends the current iteration of the loop, but continues looping. The flow of
execution moves to the top of the loop, checks the condition, and proceeds accordingly.

Thus, if text is the empty string, the loop exits. If the first character of text is a hash mark, the
flow of execution goes to the top of the loop. Only if both conditions fail do we copy text into
the new file.

Directories

Files on non-volatile storage media are organized by a set of rules known as a file system. File
systems are made up of files and directories, which are containers for both files and other directo-
ries.

When you create a new file by opening it and writing, the new file goes in the current directory
(wherever you were when you ran the program). Similarly, when you open a file for reading,
Python looks for it in the current directory.

If you want to open a file somewhere else, you have to specify the path to the file, which is the
name of the directory (or folder) where the file is located:

>>> wordsfile = open('/usr/share/dict/words', 'r')
>>> wordlist = wordsfile.readlines()
>>> print(wordlist[:6])
['\n', 'A\n', "A's\n", 'AOL\n', "AOL's\n", 'Aachen\n']

This example opens a file named words that resides in a directory named dict, which resides in
share, which resides in usr, which resides in the top-level directory of the system, called /. It
then reads in each line into a list using readlines, and prints out the first 5 elements from that
list.

You cannot use / as part of a filename; it is reserved as a delimiter between directory and file-
names.

The file /usr/share/dict/words should exist on unix based systems, and contains a list of
words in alphabetical order.

Counting Letters

The ord function returns the integer representation of a character:

>>> ord('a')
97
>>> ord('A')

150 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

65
>>>

This example explains why ’Apple’ < ’apple’ evaluates to True.

The chr function is the inverse of ord. It takes an integer as an argument and returns its character
representation:

>>> for i in range(65, 71):
... print(chr(i))
...
A
B
C
D
E
F
>>>

The following program, countletters.py counts the number of times each character occurs
in the book Alice in Wonderland:

#
countletters.py
#

def display(i):
if i == 10: return 'LF'
if i == 13: return 'CR'
if i == 32: return 'SPACE'
return chr(i)

infile = open('alice_in_wonderland.txt', 'r')
text = infile.read()
infile.close()

counts = 128 * [0]

for letter in text:
counts[ord(letter)] += 1

outfile = open('alice_counts.dat', 'w')
outfile.write("%-12s%s\n" % ("Character", "Count"))
outfile.write("=================\n")

for i in range(len(counts)):
if counts[i]:

outfile.write("%-12s%d\n" % (display(i), counts[i]))

1.14. Modules and files 151

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

outfile.close()

Run this program and look at the output file it generates using a text editor. You will be asked to
analyze the program in the exercises below.

The sys module and argv

The sys module contains functions and variables which provide access to the environment in
which the python interpreter runs.

The following example shows the values of a few of these variables on one of our systems:

>>> import sys
>>> sys.platform
'linux2'
>>> sys.path
['', '/home/jelkner/lib/python', '/usr/lib/python25.zip', '/usr/lib/python2.5',
'/usr/lib/python2.5/plat-linux2', '/usr/lib/python2.5/lib-tk',
'/usr/lib/python2.5/lib-dynload', '/usr/local/lib/python2.5/site-packages',
'/usr/lib/python2.5/site-packages', '/usr/lib/python2.5/site-packages/Numeric',
'/usr/lib/python2.5/site-packages/gst-0.10',
'/var/lib/python-support/python2.5', '/usr/lib/python2.5/site-packages/gtk-2.0',
'/var/lib/python-support/python2.5/gtk-2.0']
>>> sys.version
'2.5.1 (r251:54863, Mar 7 2008, 04:10:12) \n[GCC 4.1.3 20070929 (prerelease)
(Ubuntu 4.1.2-16ubuntu2)]'
>>>

Starting Jython on the same machine produces different values for the same variables:

>>> import sys
>>> sys.platform
'java1.6.0_03'
>>> sys.path
['', '/home/jelkner/.', '/usr/share/jython/Lib', '/usr/share/jython/Lib-cpython']
>>> sys.version
'2.1'
>>>

The results will be different on your machine of course.

The argv variable holds a list of strings read in from the command line when a Python script is
run. These command line arguments can be used to pass information into a program at the same
time it is invoked.

#
demo_argv.py

152 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

#
import sys

print(sys.argv)

Running this program from the unix command prompt demonstrates how sys.argv works:

$ python demo_argv.py this and that 1 2 3
['demo_argv.py', 'this', 'and', 'that', '1', '2', '3']
$

argv is a list of strings. Notice that the first element is the name of the program. Arguments are
separated by white space, and separated into a list in the same way that string.split operates.
If you want an argument with white space in it, use quotes:

$ python demo_argv.py "this and" that "1 2" 3
['demo_argv.py', 'this and', 'that', '1 2', '3']
$

With argv we can write useful programs that take their input directly from the command line. For
example, here is a program that finds the sum of a series of numbers:

#
sum.py
#
from sys import argv

nums = argv[1:]

for index, value in enumerate(nums):
nums[index] = float(value)

print(sum(nums))

In this program we use the from <module> import <attribute> style of importing, so
argv is brought into the module’s main namespace.

We can now run the program from the command prompt like this:

$ python sum.py 3 4 5 11
23.0
$ python sum.py 3.5 5 11 100
119.5

You are asked to write similar programs as exercises.

1.14. Modules and files 153

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Glossary

argv argv is short for argument vector and is a variable in the sys module which stores a list of
command line arguments passed to a program at run time.

attribute A variable defined inside a module (or class or instance – as we will see later). Module
attributes are accessed by using the dot operator (.).

command line The sequence of characters read into the command interpreter in a command line
interface (see the Wikipedia article on command line interface for more information).

command line argument A value passed to a program along with the program’s invocation at
the command prompt of a command line interface (CLI).

command prompt A string displayed by a command line interface indicating that commands can
be entered.

continue statement A statement that causes the current iteration of a loop to end. The flow of
execution goes to the top of the loop, evaluates the condition, and proceeds accordingly.

delimiter A sequence of one or more characters used to specify the boundary between separate
parts of text.

directory A named collection of files, also called a folder. Directories can contain files and other
directories, which are refered to as subdirectories of the directory that contains them.

dot operator The dot operator (.) permits access to attributes and functions of a module (or
attributes and methods of a class or instance – as we will see later).

file A named entity, usually stored on a hard drive, floppy disk, or CD-ROM, that contains a
stream of characters.

file system A method for naming, accessing, and organizing files and the data they contain.

import statement A statement which makes the objects contained in a module available for use
within another module. There are two forms for the import statement. Using a hypothetical
module named mymod containing functions f1 and f2, and variables v1 and v2, examples
of these two forms include:

import mymod

and

from mymod import f1, f2, v1, v2

The second form brings the imported objects into the namespace of the importing mod-
ule, while the first form preserves a seperate namespace for the imported module, requiring
mymod.v1 to access the v1 variable.

Jython An implementation of the Python programming language written in Java. (see the Jython
home page at http://www.jython.org for more information.)

154 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Command_line
http://en.wikipedia.org/wiki/Command_line
http://www.jython.org

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

method Function-like attribute of an object. Methods are invoked (called) on an object using the
dot operator. For example:

>>> s = "this is a string."
>>> s.upper()
'THIS IS A STRING.'
>>>

We say that the method, upper is invoked on the string, s. s is implicitly the first argument
to upper.

mode A distinct method of operation within a computer program. Files in Python can be opened
in one of three modes: read (’r’), write (’w’), and append (’a’).

module A file containing Python definitions and statements intended for use in other Python
programs. The contents of a module are made available to the other program by using the
import statement.

namespace A syntactic container providing a context for names so that the same name can re-
side in different namespaces without ambiguity. In Python, modules, classes, functions and
methods all form namespaces.

naming collision A situation in which two or more names in a given namespace cannot be unam-
biguously resolved. Using

import string

instead of

from string import *

prevents naming collisions.

non-volatile memory Memory that can maintain its state without power. Hard drives, flash
drives, and rewritable compact disks (CD-RW) are each examples of non-volatile memory.

path The name and location of a file within a file system. For example:

/usr/share/dict/words

indicates a file named words found in the dict subdirectory of the share subdirectory
of the usr directory.

pydoc A documentation generator that comes with the Python standard library.

standard library A library is a collection of software used as tools in the development of other
software. The standard library of a programming language is the set of such tools that are
distributed with the core programming language. Python comes with an extensive standard
library.

text file A file that contains printable characters organized into lines separated by newline char-
acters.

1.14. Modules and files 155

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

volatile memory Memory which requires an electrical current to maintain state. The main mem-
ory or RAM of a computer is volatile. Information stored in RAM is lost when the computer
is turned off.

Exercises

1. Complete the following:

• Start the pydoc server with the command pydoc -g at the command prompt.

• Click on the open browser button in the pydoc tk window.

• Find the calendar module and click on it.

• While looking at the Functions section, try out the following in a Python shell:

>>> import calendar
>>> year = calendar.calendar(2008)
>>> print(year) # What happens here?

• Experiment with calendar.isleap. What does it expect as an argument? What
does it return as a result? What kind of a function is this?

Make detailed notes about what you learned from this exercise.

2. If you don’t have Tkinter installed on your computer, then pydoc -g will return an
error, since the graphics window that it opens requires Tkinter. An alternative is to start
the web server directly:

$ pydoc -p 7464

This starts the pydoc web server on port 7464. Now point your web browser at:

http://localhost:7464

and you will be able to browse the Python libraries installed on your system. Use this
approach to start pydoc and take a look at the math module.

(a) How many functions are there in the math module?

(b) What does math.ceil do? What about math.floor? (hint: both floor and
ceil expect floating point arguments.)

(c) Describe how we have been computing the same value as math.sqrt without using
the math module.

(d) What are the two data constants in the math module?

Record detailed notes of your investigation in this exercise.

3. Use pydoc to investigate the copy module. What does deepcopy do? In which exercises
from last chapter would deepcopy have come in handy?

156 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

4. Create a module named mymodule1.py. Add attributes myage set to your current age,
and year set to the current year. Create another module named mymodule2.py. Add
attributes myage set to 0, and year set to the year you were born. Now create a file
named namespace_test.py. Import both of the modules above and write the following
statement:

print((mymodule2.myage - mymodule1.myage) == (mymodule2.year - mymodule1.year))

When you will run namespace_test.py you will see either True or False as output
depending on whether or not you’ve already had your birthday this year.

5. Add the following statement to mymodule1.py, mymodule2.py, and
namespace_test.py from the previous exercise:

print("My name is %s" % (__name__))

Run namespace_test.py. What happens? Why? Now add the following to the bottom
of mymodule1.py:

if __name__ == '__main__':
print("This won't run if I'm imported.")

Run mymodule1.py and namespace_test.py again. In which case do you see the
new print statement?

6. In a Python shell try the following:

>>> import this

What does Tim Peters have to say about namespaces?

7. Use pydoc to find and test three other functions from the string module. Record your
findings.

8. Rewrite matrix_mult from the last chapter using what you have learned about list meth-
ods.

9. The dir function, which we first saw in Chapter 7, prints out a list of the attributes of
an object passed to it as an argument. In other words, dir returns the contents of the
namespace of its argument. Use dir(str) and dir(list) to find at least three string
and list methods which have not been introduced in the examples in the chapter. You should
ignore anything that begins with double underscore (__) for the time being. Be sure to make
detailed notes of your findings, including names of the new methods and examples of their
use. (hint: Print the docstring of a function you want to explore. For example, to find out
how str.join works, print(str.join.__doc__))

10. Give the Python interpreter’s response to each of the following from a continuous interpreter
session:

1.14. Modules and files 157

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> s = "If we took the bones out, it wouldn't be crunchy, would it?"
>>> s.split()

>>> type(s.split())

>>> s.split('o')

>>> s.split('i')

>>> '0'.join(s.split('o'))

Be sure you understand why you get each result. Then apply what you have learned to fill in
the body of the function below using the split and join methods of str objects:

def myreplace(old, new, s):
"""
Replace all occurences of old with new in the string s.

>>> myreplace(',', ';', 'this, that, and, some, other, thing')
'this; that; and; some; other; thing'
>>> myreplace(' ', '**', 'Words will now be separated by stars.')
'Words**will**now**be**separated**by**stars.'
"""

Your solution should pass all doctests.

11. Create a module named wordtools.py with the following at the bottom:

if __name__ == '__main__':
import doctest
doctest.testmod()

Explain how this statement makes both using and testing this module convenient. What will
be the value of __name__when wordtools.py is imported from another module? What
will it be when it is run as a main program? In which case will the doctests run? Now add
bodies to each of the following functions to make the doctests pass:

def cleanword(word):
"""
>>> cleanword('what?')
'what'
>>> cleanword('"now!"')
'now'
>>> cleanword('?+="word!,@$()"')
'word'

"""

158 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def has_dashdash(s):
"""
>>> has_dashdash('distance--but')
True
>>> has_dashdash('several')
False
>>> has_dashdash('critters')
False
>>> has_dashdash('spoke--fancy')
True
>>> has_dashdash('yo-yo')
False

"""

def extract_words(s):
"""
>>> extract_words('Now is the time! "Now", is the time? Yes, now.')
['now', 'is', 'the', 'time', 'now', 'is', 'the', 'time', 'yes', 'now']
>>> extract_words('she tried to curtsey as she spoke--fancy')
['she', 'tried', 'to', 'curtsey', 'as', 'she', 'spoke', 'fancy']

"""

def wordcount(word, wordlist):
"""
>>> wordcount('now', ['now', 'is', 'time', 'is', 'now', 'is', 'is'])
['now', 2]
>>> wordcount('is', ['now', 'is', 'time', 'is', 'now', 'is', 'the', 'is'])
['is', 4]
>>> wordcount('time', ['now', 'is', 'time', 'is', 'now', 'is', 'is'])
['time', 1]
>>> wordcount('frog', ['now', 'is', 'time', 'is', 'now', 'is', 'is'])
['frog', 0]

"""

def wordset(wordlist):
"""
>>> wordset(['now', 'is', 'time', 'is', 'now', 'is', 'is'])
['is', 'now', 'time']
>>> wordset(['I', 'a', 'a', 'is', 'a', 'is', 'I', 'am'])
['I', 'a', 'am', 'is']
>>> wordset(['or', 'a', 'am', 'is', 'are', 'be', 'but', 'am'])
['a', 'am', 'are', 'be', 'but', 'is', 'or']

"""

def longestword(wordset):
"""
>>> longestword(['a', 'apple', 'pear', 'grape'])
5

1.14. Modules and files 159

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> longestword(['a', 'am', 'I', 'be'])
2
>>> longestword(['this', 'that', 'supercalifragilisticexpialidocious'])
34

"""

Save this module so you can use the tools it contains in your programs.

12. unsorted_fruits.txt contains a list of 26 fruits, each one with a name that begins with a dif-
ferent letter of the alphabet. Write a program named sort_fruits.py that reads in the
fruits from unsorted_fruits.txt and writes them out in alphabetical order to a file
named sorted_fruits.txt.

13. Answer the following questions about countletters.py:

• Explain in detail what the three lines do:

infile = open('alice_in_wonderland.txt', 'r')
text = infile.read()
infile.close()

What would type(text) return after these lines have been executed?

• What does the expression 128 * [0] evaluate to? Read about ASCII in Wikipedia
and explain why you think the variable, counts is assigned to 128 * [0] in light
of what you read.

• What does

for letter in text:
counts[ord(letter)] += 1

do to counts?

• Explain the purpose of the display function. Why does it check for values 10, 13,
and 32? What is special about those values?

• Describe in detail what the lines

outfile = open('alice_counts.dat', 'w')
outfile.write("%-12s%s\n" % ("Character", "Count"))
outfile.write("=================\n")

do. What will be in alice_counts.dat when they finish executing?

• Finally, explain in detail what

for i in range(len(counts)):
if counts[i]:

outfile.write("%-12s%d\n" % (display(i), counts[i]))

does. What is the purpose of if counts[i]?

160 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/ASCII

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

14. Write a program named mean.py that takes a sequence of numbers on the command line
and returns the mean of their values.

$ python mean.py 3 4
3.5
$ python mean.py 3 4 5
4.0
$ python mean.py 11 15 94.5 22
35.625

A session of your program running on the same input should produce the same output as the
sample session above.

15. Write a program named median.py that takes a sequence of numbers on the command
line and returns the median of their values.

$ python median.py 3 7 11
7
$ python median.py 19 85 121
85
$ python median.py 11 15 16 22
15.5

A session of your program running on the same input should produce the same output as the
sample session above.

16. Modify the countletters.py program so that it takes the file to open as a command
line argument. How will you handle the naming of the output file?

Recursion and exceptions

Tuples and mutability

So far, you have seen two compound types: strings, which are made up of characters; and lists,
which are made up of elements of any type. One of the differences we noted is that the elements of
a list can be modified, but the characters in a string cannot. In other words, strings are immutable
and lists are mutable.

A tuple, like a list, is a sequence of items of any type. Unlike lists, however, tuples are immutable.
Syntactically, a tuple is a comma-separated sequence of values:

>>> tup = 2, 4, 6, 8, 10

Although it is not necessary, it is conventional to enclose tuples in parentheses:

>>> tup = (2, 4, 6, 8, 10)

1.15. Recursion and exceptions 161

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

To create a tuple with a single element, we have to include the final comma:

>>> tup = (5,)
>>> type(tup)
<type 'tuple'>

Without the comma, Python treats (5) as an integer in parentheses:

>>> tup = (5)
>>> type(tup)
<type 'int'>

Syntax issues aside, tuples support the same sequence operations as strings and lists. The index
operator selects an element from a tuple.

>>> tup = ('a', 'b', 'c', 'd', 'e')
>>> tup[0]
'a'

And the slice operator selects a range of elements.

>>> tup[1:3]
('b', 'c')

But if we try to use item assignment to modify one of the elements of the tuple, we get an error:

>>> tup[0] = 'X'
TypeError: 'tuple' object does not support item assignment

Of course, even if we can’t modify the elements of a tuple, we can replace it with a different tuple:

>>> tup = ('X',) + tup[1:]
>>> tup
('X', 'b', 'c', 'd', 'e')

Alternatively, we could first convert it to a list, modify it, and convert it back into a tuple:

>>> tup = ('X', 'b', 'c', 'd', 'e')
>>> tup = list(tup)
>>> tup
['X', 'b', 'c', 'd', 'e']
>>> tup[0] = 'a'
>>> tup = tuple(tup)
>>> tup
('a', 'b', 'c', 'd', 'e')

162 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Tuple assignment

Once in a while, it is useful to swap the values of two variables. With conventional assignment
statements, we have to use a temporary variable. For example, to swap a and b:

temp = a
a = b
b = temp

If we have to do this often, this approach becomes cumbersome. Python provides a form of tuple
assignment that solves this problem neatly:

a, b = b, a

The left side is a tuple of variables; the right side is a tuple of values. Each value is assigned
to its respective variable. All the expressions on the right side are evaluated before any of the
assignments. This feature makes tuple assignment quite versatile.

Naturally, the number of variables on the left and the number of values on the right have to be the
same:

>>> a, b, c, d = 1, 2, 3
ValueError: need more than 3 values to unpack

Tuples as return values

Functions can return tuples as return values. For example, we could write a function that swaps
two parameters:

def swap(x, y):
return y, x

Then we can assign the return value to a tuple with two variables:

a, b = swap(a, b)

In this case, there is no great advantage in making swap a function. In fact, there is a danger in
trying to encapsulate swap, which is the following tempting mistake:

def swap(x, y): # incorrect version
x, y = y, x

If we call this function like this:

swap(a, b)

then a and x are aliases for the same value. Changing x inside swap makes x refer to a different
value, but it has no effect on a in __main__. Similarly, changing y has no effect on b.

1.15. Recursion and exceptions 163

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

This function runs without producing an error message, but it doesn’t do what we intended. This
is an example of a semantic error.

Pure functions and modifiers revisited

In Pure functions and modifiers we discussed pure functions and modifiers as related to lists. Since
tuples are immutable we can not write modifiers on them.

Here is a modifier that inserts a new value into the middle of a list:

#
seqtools.py
#

def insert_in_middle(val, lst):
middle = len(lst)/2
lst[middle:middle] = [val]

We can run it to see that it works:

>>> from seqtools import *
>>> my_list = ['a', 'b', 'd', 'e']
>>> insert_in_middle('c', my_list)
>>> my_list
['a', 'b', 'c', 'd', 'e']

If we try to use it with a tuple, however, we get an error:

>>> my_tuple = ('a', 'b', 'd', 'e')
>>> insert_in_middle('c', my_tuple)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "seqtools.py", line 7, in insert_in_middle

lst[middle:middle] = [val]
TypeError: 'tuple' object does not support item assignment
>>>

The problem is that tuples are immutable, and don’t support slice assignment. A simple solution
to this problem is to make insert_in_middle a pure function:

def insert_in_middle(val, tup):
middle = len(tup)/2
return tup[:middle] + (val,) + tup[middle:]

This version now works for tuples, but not for lists or strings. If we want a version that works for
all sequence types, we need a way to encapsulate our value into the correct sequence type. A small
helper function does the trick:

164 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def encapsulate(val, seq):
if type(seq) == type(""):

return str(val)
if type(seq) == type([]):

return [val]
return (val,)

Now we can write insert_in_middle to work with each of the built-in sequence types:

def insert_in_middle(val, seq):
middle = len(seq)/2
return seq[:middle] + encapsulate(val, seq) + seq[middle:]

The last two versions of insert_in_middle are pure functions. They don’t have any
side effects. Adding encapsulate and the last version of insert_in_middle to the
seqtools.py module, we can test it:

>>> from seqtools import *
>>> my_string = 'abde'
>>> my_list = ['a', 'b', 'd', 'e']
>>> my_tuple = ('a', 'b', 'd', 'e')
>>> insert_in_middle('c', my_string)
'abcde'
>>> insert_in_middle('c', my_list)
['a', 'b', 'c', 'd', 'e']
>>> insert_in_middle('c', my_tuple)
('a', 'b', 'c', 'd', 'e')
>>> my_string
'abde'

The values of my_string, my_list, and my_tuple are not changed. If we want to use
insert_in_middle to change them, we have to assign the value returned by the function call
back to the variable:

>>> my_string = insert_in_middle('c', my_string)
>>> my_string
'abcde'

Recursive data structures

All of the Python data types we have seen can be grouped inside lists and tuples in a variety of
ways. Lists and tuples can also be nested, providing myriad possibilities for organizing data. The
organization of data for the purpose of making it easier to use is called a data structure.

It’s election time and we are helping to compute the votes as they come in. Votes arriving from
individual wards, precincts, municipalities, counties, and states are sometimes reported as a sum

1.15. Recursion and exceptions 165

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

total of votes and sometimes as a list of subtotals of votes. After considering how best to store the
tallies, we decide to use a nested number list, which we define as follows:

A nested number list is a list whose elements are either:

1. numbers

2. nested number lists

Notice that the term, nested number list is used in its own definition. Recursive definitions like
this are quite common in mathematics and computer science. They provide a concise and powerful
way to describe recursive data structures that are partially composed of smaller and simpler
instances of themselves. The definition is not circular, since at some point we will reach a list that
does not have any lists as elements.

Now suppose our job is to write a function that will sum all of the values in a nested number list.
Python has a built-in function which finds the sum of a sequence of numbers:

>>> sum([1, 2, 8])
11
>>> sum((3, 5, 8.5))
16.5
>>>

For our nested number list, however, sum will not work:

>>> sum([1, 2, [11, 13], 8])
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: unsupported operand type(s) for +: 'int' and 'list'
>>>

The problem is that the third element of this list, [11, 13], is itself a list, which can not be
added to 1, 2, and 8.

Recursion

To sum all the numbers in our recursive nested number list we need to traverse the list, visiting each
of the elements within its nested structure, adding any numeric elements to our sum, and repeating
this process with any elements which are lists.

Modern programming languages generally support recursion, which means that functions can call
themselves within their definitions. Thanks to recursion, the Python code needed to sum the values
of a nested number list is surprisingly short:

def recursive_sum(nested_num_list):
sum = 0
for element in nested_num_list:

if type(element) == type([]):

166 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

sum = sum + recursive_sum(element)
else:

sum = sum + element
return sum

The body of recursive_sum consists mainly of a for loop that traverses
nested_num_list. If element is a numerical value (the else branch), it is simply
added to sum. If element is a list, then recursive_sum is called again, with the element
as an argument. The statement inside the function definition in which the function calls itself is
known as the recursive call.

Recursion is truly one of the most beautiful and elegant tools in computer science.

A slightly more complicated problem is finding the largest value in our nested number list:

def recursive_max(nested_num_list):
"""
>>> recursive_max([2, 9, [1, 13], 8, 6])
13
>>> recursive_max([2, [[100, 7], 90], [1, 13], 8, 6])
100
>>> recursive_max([2, [[13, 7], 90], [1, 100], 8, 6])
100
>>> recursive_max([[[13, 7], 90], 2, [1, 100], 8, 6])
100

"""
largest = nested_num_list[0]
while type(largest) == type([]):

largest = largest[0]

for element in nested_num_list:
if type(element) == type([]):

max_of_elem = recursive_max(element)
if largest < max_of_elem:

largest = max_of_elem
else: # element is not a list

if largest < element:
largest = element

return largest

Doctests are included to provide examples of recursive_max at work.

The added twist to this problem is finding a numerical value for initializing largest. We can’t
just use nested_num_list[0], since that my be either a number or a list. To solve this prob-
lem we use a while loop that assigns largest to the first numerical value no matter how deeply
it is nested.

The two examples above each have a base case which does not lead to a recursive call: the case

1.15. Recursion and exceptions 167

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

where the element is a number and not a list. Without a base case, you have infinite recursion, and
your program will not work. Python stops after reaching a maximum recursion depth and returns
a runtime error.

Write the following in a file named infinite_recursion.py:

#
infinite_recursion.py
#
def recursion_depth(number):

print("Recursion depth number %d." % (number))
recursion_depth(number + 1)

recursion_depth(0)

At the unix command prompt in the same directory in which you saved your program, type the
following:

python infinite_recursion.py

After watching the messages flash by, you will be presented with the end of a long traceback that
ends in with the following:

...
File "infinite_recursion.py", line 3, in recursion_depth
recursion_depth(number + 1)

RuntimeError: maximum recursion depth exceeded

We would certainly never want something like this to happen to a user of one of our programs, so
before finishing the recursion discussion, let’s see how errors like this are handled in Python.

Exceptions

Whenever a runtime error occurs, it creates an exception. The program stops running at this point
and Python prints out the traceback, which ends with the exception that occured.

For example, dividing by zero creates an exception:

>>> print(55/0)
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ZeroDivisionError: integer division or modulo by zero
>>>

So does accessing a nonexistent list item:

>>> a = []
>>> print(a[5])
Traceback (most recent call last):

168 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

File "<stdin>", line 1, in <module>
IndexError: list index out of range
>>>

Or trying to make an item assignment on a string:

>>> S = "Swarthnore"
>>> S[6] = 'm'
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
TypeError: 'str' object does not support item assignment
>>>

Or trying to convert something to an integer that can’t be converted:

>>> age = int(raw_input("How old are you? "))
How old are you? pony
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
ValueError: invalid literal for int() with base 10: 'pony'
>>>

In each case, the error message on the last line has two parts: the type of error before the colon,
and specifics about the error after the colon.

Sometimes we want to execute an operation that might cause an exception, but we don’t want the
program to stop. We can handle the exception using the try and except statements.

For the age input above, we want to try to convert the age to an integer, and handle the exception
if we can’t convert it:

age = raw_input("How old are you? ")
try:

age = int(age)
except ValueError:

print("Please enter a number...")

As another example, we might prompt the user for the name of a file and then try to open it. If the
file doesn’t exist, we don’t want the program to crash; we want to handle the exception:

filename = raw_input('Enter a file name: ')
try:

f = open (filename, "r")
except:

print('There is no file named % s' % (filename))

The try statement executes the statements in the first block. If no exceptions occur, it ignores the
except statement. If any exception occurs, it executes the statements in the except branch and
then continues.

1.15. Recursion and exceptions 169

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We can encapsulate this capability in a function: exists takes a filename and returns true if the
file exists, false if it doesn’t:

def exists(filename):
try:

f = open(filename)
f.close()
return True

except:
return False

You can use multiple except blocks to handle different kinds of exceptions (see the Errors and
Exceptions lesson from Python creator Guido van Rossum’s Python Tutorial for a more complete
discussion of exceptions).

If your program detects an error condition, you can make it raise an exception. Here is an example
that gets input from the user and checks that the number is non-negative.

#
learn_exceptions.py
#
def get_age():

age = int(raw_input('Please enter your age: '))
if age < 0:

raise ValueError, '%s is not a valid age' % age
return age

The raise statement takes two arguments: the exception type, and specific information about
the error. ValueError is the built-in exception which most closely matches the kind of error
we want to raise. The complete listing of built-in exceptions is found in the Built-in Exceptions
section of the Python Library Reference, again by Python’s creator, Guido van Rossum.

If the function that called get_age handles the error, then the program can continue; otherwise,
Python prints the traceback and exits:

>>> get_age()
Please enter your age: 42
42
>>> get_age()
Please enter your age: -2
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
File "learn_exceptions.py", line 4, in get_age

raise ValueError, '%s is not a valid age' % age
ValueError: -2 is not a valid age
>>>

The error message includes the exception type and the additional information you provided.

Using exception handling, we can now modify infinite_recursion.py so that it stops

170 Chapter 1. Learning with Python

https://docs.python.org/2.7/tutorial/errors.html
https://docs.python.org/2.7/tutorial/errors.html
https://docs.python.org/2.7/tutorial/index.html
https://docs.python.org/2/library/exceptions.html
https://docs.python.org/2.7/library/

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

when it reaches the maximum recursion depth allowed:

#
infinite_recursion.py
#
def recursion_depth(number):

print("Recursion depth number %d." % (number))
try:

recursion_depth(number + 1)
except:

print("Maximum recursion depth exceeded.")

recursion_depth(0)

Run this version and observe the results.

Tail recursion

When the only thing returned from a function is a recursive call, it is refered to as tail recursion.

Here is a version of the countdown function from chapter 6 written using tail recursion:

def countdown(n):
if n == 0:

print("Blastoff!")
else:

print(n)
countdown(n-1)

Any computation that can be made using iteration can also be made using recursion. Here is a
version of find_max written using tail recursion:

def find_max(seq, max_so_far):
if not seq:

return max_so_far
if max_so_far < seq[0]:

return find_max(seq[1:], seq[0])
else:

return find_max(seq[1:], max_so_far)

Tail recursion is considered a bad practice in Python, since the Python compiler does not handle
optimization for tail recursive calls. The recursive solution in cases like this use more system
resources than the equivalent iterative solution.

1.15. Recursion and exceptions 171

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Recursive mathematical functions

Several well known mathematical functions are defined recursively. Factorial, for example, is given
the special operator, !, and is defined by:

0! = 1
n! = n(n-1)

We can easily code this into Python:

def factorial(n):
if n == 0:

return 1
else:

return n * factorial(n-1)

Another well know recursive relation in mathematics is the fibonacci sequence, which is defined
by:

fibonacci(0) = 1
fibonacci(1) = 1
fibonacci(n) = fibonacci(n-1) + fibonacci(n-2)

This can also be written easily in Python:

def fibonacci (n):
if n == 0 or n == 1:

return 1
else:

return fibonacci(n-1) + fibonacci(n-2)

Calling factorial(1000) will exceed the maximum recursion depth. And try running
fibonacci(35) and see how long it takes to complete (be patient, it will complete).

You will be asked to write an iterative version of factorial as an exercise, and we will see a
better way to handle fibonacci in the next chapter.

List comprehensions

A list comprehension is a syntactic construct that enables lists to be created from other lists using
a compact, mathematical syntax:

>>> numbers = [1, 2, 3, 4]
>>> [x**2 for x in numbers]
[1, 4, 9, 16]
>>> [x**2 for x in numbers if x**2 > 8]
[9, 16]
>>> [(x, x**2, x**3) for x in numbers]

172 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Factorial
http://en.wikipedia.org/wiki/Fibonacci_number

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

[(1, 1, 1), (2, 4, 8), (3, 9, 27), (4, 16, 64)]
>>> files = ['bin', 'Data', 'Desktop', '.bashrc', '.ssh', '.vimrc']
>>> [name for name in files if name[0] != '.']
['bin', 'Data', 'Desktop']
>>> letters = ['a', 'b', 'c']
>>> [n*letter for n in numbers for letter in letters]
['a', 'b', 'c', 'aa', 'bb', 'cc', 'aaa', 'bbb', 'ccc', 'aaaa', 'bbbb', 'cccc']
>>>

The general syntax for a list comprehension expression is:

[expr for item1 in seq1 for item2 in seq2 ... for itemx in seqx if condition]

This list expression has the same effect as:

output_sequence = []
for item1 in seq1:

for item2 in seq2:
...

for itemx in seqx:
if condition:

output_sequence.append(expr)

As you can see, the list comprehension is much more compact.

Mini case study: tree

The following program implements a subset of the behavior of the Unix tree program.

#!/usr/bin/env python

import os
import sys

def getroot():
if len(sys.argv) == 1:

path = ''
else:

path = sys.argv[1]

if os.path.isabs(path):
tree_root = path

else:
tree_root = os.path.join(os.getcwd(), path)

return tree_root

1.15. Recursion and exceptions 173

http://en.wikipedia.org/wiki/Tree_(Unix)

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def getdirlist(path):
dirlist = os.listdir(path)
dirlist = [name for name in dirlist if name[0] != '.']
dirlist.sort()
return dirlist

def traverse(path, prefix='|--', s='.\n', f=0, d=0):
dirlist = getdirlist(path)

for num, file in enumerate(dirlist):
lastprefix = prefix[:-3] + '`--'
dirsize = len(dirlist)

if num < dirsize - 1:
s += '%s %s\n' % (prefix, file)

else:
s += '%s %s\n' % (lastprefix, file)

path2file = os.path.join(path, file)

if os.path.isdir(path2file):
d += 1
if getdirlist(path2file):

s, f, d = traverse(path2file, '| ' + prefix, s, f, d)
else:

f += 1

return s, f, d

if __name__ == '__main__':
root = getroot()
tree_str, files, dirs = traverse(root)

if dirs == 1:
dirstring = 'directory'

else:
dirstring = 'directories'

if files == 1:
filestring = 'file'

else:
filestring = 'files'

print(tree_str)
print('%d %s, %d %s' % (dirs, dirstring, files, filestring))

174 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

You will be asked to explore this program in several of the exercises below.

Glossary

base case A branch of the conditional statement in a recursive function that does not result in a
recursive call.

data structure An organization of data for the purpose of making it easier to use.

exception An error that occurs at runtime.

handle an exception To prevent an exception from terminating a program using the try and
except statements.

immutable data type A data type which cannot be modified. Assignments to elements or slices
of immutable types cause a runtime error.

infinite recursion A function that calls itself recursively without ever reaching the base case.
Eventually, an infinite recursion causes a runtime error.

list comprehension A syntactic construct which enables lists to be generated from other lists
using a syntax analogous to the mathematical set-builder notation.

mutable data type A data type which can be modified. All mutable types are compound types.
Lists and dictionaries (see next chapter) are mutable data types; strings and tuples are not.

raise To signal an exception using the raise statement.

recursion The process of calling the function that is currently executing.

recursive call The statement in a recursive function with is a call to itself.

recursive definition A definition which defines something in terms of itself. To be useful it must
include base cases which are not recursive. In this way it differs from a circular definition.
Recursive definitions often provide an elegant way to express complex data structures.

tail recursion A recursive call that occurs as the last statement (at the tail) of a function definition.
Tail recursion is considered bad practice in Python programs since a logically equivalent
function can be written using iteration which is more efficient (see the Wikipedia article on
tail recursion for more information).

tuple A data type that contains a sequence of elements of any type, like a list, but is immutable.
Tuples can be used wherever an immutable type is required, such as a key in a dictionary
(see next chapter).

tuple assignment An assignment to all of the elements in a tuple using a single assignment state-
ment. Tuple assignment occurs in parallel rather than in sequence, making it useful for
swapping values.

1.15. Recursion and exceptions 175

http://en.wikipedia.org/wiki/Set-builder_notation
http://en.wikipedia.org/wiki/Tail_recursion

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Exercises

1. def swap(x, y): # incorrect version
print("before swap statement: id(x): %s id(y): %s" % (id(x), id(y)))
x, y = y, x
print("after swap statement: id(x): %s id(y): %s" % (id(x), id(y)))

a, b = 0, 1
print("before swap function call: id(a): %s id(b): %s" % (id(a), id(b)))
swap(a, b)
print("after swap function call: id(a): %s id(b): %s" % (id(a), id(b)))

Run this program and describe the results. Use the results to explain why this version of
swap does not work as intended. What will be the values of a and b after the call to swap?

2. Create a module named seqtools.py. Add the functions encapsulate and
insert_in_middle from the chapter. Add doctests which test that these two functions
work as intended with all three sequence types.

3. Add each of the following functions to seqtools.py:

def make_empty(seq):
"""
>>> make_empty([1, 2, 3, 4])
[]
>>> make_empty(('a', 'b', 'c'))
()
>>> make_empty("No, not me!")
''

"""

def insert_at_end(val, seq):
"""

>>> insert_at_end(5, [1, 3, 4, 6])
[1, 3, 4, 6, 5]
>>> insert_at_end('x', 'abc')
'abcx'
>>> insert_at_end(5, (1, 3, 4, 6))
(1, 3, 4, 6, 5)

"""

def insert_in_front(val, seq):
"""

>>> insert_in_front(5, [1, 3, 4, 6])
[5, 1, 3, 4, 6]
>>> insert_in_front(5, (1, 3, 4, 6))
(5, 1, 3, 4, 6)
>>> insert_in_front('x', 'abc')

176 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

'xabc'
"""

def index_of(val, seq, start=0):
"""

>>> index_of(9, [1, 7, 11, 9, 10])
3
>>> index_of(5, (1, 2, 4, 5, 6, 10, 5, 5))
3
>>> index_of(5, (1, 2, 4, 5, 6, 10, 5, 5), 4)
6
>>> index_of('y', 'happy birthday')
4
>>> index_of('banana', ['apple', 'banana', 'cherry', 'date'])
1
>>> index_of(5, [2, 3, 4])
-1
>>> index_of('b', ['apple', 'banana', 'cherry', 'date'])
-1

"""

def remove_at(index, seq):
"""

>>> remove_at(3, [1, 7, 11, 9, 10])
[1, 7, 11, 10]
>>> remove_at(5, (1, 4, 6, 7, 0, 9, 3, 5))
(1, 4, 6, 7, 0, 3, 5)
>>> remove_at(2, "Yomrktown")
'Yorktown'

"""

def remove_val(val, seq):
"""

>>> remove_val(11, [1, 7, 11, 9, 10])
[1, 7, 9, 10]
>>> remove_val(15, (1, 15, 11, 4, 9))
(1, 11, 4, 9)
>>> remove_val('what', ('who', 'what', 'when', 'where', 'why', 'how'))
('who', 'when', 'where', 'why', 'how')

"""

def remove_all(val, seq):
"""

>>> remove_all(11, [1, 7, 11, 9, 11, 10, 2, 11])
[1, 7, 9, 10, 2]
>>> remove_all('i', 'Mississippi')
'Msssspp'

1.15. Recursion and exceptions 177

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

"""

def count(val, seq):
"""
>>> count(5, (1, 5, 3, 7, 5, 8, 5))
3
>>> count('s', 'Mississippi')
4
>>> count((1, 2), [1, 5, (1, 2), 7, (1, 2), 8, 5])
2

"""

def reverse(seq):
"""

>>> reverse([1, 2, 3, 4, 5])
[5, 4, 3, 2, 1]
>>> reverse(('shoe', 'my', 'buckle', 2, 1))
(1, 2, 'buckle', 'my', 'shoe')
>>> reverse('Python')
'nohtyP'

"""

def sort_sequence(seq):
"""

>>> sort_sequence([3, 4, 6, 7, 8, 2])
[2, 3, 4, 6, 7, 8]
>>> sort_sequence((3, 4, 6, 7, 8, 2))
(2, 3, 4, 6, 7, 8)
>>> sort_sequence("nothappy")
'ahnoppty'

"""

if __name__ == "__main__":
import doctest
doctest.testmod()

As usual, work on each of these one at a time until they pass all of the doctests.

4. Write a function, recursive_min, that returns the smallest value in a nested number list:

def recursive_min(nested_num_list):
"""
>>> recursive_min([2, 9, [1, 13], 8, 6])
1
>>> recursive_min([2, [[100, 1], 90], [10, 13], 8, 6])
1
>>> recursive_min([2, [[13, -7], 90], [1, 100], 8, 6])
-7

178 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> recursive_min([[[-13, 7], 90], 2, [1, 100], 8, 6])
-13

"""

Your function should pass the doctests.

5. Write a function recursive_count that returns the number of occurences of target
in nested_number_list:

def recursive_count(target, nested_num_list):
"""
>>> recursive_count(2, [2, 9, [2, 1, 13, 2], 8, [2, 6]])
4
>>> recursive_count(7, [[9, [7, 1, 13, 2], 8], [7, 6]])
2
>>> recursive_count(15, [[9, [7, 1, 13, 2], 8], [2, 6]])
0
>>> recursive_count(5, [[5, [5, [1, 5], 5], 5], [5, 6]])
6

"""

As usual, your function should pass the doctests.

6. Write a function flatten that returns a simple list of numbers containing all the values in
a nested_number_list:

def flatten(nested_num_list):
"""
>>> flatten([2, 9, [2, 1, 13, 2], 8, [2, 6]])
[2, 9, 2, 1, 13, 2, 8, 2, 6]
>>> flatten([[9, [7, 1, 13, 2], 8], [7, 6]])
[9, 7, 1, 13, 2, 8, 7, 6]
>>> flatten([[9, [7, 1, 13, 2], 8], [2, 6]])
[9, 7, 1, 13, 2, 8, 2, 6]
>>> flatten([[5, [5, [1, 5], 5], 5], [5, 6]])
[5, 5, 1, 5, 5, 5, 5, 6]

"""

Run your function to confirm that the doctests pass.

7. Write a function named readposint that prompts the user for a positive integer and then
checks the input to confirm that it meets the requirements. A sample session might look like
this:

>>> num = readposint()
Please enter a positive integer: yes
yes is not a positive integer. Try again.
Please enter a positive integer: 3.14
3.14 is not a positive integer. Try again.
Please enter a positive integer: -6

1.15. Recursion and exceptions 179

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

-6 is not a positive integer. Try again.
Please enter a positive integer: 42
>>> num
42
>>> num2 = readposint("Now enter another one: ")
Now enter another one: 31
>>> num2
31
>>>

Use Python’s exception handling mechanisms in confirming that the user’s input is valid.

8. Give the Python interpreter’s response to each of the following:

(a) >>> nums = [1, 2, 3, 4]
>>> [x**3 for x in nums]

(b) >>> nums = [1, 2, 3, 4]
>>> [x**2 for x in nums if x**2 != 4]

(c) >>> nums = [1, 2, 3, 4]
>>> [(x, y) for x in nums for y in nums]

(d) >>> nums = [1, 2, 3, 4]
>>> [(x, y) for x in nums for y in nums if x != y]

You should anticipate the results before you try them in the interpreter.

9. Use either pydoc or the on-line documentation at http://pydoc.org to find out what
sys.getrecursionlimit() and sys.setrecursionlimit(n) do. Create sev-
eral experiments like what was done in infinite_recursion.py to test your under-
standing of how these module functions work.

10. Rewrite the factorial function using iteration instead of recursion. Call your new func-
tion with 1000 as an argument and make note of how fast it returns a value.

11. Write a program named litter.py that creates an empty file named trash.txt in
each subdirectory of a directory tree given the root of the tree as an argument (or the current
directory as a default). Now write a program named cleanup.py that removes all these
files. Hint: Use the tree program from the mini case study as a basis for these two recursive
programs.

Dictionaries

All of the compound data types we have studied in detail so far — strings, lists, and tuples—are
sequence types, which use integers as indices to access the values they contain within them.

180 Chapter 1. Learning with Python

http://pydoc.org

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Dictionaries are a different kind of compound type. They are Python’s built-in mapping type.
They map keys, which can be any immutable type, to values, which can be any type, just like the
values of a list or tuple.

As an example, we will create a dictionary to translate English words into Spanish. For this dictio-
nary, the keys are strings.

One way to create a dictionary is to start with the empty dictionary and add key-value pairs. The
empty dictionary is denoted {}:

>>> eng2sp = {}
>>> eng2sp['one'] = 'uno'
>>> eng2sp['two'] = 'dos'

The first assignment creates a dictionary named eng2sp; the other assignments add new key-value
pairs to the dictionary. We can print the current value of the dictionary in the usual way:

>>> print(eng2sp)
{'two': 'dos', 'one': 'uno'}

The key-value pairs of the dictionary are seperated by commas. Each pair contains a key and a
value separated by a colon.

The order of the pairs may not be what you expected. Python uses complex algorithms to determine
where the key-value pairs are stored in a dictionary. For our purposes we can think of this ordering
as unpredicatable.

Another way to create a dictionary is to provide a list of key-value pairs using the same syntax as
the previous output:

>>> eng2sp = {'one': 'uno', 'two': 'dos', 'three': 'tres'}

It doesn’t matter what order we write the pairs. The values in a dictionary are accessed with keys,
not with indices, so there is no need to care about ordering.

Here is how we use a key to look up the corresponding value:

>>> print(eng2sp['two'])
'dos'

The key ’two’ yields the value ’dos’.

Dictionary operations

The del statement removes a key-value pair from a dictionary. For example, the following dictio-
nary contains the names of various fruits and the number of each fruit in stock:

>>> inventory = {'apples': 430, 'bananas': 312, 'oranges': 525, 'pears': 217}
>>> print(inventory)
{'oranges': 525, 'apples': 430, 'pears': 217, 'bananas': 312}

1.16. Dictionaries 181

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If someone buys all of the pears, we can remove the entry from the dictionary:

>>> del inventory['pears']
>>> print(inventory)
{'oranges': 525, 'apples': 430, 'bananas': 312}

Or if we’re expecting more pears soon, we might just change the value associated with pears:

>>> inventory['pears'] = 0
>>> print(inventory)
{'oranges': 525, 'apples': 430, 'pears': 0, 'bananas': 312}

The len function also works on dictionaries; it returns the number of key-value pairs:

>>> len(inventory)
4

Dictionary methods

Dictionaries have a number of useful built-in methods.

The keys method takes a dictionary and returns a list of its keys.

>>> eng2sp.keys()
['three', 'two', 'one']

As we saw earlier with strings and lists, dictionary methods use dot notation, which specifies the
name of the method to the right of the dot and the name of the object on which to apply the method
immediately to the left of the dot. The parentheses indicate that this method takes no parameters.

A method call is called an invocation; in this case, we would say that we are invoking the keys
method on the object eng2sp. As we will see in a few chapters when we talk about object oriented
programming, the object on which a method is invoked is actually the first argument to the method.

The values method is similar; it returns a list of the values in the dictionary:

>>> eng2sp.values()
['tres', 'dos', 'uno']

The items method returns both, in the form of a list of tuples — one for each key-value pair:

>>> eng2sp.items()
[('three', 'tres'), ('two', 'dos'), ('one', 'uno')]

The has_key method takes a key as an argument and returns True if the key appears in the
dictionary and False otherwise:

>>> eng2sp.has_key('one')
True

182 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> eng2sp.has_key('deux')
False

This method can be very useful, since looking up a non-existant key in a dictionary causes a
runtime error:

>>> eng2esp['dog']
Traceback (most recent call last):

File "", line 1, in
KeyError: 'dog'
>>>

Aliasing and copying

Because dictionaries are mutable, you need to be aware of aliasing. Whenever two variables refer
to the same object, changes to one affect the other.

If you want to modify a dictionary and keep a copy of the original, use the copy method. For
example, opposites is a dictionary that contains pairs of opposites:

>>> opposites = {'up': 'down', 'right': 'wrong', 'true': 'false'}
>>> alias = opposites
>>> copy = opposites.copy()

alias and opposites refer to the same object; copy refers to a fresh copy of the same dictio-
nary. If we modify alias, opposites is also changed:

>>> alias['right'] = 'left'
>>> opposites['right']
'left'

If we modify copy, opposites is unchanged:

>>> copy['right'] = 'privilege'
>>> opposites['right']
'left'

Sparse matrices

We previously used a list of lists to represent a matrix. That is a good choice for a matrix with
mostly nonzero values, but consider a sparse matrix like this one:

1.16. Dictionaries 183

http://en.wikipedia.org/wiki/Sparse_matrix

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The list representation contains a lot of zeroes:

matrix = [[0, 0, 0, 1, 0],
[0, 0, 0, 0, 0],
[0, 2, 0, 0, 0],
[0, 0, 0, 0, 0],
[0, 0, 0, 3, 0]]

An alternative is to use a dictionary. For the keys, we can use tuples that contain the row and
column numbers. Here is the dictionary representation of the same matrix:

matrix = {(0, 3): 1, (2, 1): 2, (4, 3): 3}

We only need three key-value pairs, one for each nonzero element of the matrix. Each key is a
tuple, and each value is an integer.

To access an element of the matrix, we could use the [] operator:

matrix[(0, 3)]
1

Notice that the syntax for the dictionary representation is not the same as the syntax for the nested
list representation. Instead of two integer indices, we use one index, which is a tuple of integers.

There is one problem. If we specify an element that is zero, we get an error, because there is no
entry in the dictionary with that key:

>>> matrix[(1, 3)]
KeyError: (1, 3)

The get method solves this problem:

>>> matrix.get((0, 3), 0)
1

The first argument is the key; the second argument is the value get should return if the key is not
in the dictionary:

>>> matrix.get((1, 3), 0)
0

get definitely improves the semantics of accessing a sparse matrix. Shame about the syntax.

Hints

If you played around with the fibonacci function from the last chapter, you might have noticed
that the bigger the argument you provide, the longer the function takes to run. Furthermore, the
run time increases very quickly. On one of our machines, fibonacci(20) finishes instantly,
fibonacci(30) takes about a second, and fibonacci(40) takes roughly forever.

184 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

To understand why, consider this call graph for fibonacci with n = 4:

A call graph shows a set function frames, with lines connecting each frame to the frames of the
functions it calls. At the top of the graph, fibonacci with n = 4 calls fibonacci with n =
3 and n = 2. In turn, fibonacci with n = 3 calls fibonacci with n = 2 and n = 1.
And so on.

Count how many times fibonacci(0) and fibonacci(1) are called. This is an inefficient
solution to the problem, and it gets far worse as the argument gets bigger.

A good solution is to keep track of values that have already been computed by storing them in a
dictionary. A previously computed value that is stored for later use is called a hint. Here is an
implementation of fibonacci using hints:

previous = {0: 0, 1: 1}

def fibonacci(n):
if previous.has_key(n):

return previous[n]
else:

new_value = fibonacci(n-1) + fibonacci(n-2)
previous[n] = new_value
return new_value

The dictionary named previous keeps track of the Fibonacci numbers we already know. We
start with only two pairs: 0 maps to 1; and 1 maps to 1.

Whenever fibonacci is called, it checks the dictionary to determine if it contains the result. If
it’s there, the function can return immediately without making any more recursive calls. If not, it
has to compute the new value. The new value is added to the dictionary before the function returns.

Using this version of fibonacci, our machines can compute fibonacci(100) in an eye-
blink.

>>> fibonacci(100)
354224848179261915075L

1.16. Dictionaries 185

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The L at the end of the number indicates that it is a long integer.

Long integers

Python provides a type called long that can handle any size integer (limited only by the amount
of memory you have on your computer).

There are three ways to create a long value. The first one is to compute an arithmetic expression
too large to fit inside an int. We already saw this in the fibonacci(100) example above.
Another way is to write an integer with a capital L at the end of your number:

>>> type(1L)

The third is to call long with the value to be converted as an argument. long, just like int and
float, can convert ints, floats, and even strings of digits to long integers:

>>> long(7)
7L
>>> long(3.9)
3L
>>> long('59')
59L

Counting letters

In Chapter 7, we wrote a function that counted the number of occurrences of a letter in a string. A
more general version of this problem is to form a histogram of the letters in the string, that is, how
many times each letter appears.

Such a histogram might be useful for compressing a text file. Because different letters appear with
different frequencies, we can compress a file by using shorter codes for common letters and longer
codes for letters that appear less frequently.

Dictionaries provide an elegant way to generate a histogram:

>>> letter_counts = {}
>>> for letter in "Mississippi":
... letter_counts[letter] = letter_counts.get (letter, 0) + 1
...
>>> letter_counts
{'M': 1, 's': 4, 'p': 2, 'i': 4}

We start with an empty dictionary. For each letter in the string, we find the current count (possibly
zero) and increment it. At the end, the dictionary contains pairs of letters and their frequencies.

It might be more appealing to display the histogram in alphabetical order. We can do that with the
items and sort methods:

186 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> letter_items = letter_counts.items()
>>> letter_items.sort()
>>> print(letter_items)
[('M', 1), ('i', 4), ('p', 2), ('s', 4)]

Case Study: Robots

The game

In this case study we will write a version of the classic console based game, robots.

Robots is a turn-based game in which the protagonist, you, are trying to stay alive while being
chased by stupid, but relentless robots. Each robot moves one square toward you each time you
move. If they catch you, you are dead, but if they collide they die, leaving a pile of dead robot junk
in their wake. If other robots collide with the piles of junk, they die.

The basic strategy is to position yourself so that the robots collide with each other and with piles
of junk as they move toward you. To make the game playable, you also are given the ability to
teleport to another location on the screen – 3 times safely and randomly thereafter, so that you
don’t just get forced into a corner and loose every time.

Setting up the world, the player, and the main loop

Let’s start with a program that places the player on the screen and has a function to move her
around in response to keys pressed:

#
robots.py
#
from gasp import *

SCREEN_WIDTH = 640
SCREEN_HEIGHT = 480
GRID_WIDTH = SCREEN_WIDTH/10 - 1
GRID_HEIGHT = SCREEN_HEIGHT/10 - 1

def place_player():
x = random.randint(0, GRID_WIDTH)
y = random.randint(0, GRID_HEIGHT)
return {'shape': Circle((10*x+5, 10*y+5), 5, filled=True), 'x': x, 'y': y}

def move_player(player):
update_when('key_pressed')

1.16. Dictionaries 187

http://en.wikipedia.org/wiki/Robots_(computer_game)

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

if key_pressed('escape'):
return True

elif key_pressed('4'):
if player['x'] > 0: player['x'] -= 1

elif key_pressed('7'):
if player['x'] > 0: player['x'] -= 1
if player['y'] < GRID_HEIGHT: player['y'] += 1

elif key_pressed('8'):
if player['y'] < GRID_HEIGHT: player['y'] += 1

elif key_pressed('9'):
if player['x'] < GRID_WIDTH: player['x'] += 1
if player['y'] < GRID_HEIGHT: player['y'] += 1

elif key_pressed('6'):
if player['x'] < GRID_WIDTH: player['x'] += 1

elif key_pressed('3'):
if player['x'] < GRID_WIDTH: player['x'] += 1
if player['y'] > 0: player['y'] -= 1

elif key_pressed('2'):
if player['y'] > 0: player['y'] -= 1

elif key_pressed('1'):
if player['x'] > 0: player['x'] -= 1
if player['y'] > 0: player['y'] -= 1

else:
return False

move_to(player['shape'], (10*player['x']+5, 10*player['y']+5))

return False

def play_game():
begin_graphics(SCREEN_WIDTH, SCREEN_HEIGHT, title="Robots")
player = place_player()
finished = False
while not finished:

finished = move_player(player)
end_graphics()

if __name__ == '__main__':
play_game()

Programs like this one that involve interacting with the user through events such as key presses
and mouse clicks are called event-driven programs.

The main event loop at this stage is simply:

188 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Event_driven_programming

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

while not finished:
finished = move_player(player)

The event handling is done inside the move_player function.
update_when(’key_pressed’) waits until a key has been pressed before moving to
the next statement. The multi-way branching statement then handles the all keys relevent to game
play.

Pressing the escape key causes move_player to return True, making not finished false,
thus exiting the main loop and ending the game. The 4, 7, 8, 9, 6, 3, 2, and 1 keys all cause the
player to move in the appropriate direction, if she isn’t blocked by the edge of a window.

Adding a robot

Now let’s add a single robot that heads toward the player each time the player moves.

Add the following place_robot function between place_player and move_player:

def place_robot():
x = random.randint(0, GRID_WIDTH)
y = random.randint(0, GRID_HEIGHT)
return {'shape': Box((10*x, 10*y), 10, 10), 'x': x, 'y': y}

Add move_robot immediately after move_player:

def move_robot(robot, player):
if robot['x'] < player['x']: robot['x'] += 1
elif robot['x'] > player['x']: robot['x'] -= 1

if robot['y'] < player['y']: robot['y'] += 1
elif robot['y'] > player['y']: robot['y'] -= 1

move_to(robot['shape'], (10*robot['x'], 10*robot['y']))

We need to pass both the robot and the player to this function so that it can compare their locations
and move the robot toward the player.

Now add the line robot = place_robot() in the main body of the program immediately
after the line player = place_player(), and add the move_robot(robot, player)
call inside the main loop immediately after finished = move_player(player).

Checking for Collisions

We now have a robot that moves relentlessly toward our player, but once it catches her it just
follows her around wherever she goes. What we want to happen is for the game to end as soon as
the player is caught. The following function will determine if that has happened:

1.16. Dictionaries 189

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def collided(robot, player):
return player['x'] == robot['x'] and player['y'] == robot['y']

Place this new function immediately below the move_player function. Now let’s modify
play_game to check for collisions:

def play_game():
begin_graphics(SCREEN_WIDTH, SCREEN_HEIGHT)
player = place_player()
robot = place_robot()
defeated = False

while not defeated:
quit = move_player(player)
if quit:

break
move_robot(robot, player)
defeated = collided(robot, player)

if defeated:
remove_from_screen(player['shape'])
remove_from_screen(robot['shape'])
Text("They got you!", (240, 240), size=32)
sleep(3)

end_graphics()

We rename the variable finished to defeated, which is now set to the result of collided.
The main loop runs as long as defeated is false. Pressing the key still ends the program, since
we check for quit and break out of the main loop if it is true. Finally, we check for defeated
immediately after the main loop and display an appropriate message if it is true.

Adding more robots

There are several things we could do next:

• give the player the ability to teleport to another location to escape pursuit.

• provide safe placement of the player so that it never starts on top of a robot.

• add more robots.

Adding the ability to teleport to a random location is the easiest task, and it has been left to you to
complete as an exercise.

How we provide safe placement of the player will depend on how we represent multiple robots, so
it makes sense to tackle adding more robots first.

190 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

To add a second robot, we could just create another variable named something like robot2 with
another call to place_robot. The problem with this approach is that we will soon want lots of
robots, and giving them all their own names will be cumbersome. A more elegant solution is to
place all the robots in a list:

def place_robots(numbots):
robots = []
for i in range(numbots):

robots.append(place_robot())
return robots

Now instead of calling place_robot in play_game, call place_robots, which returns a
single list containing all the robots:

robots = place_robots(2)

With more than one robot placed, we have to handle moving each one of them. We have already
solved the problem of moving a single robot, however, so traversing the list and moving each one
in turn does the trick:

def move_robots(robots, player):
for robot in robots:

move_robot(robot, player)

Add move_robots immediately after move_robot, and change play_game to call
move_robots instead of move_robot.

We now need to check each robot to see if it has collided with the player:

def check_collisions(robots, player):
for robot in robots:

if collided(robot, player):
return True

return False

Add check_collisions immediately after collided and change the line in play_game
that sets defeated to call check_collisions instead of collided.

Finally, we need to loop over robots to remove each one in turn if defeated becomes true.
Adding this has been left as an exercise.

Winning the game

The biggest problem left in our game is that there is no way to win. The robots are both relentless
and indestructible. With careful maneuvering and a bit of luck teleporting, we can reach the point
where it appears there is only one robot chasing the player (all the robots will actually just be on
top of each other). This moving pile of robots will continue chasing our hapless player until it
catches it, either by a bad move on our part or a teleport that lands the player directly on the robots.

1.16. Dictionaries 191

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

When two robots collide they are supposed to die, leaving behind a pile of junk. A robot (or the
player) is also supposed to die when it collides with a pile of junk. The logic for doing this is quite
tricky. After the player and each of the robots have moved, we need to:

1. Check whether the player has collided with a robot or a pile of junk. If so, set defeated
to true and break out of the game loop.

2. Check each robot in the robots list to see if it has collided with a pile of junk. If it has,
disgard the robot (remove it from the robots list).

3. Check each of the remaining robots to see if they have collided with another robot. If they
have, disgard all the robots that have collided and place a pile of junk at the locations they
occupied.

4. Check if any robots remain. If not, end the game and mark the player the winner.

Let’s take on each of these tasks in turn.

Adding junk

Most of this work will take place inside our check_collisions function. Let’s start by modi-
fying collided, changing the names of the parameters to reflect its more general use:

def collided(thing1, thing2):
return thing1['x'] == thing2['x'] and thing1['y'] == thing2['y']

We now introduce a new empty list named junk immediately after the call to place_robots:

junk = []

and modify check_collisions to incorporate the new list:

def check_collisions(robots, junk, player):
check whether player has collided with anything
for thing in robots + junk:

if collided(thing, player):
return True

return False

Be sure to modify the call to check_collisions (currently defeated =
check_collisions(robots, player)) to include junk as a new argument.

Again, we need to fix the logic after if defeated: to remove the new junk from the screen
before displaying the They got you! message:

for thing in robots + junk:
remove_from_screen(thing['shape'])

Since at this point junk is always an empty list, we haven’t changed the behavior of our program.
To test whether our new logic is actually working, we could introduce a single junk pile and run

192 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

our player into it, at which point the game should remove all items from the screen and display the
ending message.

It will be helpful to modify our program temporarily to change the random placement of robots and
player to predetermined locations for testing. We plan to use solid boxes to represent junk piles.
We observe that placing a robot is very similar to placing a junk pile, and modify place_robot
to do both:

def place_robot(x, y, junk=False):
return {'shape': Box((10*x, 10*y), 10, 10, filled=junk), 'x': x, 'y': y}

Notice that x and y are now parameters, along with a new parameter that we will use to set filled
to true for piles of junk.

Our program is now broken, since the call in place_robots to place_robot does not pass
arguments for x and y. Fixing this and setting up the program for testing is left to you as an
exercise.

Removing robots that hit junk

To remove robots that collide with piles of junk, we add a nested loop to check_collisions
between each robot and each pile of junk. Our first attempt at this does not work:

def check_collisions(robots, junk, player):
check whether player has collided with anything
for thing in robots + junk:

if collided(thing, player):
return True

remove robots that have collided with a pile of junk
for robot in robots:

for pile in junk:
if collided(robot, pile):

robots.remove(robot)

return False

Running this new code with the program as setup in exercise 11, we find a bug. It appears that the
robots continue to pass through the pile of junk as before.

Actually, the bug is more subtle. Since we have two robots on top of each other, when the collision
of the first one is detected and that robot is removed, we move the second robot into the first
position in the list and it is missed by the next iteration. It is generally dangerous to modify a list
while you are iterating over it. Doing so can introduce a host of difficult to find errors into your
program.

The solution in this case is to loop over the robots list backwards, so that when we remove a
robot from the list all the robots whose list indeces change as a result are robots we have already

1.16. Dictionaries 193

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

evaluated.

As usual, Python provides an elegant way to do this. The built-in function, reversed provides
for backward iteration over a sequence. Replacing:

for robot in robots:

with:

for robot in reversed(robots):

will make our program work the way we intended.

Turning robots into junk and enabling the player to win

We now want to check each robot to see if it has collided with any other robots. We will remove
all robots that have collided, leaving a single pile of junk in their wake. If we reach a state where
there are no more robots, the player wins.

Once again we have to be careful not to introduce bugs related to removing things from a list over
which we are iterating.

Here is the plan:

1. Check each robot in robots (an outer loop, traversing forward).

2. Compare it with every robot that follows it (an inner loop, traversing backward).

3. If the two robots have collided, add a piece of junk at their location, mark the first robot as
junk, and remove the second one.

4. Once all robots have been checked for collisions, traverse the robots list once again in re-
verse, removing all robots marked as junk.

5. Check to see if any robots remain. If not, declare the player the winner.

Adding the following to check_collisions will accomplish most of what we need to do:

remove robots that collide and leave a pile of junk
for index, robot1 in enumerate(robots):

for robot2 in reversed(robots[index+1:]):
if collided(robot1, robot2):

robot1['junk'] = True
junk.append(place_robot(robot1['x'], robot1['y'], True))
remove_from_screen(robot2['shape'])
robots.remove(robot2)

for robot in reversed(robots):
if robot['junk']:

remove_from_screen(robot['shape'])
robots.remove(robot)

194 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

We make use of the enumerate function we saw in Chapter 9 to get both the index and value of
each robot as we traverse forward. Then a reverse traversal of the slice of the remaining robots,
reversed(robots[index+1:]), sets up the collision check.

Whenever two robots collide, our plan calls for adding a piece of junk at that location, marking the
first robot for later removal (we still need it to compare with the other robots), and immediately
removing the second one. The body of the if collided(robot1, robot2): conditional
is designed to do just that, but if you look carefully at the line:

robot1['junk'] = True

you should notice a problem. robot1[’junk’] will result in a systax error, since our robot dic-
tionary does not yet contain a ’junk’ key. To fix this we modify place_robot to accomodate
the new key:

def place_robot(x, y, junk=False):
return {'shape': Box((10*x, 10*y), 10, 10, filled=junk),

'x': x, 'y': y, 'junk': junk}

It is not at all unusual for data structures to change as program development proceeds. Stepwise
refinement of both program data and logic is a normal part of the structured programming
process.

After robot1 is marked as junk, we add a pile of junk to the junk list at the same location with
junk.append(place_robot(robot1[’x’], robot1[’y’], True)), and then re-
move robot2 from the game by first removing its shape from the graphics window and then
removing it from the robots list.

The next loop traverses backward over the robots list removing all the robots previously marked
as junk. Since the player wins when all the robots die, and the robot list will be empty when it no
longer contains live robots, we can simply check whether robots is empty to determine whether
or not the player has won.

This can be done in check_collisions immediately after we finish checking robot collisions
and removing dead robots by adding:

if not robots:
return ...

Hmmm... What should we return? In its current state, check_collisions is a boolean func-
tion that returns true when the player has collided with something and lost the game, and false when
the player has not lost and the game should continue. That is why the variable in the play_game
function that catches the return value is called defeated.

Now we have three possible states:

1. robots is not empty and the player has not collided with anything – the game is still in
play

2. the player has collided with something – the robots win

1.16. Dictionaries 195

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3. the player has not collided with anything and robots is empty – the player wins

In order to handle this with as few changes as possible to our present program, we will take ad-
vantage of the way that Python permits sequence types to live double lives as boolean values.
We will return an empty string – which is false – when game play should continue, and either
"robots_win" or "player_wins" to handle the other two cases. check_collisions
should now look like this:

def check_collisions(robots, junk, player):
check whether player has collided with anything
for thing in robots + junk:

if collided(thing, player):
return "robots_win"

remove robots that have collided with a pile of junk
for robot in reversed(robots):

for pile in junk:
if collided(robot, pile):

robots.remove(robot)

remove robots that collide and leave a pile of junk
for index, robot1 in enumerate(robots):

for robot2 in reversed(robots[index+1:]):
if collided(robot1, robot2):

robot1['junk'] = True
junk.append(place_robot(robot1['x'], robot1['y'], True))
remove_from_screen(robot2['shape'])
robots.remove(robot2)

for robot in reversed(robots):
if robot['junk']:

remove_from_screen(robot['shape'])
robots.remove(robot)

if not robots:
return "player_wins"

return ""

A few corresponding changes need to be made to play_game to use the new return values. These
are left as an exercise.

Glossary

dictionary A collection of key-value pairs that maps from keys to values. The keys can be any
immutable type, and the values can be any type.

196 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

mapping type A mapping type is a data type comprised of a collection of keys and associated
values. Python’s only built-in mapping type is the dictionary. Dictionaries implement the
associative array abstract data type.

key A data item that is mapped to a value in a dictionary. Keys are used to look up values in a
dictionary.

key-value pair One of the pairs of items in a dictionary. Values are looked up in a dictionary by
key.

hint Temporary storage of a precomputed value to avoid redundant computation.

event A signal such as a keyboard press, mouse click, or message from another program.

event-driven program <fill in definition here>

event loop A programming construct that waits for events and processes them.

overflow A numerical result that is too large to be represented in a numerical format.

Exercises

1. Write a program that reads in a string on the command line and returns a table of the letters
of the alphabet in alphabetical order which occur in the string together with the number of
times each letter occurs. Case should be ignored. A sample run of the program would look
this this:

$ python letter_counts.py "ThiS is String with Upper and lower case Letters."
a 2
c 1
d 1
e 5
g 1
h 2
i 4
l 2
n 2
o 1
p 2
r 4
s 5
t 5
u 1
w 2
$

2. Give the Python interpreter’s response to each of the following from a continuous interpreter
session:

1.16. Dictionaries 197

http://en.wikipedia.org/wiki/Associative_array

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

(a) >>> d = {'apples': 15, 'bananas': 35, 'grapes': 12}
>>> d['banana']

(b) >>> d['oranges'] = 20
>>> len(d)

(c) >>> d.has_key('grapes')

(d) >>> d['pears']

(e) >>> d.get('pears', 0)

(f) >>> fruits = d.keys()
>>> fruits.sort()
>>> print(fruits)

(g) >>> del d['apples']
>>> d.has_key('apples')

Be sure you understand why you get each result. Then apply what you have learned to fill in
the body of the function below:

def add_fruit(inventory, fruit, quantity=0):
"""
Adds quantity of fruit to inventory.

>>> new_inventory = {}
>>> add_fruit(new_inventory, 'strawberries', 10)
>>> new_inventory.has_key('strawberries')
True
>>> new_inventory['strawberries']
10
>>> add_fruit(new_inventory, 'strawberries', 25)
>>> new_inventory['strawberries']

"""

Your solution should pass the doctests.

3. Write a program called alice_words.py that creates a text file named
alice_words.txt containing an alphabetical listing of all the words found in al-
ice_in_wonderland.txt together with the number of times each word occurs. The first 10
lines of your output file should look something like this:

Word Count
=======================
a 631
a-piece 1
abide 1

198 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

able 1
about 94
above 3
absence 1
absurd 2

How many times does the word, alice, occur in the book?

4. What is the longest word in Alice in Wonderland ? How many charactes does it have?

5. Copy the code from the Setting up the world, the player, and the main loop section into a file
named robots.py and run it. You should be able to move the player around the screen
using the numeric keypad and to quit the program by pressing the escape key.

6. Laptops usually have smaller keyboards than desktop computers that do not include a seper-
ate numeric keypad. Modify the robots program so that it uses ‘a’, ‘q’, ‘w’, ‘e’, ‘d’, ‘c’, ‘x’,
and ‘z’ instead of ‘4’, ‘7’, ‘8’, ‘9’, ‘6’, ‘3’, ‘2’, and ‘1’ so that it will work on a typical laptop
keyboard.

7. Add all the code from the Adding a robot section in the places indicated. Make sure the
program works and that you now have a robot following around your player.

8. Add all the code from the Checking for Collisions section in the places indicated. Verify
that the program ends when the robot catches the player after displaying a They got you!
message for 3 seconds.

9. Modify the move_player function to add the ability for the player to jump to a ran-
dom location whenever the 0 key is pressed. (hint: place_player already has the logic
needed to place the player in a random location. Just add another conditional branch to
move_player that uses this logic when key_pressed(’0’) is true.) Test the program
to verify that your player can now teleport to a random place on the screen to get out of
trouble.

10. Make all the changes to your program indicated in Adding more robots. Be sure to loop over
the robots list, removing each robot in turn, after defeated becomes true. Test your
program to verify that there are now two robots chasing your player. Let a robot catch you to
test whether you have correctly handled removing all the robots. Change the argument from
2 to 4 in robots = place_robots(2) and confirm that you have 4 robots.

11. Make the changes to your program indicated in Adding ‘‘junk‘‘. Fix place_robots by
moving the random generation of values for x and y to the appropriate location and passing
these values as arguments in the call to place_robot. Now we are ready to make tempo-
rary modifications to our program to remove the randomness so we can control it for testing.
We can start by placing a pile of junk in the center of our game board. Change:

junk = []

to:

1.16. Dictionaries 199

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

junk = [place_robot(GRID_WIDTH/2, GRID_HEIGHT/2, junk=True)]

Run the program and confirm that there is a black box in the center of the board.Now change
place_player so that it looks like this:

def place_player():
x = random.randint(0, GRID_WIDTH)
y = random.randint(0, GRID_HEIGHT)
x, y = GRID_WIDTH/2 + 3, GRID_HEIGHT/2
return {'shape': Circle((10*x+5, 10*y+5), 5, filled=True), 'x': x, 'y': y}

Finally, temporarily comment out the random generation of x and y values in
place_robots and the creation of numbots robots. Replace this logic with code to
create two robots in fixed locations:

def place_robots(numbots):
robots = []
for i in range(numbots):
x = random.randint(0, GRID_WIDTH)
y = random.randint(0, GRID_HEIGHT)
robots.append(place_robot(x, y))
robots.append(place_robot(GRID_WIDTH/2 - 4, GRID_HEIGHT/2 + 2))
robots.append(place_robot(GRID_WIDTH/2 - 4, GRID_HEIGHT/2 - 2))
return robots

When you start your program now, it should look like this:

When you run this program and either stay still (by pressing the 5 repeatedly) or move away
from the pile of junk, you can confirm that the robots move through it unharmed. When you
move into the junk pile, on the other hand, you die.

12. Make the following modifications to play_game to integrate with the changes made in
Turning robots into junk and enabling the player to win:

(a) Rename defeated to winner and initialize it to the empty string instead of False.

200 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Classes and objects

Object-oriented programming

Python is an object-oriented programming language, which means that it provides features that
support object-oriented programming (OOP).

Object-oriented programming has its roots in the 1960s, but it wasn’t until the mid 1980s that it
became the main programming paradigm used in the creation of new software. It was developed
as a way to handle the rapidly increasing size and complexity of software systems, and to make it
easier to modify these large and complex systems over time.

Up to now we have been writing programs using a procedural programming paradigm. In pro-
cedural programming the focus is on writing functions or procedures which operate on data. In
object-oriented programming the focus is on the creation of objects which contain both data and
functionality together.

User-defined compound types

A class in essence defines a new data type. We have been using several of Python’s built-in types
throughout this book, we are now ready to create our own user-defined type: the Point.

Consider the concept of a mathematical point. In two dimensions, a point is two numbers (coor-
dinates) that are treated collectively as a single object. In mathematical notation, points are often
written in parentheses with a comma separating the coordinates. For example, (0, 0) represents
the origin, and (x, y) represents the point x units to the right and y units up from the origin.

A natural way to represent a point in Python is with two numeric values. The question, then, is
how to group these two values into a compound object. The quick and dirty solution is to use a list
or tuple, and for some applications that might be the best choice.

An alternative is to define a new user-defined compound type, also called a class. This approach
involves a bit more effort, but it has advantages that will be apparent soon.

A class definition looks like this:

class Point:
pass

Class definitions can appear anywhere in a program, but they are usually near the beginning (after
the import statements). The syntax rules for a class definition are the same as for other compound
statements. There is a header which begins with the keyword, class, followed by the name of
the class, and ending with a colon.

This definition creates a new class called Point. The pass statement has no effect; it is only
necessary because a compound statement must have something in its body. A docstring could
serve the same purpose:

1.17. Classes and objects 201

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Programming_paradigm
http://en.wikipedia.org/wiki/Procedural_programming

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class Point:
"Point class for storing mathematical points."

By creating the Point class, we created a new type, also called Point. The members of this
type are called instances of the type or objects. Creating a new instance is called instantiation,
and is accomplished by calling the class. Classes, like functions, are callable, and we instantiate a
Point object by calling the Point class:

>>> type(Point)
<type 'classobj'>
>>> p = Point()
>>> type(p)
<type 'instance'>

The variable p is assigned a reference to a new Point object.

It may be helpful to think of a class as a factory for making objects, so our Point class is a factory
for making points. The class itself isn’t an instance of a point, but it contains the machinary to make
point instances.

Attributes

Like real world objects, object instances have both form and function. The form consists of data
elements contained within the instance.

We can add new data elements to an instance using dot notation:

>>> p.x = 3
>>> p.y = 4

This syntax is similar to the syntax for selecting a variable from a module, such as math.pi or
string.uppercase. Both modules and instances create their own namespaces, and the syntax
for accessing names contained in each, called attributes, is the same. In this case the attribute we
are selecting is a data item from an instance.

The following state diagram shows the result of these assignments:

The variable p refers to a Point object, which contains two attributes. Each attribute refers to a
number.

We can read the value of an attribute using the same syntax:

>>> print(p.y)
4

202 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> x = p.x
>>> print(x)
3

The expression p.x means, “Go to the object p refers to and get the value of x”. In this case, we
assign that value to a variable named x. There is no conflict between the variable x and the attribute
x. The purpose of dot notation is to identify which variable you are referring to unambiguously.

You can use dot notation as part of any expression, so the following statements are legal:

print('(%d, %d)' % (p.x, p.y))
distance_squared = p.x * p.x + p.y * p.y

The first line outputs (3, 4); the second line calculates the value 25.

The initialization method and self

Since our Point class is intended to represent two dimensional mathematical points, all point
instances ought to have x and y attributes, but that is not yet so with our Point objects.

>>> p2 = Point()
>>> p2.x
Traceback (most recent call last):

File "<stdin>", line 1, in ?
AttributeError: Point instance has no attribute 'x'
>>>

To solve this problem we add an initialization method to our class.

class Point:
def __init__(self, x=0, y=0):

self.x = x
self.y = y

A method behaves like a function but it is part of an object. Like a data attribute it is accessed
using dot notation. The initialization method is called automatically when the class is called.

Let’s add another method, distance_from_origin, to see better how methods work:

class Point:
def __init__(self, x=0, y=0):

self.x = x
self.y = y

def distance_from_origin(self):
return ((self.x ** 2) + (self.y ** 2)) ** 0.5

Let’s create a few point instances, look at their attributes, and call our new method on them:

1.17. Classes and objects 203

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> p = Point(3, 4)
>>> p.x
3
>>> p.y
4
>>> p.distance_from_origin()
5.0
>>> q = Point(5, 12)
>>> q.x
5
>>> q.y
12
>>> q.distance_from_origin()
13.0
>>> r = Point()
>>> r.x
0
>>> r.y
0
>>> r.distance_from_origin()
0.0

When defining a method, the first parameter refers to the instance being created. It is customary to
name this parameter self. In the example session above, the self parameter refers to the instances
p, q, and r respectively.

Instances as parameters

You can pass an instance as a parameter to a function in the usual way. For example:

def print_point(p):
print('(%s, %s)' % (str(p.x), str(p.y)))

print_point takes a point as an argument and displays it in the standard format. If you call
print_point(p) with point p as defined previously, the output is (3, 4).

Glossary

class A user-defined compound type. A class can also be thought of as a template for the objects
that are instances of it.

instantiate To create an instance of a class.

instance An object that belongs to a class.

object A compound data type that is often used to model a thing or concept in the real world.

204 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

attribute One of the named data items that makes up an instance.

Exercises

1. Create and print a Point object, and then use id to print the object’s unique identifier.
Translate the hexadecimal form into decimal and confirm that they match.

2. Rewrite the distance function from chapter 5 so that it takes two Points as parameters
instead of four numbers.

Classes and functions

Time

As another example of a user-defined type, we’ll define a class called Time that records the time
of day. The class definition looks like this:

class Time(object):
pass

We can create a new Time object and assign attributes for hours, minutes, and seconds:

time = Time()
time.hours = 11
time.minutes = 59
time.seconds = 30

The state diagram for the Time object looks like this:

Pure functions

In the next few sections, we’ll write two versions of a function called add_time, which calcu-
lates the sum of two Times. They will demonstrate two kinds of functions: pure functions and
modifiers.

The following is a rough version of add_time:

1.18. Classes and functions 205

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def add_time(t1, t2):
sum = Time()
sum.hours = t1.hours + t2.hours
sum.minutes = t1.minutes + t2.minutes
sum.seconds = t1.seconds + t2.seconds
return sum

The function creates a new Time object, initializes its attributes, and returns a reference to the new
object. This is called a pure function because it does not modify any of the objects passed to it as
parameters and it has no side effects, such as displaying a value or getting user input.

Here is an example of how to use this function. We’ll create two Time objects: current_time,
which contains the current time; and bread_time, which contains the amount of time it takes
for a breadmaker to make bread. Then we’ll use add_time to figure out when the bread will be
done. If you haven’t finished writing print_time yet, take a look ahead to Section before you
try this:

>>> current_time = Time()
>>> current_time.hours = 9
>>> current_time.minutes = 14
>>> current_time.seconds = 30
>>> bread_time = Time()
>>> bread_time.hours = 3
>>> bread_time.minutes = 35
>>> bread_time.seconds = 0
>>> done_time = add_time(current_time, bread_time)
>>> print_time(done_time)
12:49:30

The output of this program is 12:49:30, which is correct. On the other hand, there are cases
where the result is not correct. Can you think of one?

The problem is that this function does not deal with cases where the number of seconds or minutes
adds up to more than sixty. When that happens, we have to carry the extra seconds into the minutes
column or the extra minutes into the hours column.

Here’s a second corrected version of the function:

def add_time(t1, t2):
sum = Time()
sum.hours = t1.hours + t2.hours
sum.minutes = t1.minutes + t2.minutes
sum.seconds = t1.seconds + t2.seconds

if sum.seconds >= 60:
sum.seconds = sum.seconds - 60
sum.minutes = sum.minutes + 1

if sum.minutes >= 60:

206 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

sum.minutes = sum.minutes - 60
sum.hours = sum.hours + 1

return sum

Although this function is correct, it is starting to get big. Later we will suggest an alternative
approach that yields shorter code.

Modifiers

There are times when it is useful for a function to modify one or more of the objects it gets as
parameters. Usually, the caller keeps a reference to the objects it passes, so any changes the
function makes are visible to the caller. Functions that work this way are called modifiers.

increment, which adds a given number of seconds to a Time object, would be written most
naturally as a modifier. A rough draft of the function looks like this:

def increment(time, seconds):
time.seconds = time.seconds + seconds

if time.seconds >= 60:
time.seconds = time.seconds - 60
time.minutes = time.minutes + 1

if time.minutes >= 60:
time.minutes = time.minutes - 60
time.hours = time.hours + 1

The first line performs the basic operation; the remainder deals with the special cases we saw
before.

Is this function correct? What happens if the parameter seconds is much greater than sixty? In
that case, it is not enough to carry once; we have to keep doing it until seconds is less than sixty.
One solution is to replace the if statements with while statements:

def increment(time, seconds):
time.seconds = time.seconds + seconds

while time.seconds >= 60:
time.seconds = time.seconds - 60
time.minutes = time.minutes + 1

while time.minutes >= 60:
time.minutes = time.minutes - 60
time.hours = time.hours + 1

This function is now correct, but it is not the most efficient solution.

1.18. Classes and functions 207

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Prototype development versus planning

In this chapter, we demonstrated an approach to program development that we call prototype de-
velopment. In each case, we wrote a rough draft (or prototype) that performed the basic calculation
and then tested it on a few cases, correcting flaws as we found them.

Although this approach can be effective, it can lead to code that is unnecessarily complicated –
since it deals with many special cases – and unreliable – since it is hard to know if you have found
all the errors.

An alternative is planned development, in which high-level insight into the problem can make
the programming much easier. In this case, the insight is that a Time object is really a three-digit
number in base 60! The second component is the ones column, the minute component is the
sixties column, and the hour component is the thirty-six hundreds column.

When we wrote add_time and increment, we were effectively doing addition in base 60,
which is why we had to carry from one column to the next.

This observation suggests another approach to the whole problem – we can convert a Time object
into a single number and take advantage of the fact that the computer knows how to do arithmetic
with numbers. The following function converts a Time object into an integer:

def convert_to_seconds(t):
minutes = t.hours * 60 + t.minutes
seconds = minutes * 60 + t.seconds
return seconds

Now, all we need is a way to convert from an integer to a Time object:

def make_time(seconds):
time = Time()
time.hours = seconds/3600
seconds = seconds - time.hours * 3600
time.minutes = seconds/60
seconds = seconds - time.minutes * 60
time.seconds = seconds
return time

You might have to think a bit to convince yourself that this technique to convert from one base to an-
other is correct. Assuming you are convinced, you can use these functions to rewrite add_time:

def add_time(t1, t2):
seconds = convert_to_seconds(t1) + convert_to_seconds(t2)
return make_time(seconds)

This version is much shorter than the original, and it is much easier to demonstrate that it is correct
(assuming, as usual, that the functions it calls are correct).

208 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Generalization

In some ways, converting from base 60 to base 10 and back is harder than just dealing with times.
Base conversion is more abstract; our intuition for dealing with times is better.

But if we have the insight to treat times as base 60 numbers and make the investment of writing
the conversion functions (convert_to_seconds and make_time), we get a program that is
shorter, easier to read and debug, and more reliable.

It is also easier to add features later. For example, imagine subtracting two Times to find the
duration between them. The naive approach would be to implement subtraction with borrowing.
Using the conversion functions would be easier and more likely to be correct.

Ironically, sometimes making a problem harder (or more general) makes it easier (because there
are fewer special cases and fewer opportunities for error).

Algorithms

When you write a general solution for a class of problems, as opposed to a specific solution to a
single problem, you have written an algorithm. We mentioned this word before but did not define
it carefully. It is not easy to define, so we will try a couple of approaches.

First, consider something that is not an algorithm. When you learned to multiply single-digit
numbers, you probably memorized the multiplication table. In effect, you memorized 100 specific
solutions. That kind of knowledge is not algorithmic.

But if you were lazy, you probably cheated by learning a few tricks. For example, to find the
product of n and 9, you can write n-1 as the first digit and 10-n as the second digit. This trick is
a general solution for multiplying any single-digit number by 9. That’s an algorithm!

Similarly, the techniques you learned for addition with carrying, subtraction with borrowing, and
long division are all algorithms. One of the characteristics of algorithms is that they do not require
any intelligence to carry out. They are mechanical processes in which each step follows from the
last according to a simple set of rules.

In our opinion, it is embarrassing that humans spend so much time in school learning to execute
algorithms that, quite literally, require no intelligence.

On the other hand, the process of designing algorithms is interesting, intellectually challenging,
and a central part of what we call programming.

Some of the things that people do naturally, without difficulty or conscious thought, are the hardest
to express algorithmically. Understanding natural language is a good example. We all do it, but so
far no one has been able to explain how we do it, at least not in the form of an algorithm.

1.18. Classes and functions 209

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Glossary

pure function A function that does not modify any of the objects it receives as parameters. Most
pure functions are fruitful.

modifier A function that changes one or more of the objects it receives as parameters. Most
modifiers are void.

functional programming style A style of program design in which the majority of functions are
pure.

prototype development A way of developing programs starting with a prototype and gradually
testing and improving it.

planned development A way of developing programs that involves high-level insight into the
problem and more planning than incremental development or prototype development.

algorithm A set of instructions for solving a class of problems by a mechanical, unintelligent
process.

Exercises

1. Write a function print_time that takes a Time object as an argument and prints it in the
form hours:minutes:seconds.

2. Write a boolean function after that takes two Time objects, t1 and t2, as arguments,
and returns True if t1 follows t2 chronologically and False otherwise.

3. Rewrite the increment function so that it doesn’t contain any loops.

4. Now rewrite increment as a pure function, and write function calls to both versions.

Classes and methods

Object-oriented features

Python is an object-oriented programming language, which means that it provides features that
support object-oriented programming.

It is not easy to define object-oriented programming, but we have already seen some of its charac-
teristics:

1. Programs are made up of object definitions and function definitions, and most of the compu-
tation is expressed in terms of operations on objects.

2. Each object definition corresponds to some object or concept in the real world, and the
functions that operate on that object correspond to the ways real-world objects interact.

210 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

For example, the Time class defined in the last chapter corresponds to the way people record the
time of day, and the functions we defined correspond to the kinds of things people do with times.
Similarly, the Point and Rectangle classes correspond to the mathematical concepts of a point
and a rectangle.

So far, we have not taken advantage of the features Python provides to support object-oriented
programming. Strictly speaking, these features are not necessary. For the most part, they provide
an alternative syntax for things we have already done, but in many cases, the alternative is more
concise and more accurately conveys the structure of the program.

For example, in the Time program, there is no obvious connection between the class definition
and the function definitions that follow. With some examination, it is apparent that every function
takes at least one Time object as a parameter.

This observation is the motivation for methods. We have already seen some methods, such as
keys and values, which were invoked on dictionaries. Each method is associated with a class
and is intended to be invoked on instances of that class.

Methods are just like functions, with two differences:

1. Methods are defined inside a class definition in order to make the relationship between the
class and the method explicit.

2. The syntax for invoking a method is different from the syntax for calling a function.

In the next few sections, we will take the functions from the previous two chapters and transform
them into methods. This transformation is purely mechanical; you can do it simply by following a
sequence of steps. If you are comfortable converting from one form to another, you will be able to
choose the best form for whatever you are doing.

print_time

In the last chapter, we defined a class named Time and you wrote a function named print_time,
which should have looked something like this:

class Time(object):
pass

def print_time(time):
print(str(time.hours) + ":" +

str(time.minutes) + ":" +
str(time.seconds))

To call this function, we passed a Time object as a parameter:

>>> current_time = Time()
>>> current_time.hours = 9
>>> current_time.minutes = 14

1.19. Classes and methods 211

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> current_time.seconds = 30
>>> print_time(current_time)

To make print_time a method, all we have to do is move the function definition inside the class
definition. Notice the change in indentation.

class Time(object):
def print_time(time):

print(str(time.hours) + ":" +
str(time.minutes) + ":" +
str(time.seconds))

Now we can invoke print_time using dot notation.

>>> current_time.print_time()

As usual, the object on which the method is invoked appears before the dot and the name of the
method appears after the dot.

The object on which the method is invoked is assigned to the first parameter, so in this case
current_time is assigned to the parameter time.

By convention, the first parameter of a method is called self. The reason for this is a little
convoluted, but it is based on a useful metaphor.

The syntax for a function call, print_time(current_time), suggests that the function is
the active agent. It says something like, Hey print_time! Here’s an object for you to print.

In object-oriented programming, the objects are the active agents. An invocation like
current_time.print_time() says Hey current_time! Please print yourself!

This change in perspective might be more polite, but it is not obvious that it is useful. In the
examples we have seen so far, it may not be. But sometimes shifting responsibility from the
functions onto the objects makes it possible to write more versatile functions, and makes it easier
to maintain and reuse code.

Another example

Let’s convert increment to a method. To save space, we will leave out previously defined
methods, but you should keep them in your version:

class Time(object):
#previous method definitions here...

def increment(self, seconds):
self.seconds = seconds + self.seconds

while self.seconds >= 60:

212 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

self.seconds = self.seconds - 60
self.minutes = self.minutes + 1

while self.minutes >= 60:
self.minutes = self.minutes - 60
self.hours = self.hours + 1

The transformation is purely mechanical - we move the method definition into the class definition
and change the name of the first parameter.

Now we can invoke increment as a method.

current_time.increment(500)

Again, the object on which the method is invoked gets assigned to the first parameter, self. The
second parameter, seconds gets the value 500.

A more complicated example

The after function is slightly more complicated because it operates on two Time objects, not
just one. We can only convert one of the parameters to self; the other stays the same:

class Time(object):
#previous method definitions here...

def after(self, time2):
if self.hour > time2.hour:

return True
if self.hour < time2.hour:

return False

if self.minute > time2.minute:
return True

if self.minute < time2.minute:
return False

if self.second > time2.second:
return True

return False

We invoke this method on one object and pass the other as an argument:

if doneTime.after(current_time):
print("The bread will be done after it starts.")

You can almost read the invocation like English: If the done-time is after the current-time, then...

1.19. Classes and methods 213

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Optional arguments

We have seen built-in functions that take a variable number of arguments. For example,
string.find can take two, three, or four arguments.

It is possible to write user-defined functions with optional argument lists. For example, we can
upgrade our own version of find to do the same thing as string.find.

This is the original version:

def find(str, ch):
index = 0
while index < len(str):

if str[index] == ch:
return index

index = index + 1
return -1

This is the new and improved version:

def find(str, ch, start=0):
index = start
while index < len(str):

if str[index] == ch:
return index

index = index + 1
return -1

The third parameter, start, is optional because a default value, 0, is provided. If we invoke
find with only two arguments, we use the default value and start from the beginning of the string:

>>> find("apple", "p")
1

If we provide a third parameter, it overrides the default:

>>> find("apple", "p", 2)
2
>>> find("apple", "p", 3)
-1

The initialization method

The initialization method is a special method that is invoked when an object is created. The name
of this method is __init__ (two underscore characters, followed by init, and then two more
underscores). An initialization method for the Time class looks like this:

214 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class Time(object):
def __init__(self, hours=0, minutes=0, seconds=0):

self.hours = hours
self.minutes = minutes
self.seconds = seconds

There is no conflict between the attribute self.hours and the parameter hours. Dot notation
specifies which variable we are referring to.

When we invoke the Time constructor, the arguments we provide are passed along to init:

>>> current_time = Time(9, 14, 30)
>>> current_time.print_time()
>>> 9:14:30

Because the parameters are optional, we can omit them:

>>> current_time = Time()
>>> current_time.print_time()
>>> 0:0:0

Or provide only the first parameter:

>>> current_time = Time (9)
>>> current_time.print_time()
>>> 9:0:0

Or the first two parameters:

>>> current_time = Time (9, 14)
>>> current_time.print_time()
>>> 9:14:0

Finally, we can provide a subset of the parameters by naming them explicitly:

>>> current_time = Time(seconds = 30, hours = 9)
>>> current_time.print_time()
>>> 9:0:30

Points revisited

Let’s rewrite the Point class from chapter 12 in a more object- oriented style:

class Point(object):
def __init__(self, x=0, y=0):

self.x = x
self.y = y

1.19. Classes and methods 215

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def __str__(self):
return '(' + str(self.x) + ', ' + str(self.y) + ')'

The initialization method takes x and y values as optional parameters; the default for either pa-
rameter is 0.

The next method, __str__, returns a string representation of a Point object. If a class provides
a method named __str__, it overrides the default behavior of the Python built-in str function.

>>> p = Point(3, 4)
>>> str(p)
'(3, 4)'

Printing a Point object implicitly invokes __str__ on the object, so defining __str__ also
changes the behavior of print:

>>> p = Point(3, 4)
>>> print(p)
(3, 4)

When we write a new class, we almost always start by writing __init__, which makes it easier
to instantiate objects, and __str__, which is almost always useful for debugging.

Operator overloading

Some languages make it possible to change the definition of the built- in operators when they are
applied to user-defined types. This feature is called operator overloading. It is especially useful
when defining new mathematical types.

For example, to override the addition operator +, we provide a method named __add__:

class Point(object):
previously defined methods here...

def __add__(self, other):
return Point(self.x + other.x, self.y + other.y)

As usual, the first parameter is the object on which the method is invoked. The second parameter
is conveniently named other to distinguish it from self. To add two Points, we create and
return a new Point that contains the sum of the x coordinates and the sum of the y coordinates.

Now, when we apply the + operator to Point objects, Python invokes __add__:

>>> p1 = Point(3, 4)
>>> p2 = Point(5, 7)
>>> p3 = p1 + p2
>>> print(p3)
(8, 11)

216 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The expression p1 + p2 is equivalent to p1.__add__(p2), but obviously more elegant. As
an exercise, add a method __sub__(self, other) that overloads the subtraction operator,
and try it out. There are several ways to override the behavior of the multiplication operator: by
defining a method named __mul__, or __rmul__, or both.

If the left operand of * is a Point, Python invokes __mul__, which assumes that the other
operand is also a Point. It computes the dot product of the two points, defined according to the
rules of linear algebra:

def __mul__(self, other):
return self.x * other.x + self.y * other.y

If the left operand of * is a primitive type and the right operand is a Point, Python invokes
__rmul__, which performs scalar multiplication:

def __rmul__(self, other):
return Point(other * self.x, other * self.y)

The result is a new Point whose coordinates are a multiple of the original coordinates. If other
is a type that cannot be multiplied by a floating-point number, then __rmul__ will yield an error.

This example demonstrates both kinds of multiplication:

>>> p1 = Point(3, 4)
>>> p2 = Point(5, 7)
>>> print(p1 * p2)
43
>>> print(2 * p2)
(10, 14)

What happens if we try to evaluate p2 * 2? Since the first parameter is a Point, Python invokes
__mul__ with 2 as the second argument. Inside __mul__, the program tries to access the x
coordinate of other, which fails because an integer has no attributes:

>>> print(p2 * 2)
AttributeError: 'int' object has no attribute 'x'

Unfortunately, the error message is a bit opaque. This example demonstrates some of the difficul-
ties of object-oriented programming. Sometimes it is hard enough just to figure out what code is
running.

For a more complete example of operator overloading, see Appendix (reference overloading).

Polymorphism

Most of the methods we have written only work for a specific type. When you create a new object,
you write methods that operate on that type.

1.19. Classes and methods 217

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

But there are certain operations that you will want to apply to many types, such as the arithmetic
operations in the previous sections. If many types support the same set of operations, you can write
functions that work on any of those types.

For example, the multadd operation (which is common in linear algebra) takes three parameters;
it multiplies the first two and then adds the third. We can write it in Python like this:

def multadd (x, y, z):
return x * y + z

This method will work for any values of x and y that can be multiplied and for any value of z that
can be added to the product.

We can invoke it with numeric values:

>>> multadd (3, 2, 1)
7

Or with Points:

>>> p1 = Point(3, 4)
>>> p2 = Point(5, 7)
>>> print(multadd (2, p1, p2))
(11, 15)
>>> print(multadd (p1, p2, 1))
44

In the first case, the Point is multiplied by a scalar and then added to another Point. In the
second case, the dot product yields a numeric value, so the third parameter also has to be a numeric
value.

A function like this that can take parameters with different types is called polymorphic.

As another example, consider the method front_and_back, which prints a list twice, forward
and backward:

def front_and_back(front):
import copy
back = copy.copy(front)
back.reverse()
print(str(front) + str(back))

Because the reverse method is a modifier, we make a copy of the list before reversing it. That
way, this method doesn’t modify the list it gets as a parameter.

Here’s an example that applies front_and_back to a list:

>>> myList = [1, 2, 3, 4]
>>> front_and_back(myList)
[1, 2, 3, 4][4, 3, 2, 1]

218 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Of course, we intended to apply this function to lists, so it is not surprising that it works. What
would be surprising is if we could apply it to a Point.

To determine whether a function can be applied to a new type, we apply the fundamental rule of
polymorphism: If all of the operations inside the function can be applied to the type, the function
can be applied to the type. The operations in the method include copy, reverse, and print.

copy works on any object, and we have already written a __str__ method for Points, so all
we need is a reverse method in the Point class:

def reverse(self):
self.x , self.y = self.y, self.x

Then we can pass Points to front_and_back:

>>> p = Point(3, 4)
>>> front_and_back(p)
(3, 4)(4, 3)

The best kind of polymorphism is the unintentional kind, where you discover that a function you
have already written can be applied to a type for which you never planned.

Glossary

object-oriented language A language that provides features, such as user-defined classes and
inheritance, that facilitate object-oriented programming.

object-oriented programming A style of programming in which data and the operations that
manipulate it are organized into classes and methods.

method A function that is defined inside a class definition and is invoked on instances of that
class. :override:: To replace a default. Examples include replacing a default parameter with
a particular argument and replacing a default method by providing a new method with the
same name.

initialization method A special method that is invoked automatically when a new object is cre-
ated and that initializes the object’s attributes.

operator overloading Extending built-in operators (+, -, *, >, <, etc.) so that they work with
user-defined types.

dot product An operation defined in linear algebra that multiplies two Points and yields a
numeric value.

scalar multiplication An operation defined in linear algebra that multiplies each of the coordi-
nates of a Point by a numeric value.

polymorphic A function that can operate on more than one type. If all the operations in a function
can be applied to a type, then the function can be applied to a type.

1.19. Classes and methods 219

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Exercises

1. Convert the function convertToSeconds:

def convertToSeconds(t):
minutes = t.hours * 60 + t.minutes
seconds = minutes * 60 + t.seconds
return seconds

to a method in the Time class.

2. Add a fourth parameter, end, to the find function that specifies where to stop looking.
Warning: This exercise is a bit tricky. The default value of end should be len(str), but
that doesn’t work. The default values are evaluated when the function is defined, not when
it is called. When find is defined, str doesn’t exist yet, so you can’t find its length.

Sets of objects

Composition

By now, you have seen several examples of composition. One of the first examples was using a
method invocation as part of an expression. Another example is the nested structure of statements;
you can put an if statement within a while loop, within another if statement, and so on.

Having seen this pattern, and having learned about lists and objects, you should not be surprised to
learn that you can create lists of objects. You can also create objects that contain lists (as attributes);
you can create lists that contain lists; you can create objects that contain objects; and so on.

In this chapter and the next, we will look at some examples of these combinations, using Card
objects as an example.

Card objects

If you are not familiar with common playing cards, now would be a good time to get a deck, or
else this chapter might not make much sense. There are fifty-two cards in a deck, each of which
belongs to one of four suits and one of thirteen ranks. The suits are Spades, Hearts, Diamonds, and
Clubs (in descending order in bridge). The ranks are Ace, 2, 3, 4, 5, 6, 7, 8, 9, 10, Jack, Queen,
and King. Depending on the game that you are playing, the rank of Ace may be higher than King
or lower than 2.

If we want to define a new object to represent a playing card, it is obvious what the attributes should
be: rank and suit. It is not as obvious what type the attributes should be. One possibility is to
use strings containing words like "Spade" for suits and "Queen" for ranks. One problem with
this implementation is that it would not be easy to compare cards to see which had a higher rank
or suit.

220 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

An alternative is to use integers to encode the ranks and suits. By encode, we do not mean what
some people think, which is to encrypt or translate into a secret code. What a computer scientist
means by encode is to define a mapping between a sequence of numbers and the items I want to
represent. For example:

Spades --> 3
Hearts --> 2
Diamonds --> 1
Clubs --> 0

An obvious feature of this mapping is that the suits map to integers in order, so we can compare
suits by comparing integers. The mapping for ranks is fairly obvious; each of the numerical ranks
maps to the corresponding integer, and for face cards:

Jack --> 11
Queen --> 12
King --> 13

The reason we are using mathematical notation for these mappings is that they are not part of the
Python program. They are part of the program design, but they never appear explicitly in the code.
The class definition for the Card type looks like this:

class Card(object):
def __init__(self, suit=0, rank=0):

self.suit = suit
self.rank = rank

As usual, we provide an initialization method that takes an optional parameter for each attribute.

To create an object that represents the 3 of Clubs, use this command:

three_of_clubs = Card(0, 3)

The first argument, 0, represents the suit Clubs.

Class attributes and the __str__ method

In order to print Card objects in a way that people can easily read, we want to map the integer
codes onto words. A natural way to do that is with lists of strings. We assign these lists to class
attributes at the top of the class definition:

class Card(object):
suits = ["Clubs", "Diamonds", "Hearts", "Spades"]
ranks = ["narf", "Ace", "2", "3", "4", "5", "6", "7",

"8", "9", "10", "Jack", "Queen", "King"]

def __init__(self, suit=0, rank=0):
self.suit = suit

1.20. Sets of objects 221

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

self.rank = rank

def __str__(self):
return (self.ranks[self.rank] + " of " + self.suits[self.suit])

A class attribute is defined outside of any method, and it can be accessed from any of the methods
in the class.

Inside __str__, we can use suits and ranks to map the numerical values of suit and rank
to strings. For example, the expression self.suits[self.suit] means use the attribute
suit from the object self as an index into the class attribute named suits, and select the
appropriate string.

The reason for the "narf" in the first element in ranks is to act as a place keeper for the zero-eth
element of the list, which will never be used. The only valid ranks are 1 to 13. This wasted item is
not entirely necessary. We could have started at 0, as usual, but it is less confusing to encode 2 as
2, 3 as 3, and so on.

With the methods we have so far, we can create and print cards:

>>> card1 = Card(1, 11)
>>> print(card1)
Jack of Diamonds

Class attributes like suits are shared by all Card objects. The advantage of this is that we can
use any Card object to access the class attributes:

>>> card2 = Card(1, 3)
>>> print(card2)
3 of Diamonds
>>> print(card2.suits[1])
Diamonds

The disadvantage is that if we modify a class attribute, it affects every instance of the class. For
example, if we decide that Jack of Diamonds should really be called Jack of Swirly Whales, we
could do this:

>>> card1.suits[1] = "Swirly Whales"
>>> print(card1)
Jack of Swirly Whales

The problem is that all of the Diamonds just became Swirly Whales:

>>> print(card2)
3 of Swirly Whales

It is usually not a good idea to modify class attributes.

222 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Comparing cards

For primitive types, there are conditional operators (<, >, ==, etc.) that compare values and
determine when one is greater than, less than, or equal to another. For user-defined types, we
can override the behavior of the built-in operators by providing a method named __cmp__. By
convention, __cmp__ takes two parameters, self and other, and returns 1 if the first object is
greater, -1 if the second object is greater, and 0 if they are equal to each other.

Some types are completely ordered, which means that you can compare any two elements and tell
which is bigger. For example, the integers and the floating-point numbers are completely ordered.
Some sets are unordered, which means that there is no meaningful way to say that one element
is bigger than another. For example, the fruits are unordered, which is why you cannot compare
apples and oranges.

The set of playing cards is partially ordered, which means that sometimes you can compare cards
and sometimes not. For example, you know that the 3 of Clubs is higher than the 2 of Clubs, and
the 3 of Diamonds is higher than the 3 of Clubs. But which is better, the 3 of Clubs or the 2 of
Diamonds? One has a higher rank, but the other has a higher suit.

In order to make cards comparable, you have to decide which is more important, rank or suit.
To be honest, the choice is arbitrary. For the sake of choosing, we will say that suit is more
important, because a new deck of cards comes sorted with all the Clubs together, followed by all
the Diamonds, and so on.

With that decided, we can write __cmp__:

def __cmp__(self, other):
check the suits
if self.suit > other.suit: return 1
if self.suit < other.suit: return -1
suits are the same... check ranks
if self.rank > other.rank: return 1
if self.rank < other.rank: return -1
ranks are the same... it's a tie
return 0

In this ordering, Aces appear lower than Deuces (2s).

Decks

Now that we have objects to represent Cards, the next logical step is to define a class to represent
a Deck. Of course, a deck is made up of cards, so each Deck object will contain a list of cards as
an attribute.

The following is a class definition for the Deck class. The initialization method creates the at-
tribute cards and generates the standard set of fifty-two cards:

1.20. Sets of objects 223

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class Deck(object):
def __init__(self):

self.cards = []
for suit in range(4):

for rank in range(1, 14):
self.cards.append(Card(suit, rank))

The easiest way to populate the deck is with a nested loop. The outer loop enumerates the suits
from 0 to 3. The inner loop enumerates the ranks from 1 to 13. Since the outer loop iterates four
times, and the inner loop iterates thirteen times, the total number of times the body is executed is
fifty-two (thirteen times four). Each iteration creates a new instance of Card with the current suit
and rank, and appends that card to the cards list.

The append method works on lists but not, of course, tuples.

Printing the deck

As usual, when we define a new type of object we want a method that prints the contents of an
object. To print a Deck, we traverse the list and print each Card:

class Deck(object):
...
def print_deck(self):

for card in self.cards:
print(card)

Here, and from now on, the ellipsis (...) indicates that we have omitted the other methods in the
class.

As an alternative to print_deck, we could write a __str__ method for the Deck class. The
advantage of __str__ is that it is more flexible. Rather than just printing the contents of the
object, it generates a string representation that other parts of the program can manipulate before
printing, or store for later use.

Here is a version of __str__ that returns a string representation of a Deck. To add a bit of
pizzazz, it arranges the cards in a cascade where each card is indented one space more than the
previous card:

class Deck(object):
...
def __str__(self):

s = ""
for i in range(len(self.cards)):

s = s + " " * i + str(self.cards[i]) + "\n"
return s

This example demonstrates several features. First, instead of traversing self.cards and as-

224 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

signing each card to a variable, we are using i as a loop variable and an index into the list of
cards.

Second, we are using the string multiplication operator to indent each card by one more space than
the last. The expression " " * i yields a number of spaces equal to the current value of i.

Third, instead of using the print command to print the cards, we use the str function. Passing
an object as an argument to str is equivalent to invoking the __str__ method on the object.

Finally, we are using the variable s as an accumulator. Initially, s is the empty string. Each time
through the loop, a new string is generated and concatenated with the old value of s to get the
new value. When the loop ends, s contains the complete string representation of the Deck, which
looks like this:

>>> deck = Deck()
>>> print(deck)
Ace of Clubs
2 of Clubs
3 of Clubs
4 of Clubs
5 of Clubs

6 of Clubs
7 of Clubs
8 of Clubs
9 of Clubs
10 of Clubs
Jack of Clubs
Queen of Clubs
King of Clubs
Ace of Diamonds

And so on. Even though the result appears on 52 lines, it is one long string that contains newlines.

Shuffling the deck

If a deck is perfectly shuffled, then any card is equally likely to appear anywhere in the deck, and
any location in the deck is equally likely to contain any card.

To shuffle the deck, we will use the randrange function from the random module. With two
integer arguments, a and b, randrange chooses a random integer in the range a <= x < b.
Since the upper bound is strictly less than b, we can use the length of a list as the second parameter,
and we are guaranteed to get a legal index. For example, this expression chooses the index of a
random card in a deck:

random.randrange(0, len(self.cards))

An easy way to shuffle the deck is by traversing the cards and swapping each card with a randomly
chosen one. It is possible that the card will be swapped with itself, but that is fine. In fact, if we

1.20. Sets of objects 225

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

precluded that possibility, the order of the cards would be less than entirely random:

class Deck(object):
...
def shuffle(self):

import random
num_cards = len(self.cards)
for i in range(num_cards):

j = random.randrange(i, num_cards)
self.cards[i], self.cards[j] = self.cards[j], self.cards[i]

Rather than assume that there are fifty-two cards in the deck, we get the actual length of the list
and store it in num_cards.

For each card in the deck, we choose a random card from among the cards that haven’t been
shuffled yet. Then we swap the current card (i) with the selected card (j). To swap the cards we
use a tuple assignment:

self.cards[i], self.cards[j] = self.cards[j], self.cards[i]

Removing and dealing cards

Another method that would be useful for the Deck class is remove, which takes a card as a
parameter, removes it, and returns True if the card was in the deck and False otherwise:

class Deck(object):
...
def remove(self, card):

if card in self.cards:
self.cards.remove(card)
return True

else:
return False

The in operator returns True if the first operand is in the second, which must be a list or a tuple.
If the first operand is an object, Python uses the object’s __cmp__ method to determine equality
with items in the list. Since the __cmp__ in the Card class checks for deep equality, the remove
method checks for deep equality.

To deal cards, we want to remove and return the top card. The list method pop provides a conve-
nient way to do that:

class Deck(object):
...
def pop(self):

return self.cards.pop()

226 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Actually, pop removes the last card in the list, so we are in effect dealing from the bottom of the
deck.

One more operation that we are likely to want is the boolean function is_empty, which returns
true if the deck contains no cards:

class Deck(object):
...
def is_empty(self):

return (len(self.cards) == 0)

Glossary

encode To represent one set of values using another set of values by constructing a mapping
between them.

class attribute A variable that is defined inside a class definition but outside any method. Class
attributes are accessible from any method in the class and are shared by all instances of the
class.

accumulator A variable used in a loop to accumulate a series of values, such as by concatenating
them onto a string or adding them to a running sum.

Exercises

1. Modify __cmp__ so that Aces are ranked higher than Kings.

Inheritance

Inheritance

The language feature most often associated with object-oriented programming is inheritance. In-
heritance is the ability to define a new class that is a modified version of an existing class.

The primary advantage of this feature is that you can add new methods to a class without modifying
the existing class. It is called inheritance because the new class inherits all of the methods of the
existing class. Extending this metaphor, the existing class is sometimes called the parent class.
The new class may be called the child class or sometimes subclass.

Inheritance is a powerful feature. Some programs that would be complicated without inheritance
can be written concisely and simply with it. Also, inheritance can facilitate code reuse, since you
can customize the behavior of parent classes without having to modify them. In some cases, the
inheritance structure reflects the natural structure of the problem, which makes the program easier
to understand.

1.21. Inheritance 227

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

On the other hand, inheritance can make programs difficult to read. When a method is invoked, it is
sometimes not clear where to find its definition. The relevant code may be scattered among several
modules. Also, many of the things that can be done using inheritance can be done as elegantly (or
more so) without it. If the natural structure of the problem does not lend itself to inheritance, this
style of programming can do more harm than good.

In this chapter we will demonstrate the use of inheritance as part of a program that plays the card
game Old Maid. One of our goals is to write code that could be reused to implement other card
games.

A hand of cards

For almost any card game, we need to represent a hand of cards. A hand is similar to a deck, of
course. Both are made up of a set of cards, and both require operations like adding and removing
cards. Also, we might like the ability to shuffle both decks and hands.

A hand is also different from a deck. Depending on the game being played, we might want to
perform some operations on hands that don’t make sense for a deck. For example, in poker we
might classify a hand (straight, flush, etc.) or compare it with another hand. In bridge, we might
want to compute a score for a hand in order to make a bid.

This situation suggests the use of inheritance. If Hand is a subclass of Deck, it will have all the
methods of Deck, and new methods can be added.

In the class definition, the name of the parent class appears in parentheses:

class Hand(Deck):
pass

This statement indicates that the new Hand class inherits from the existing Deck class.

The Hand constructor initializes the attributes for the hand, which are name and cards. The
string name identifies this hand, probably by the name of the player that holds it. The name is an
optional parameter with the empty string as a default value. cards is the list of cards in the hand,
initialized to the empty list:

class Hand(Deck):
def __init__(self, name=""):

self.cards = []
self.name = name

For just about any card game, it is necessary to add and remove cards from the deck. Removing
cards is already taken care of, since Hand inherits remove from Deck. But we have to write
add:

class Hand(Deck):
...

228 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def add(self,card):
self.cards.append(card)

Again, the ellipsis indicates that we have omitted other methods. The list append method adds
the new card to the end of the list of cards.

Dealing cards

Now that we have a Hand class, we want to deal cards from the Deck into hands. It is not
immediately obvious whether this method should go in the Hand class or in the Deck class, but
since it operates on a single deck and (possibly) several hands, it is more natural to put it in Deck.

deal should be fairly general, since different games will have different requirements. We may
want to deal out the entire deck at once or add one card to each hand.

deal takes two parameters, a list (or tuple) of hands and the total number of cards to deal. If there
are not enough cards in the deck, the method deals out all of the cards and stops:

class Deck(object):
...
def deal(self, hands, num_cards=999):

num_hands = len(hands)
for i in range(num_cards):

if self.is_empty(): break # break if out of cards
card = self.pop() # take the top card
hand = hands[i % num_hands] # whose turn is next?
hand.add(card) # add the card to the hand

The second parameter, num_cards, is optional; the default is a large number, which effectively
means that all of the cards in the deck will get dealt.

The loop variable i goes from 0 to nCards-1. Each time through the loop, a card is removed
from the deck using the list method pop, which removes and returns the last item in the list.

The modulus operator (%) allows us to deal cards in a round robin (one card at a time to each
hand). When i is equal to the number of hands in the list, the expression i % nHands wraps
around to the beginning of the list (index 0).

Printing a Hand

To print the contents of a hand, we can take advantage of the printDeck and __str__ methods
inherited from Deck. For example:

>>> deck = Deck()
>>> deck.shuffle()
>>> hand = Hand("frank")

1.21. Inheritance 229

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> deck.deal([hand], 5)
>>> print(hand)
Hand frank contains
2 of Spades
3 of Spades
4 of Spades
Ace of Hearts
9 of Clubs

It’s not a great hand, but it has the makings of a straight flush.

Although it is convenient to inherit the existing methods, there is additional information in a Hand
object we might want to include when we print one. To do that, we can provide a __str__
method in the Hand class that overrides the one in the Deck class:

class Hand(Deck)
...
def __str__(self):

s = "Hand " + self.name
if self.is_empty():

s = s + " is empty\n"
else:

s = s + " contains\n"
return s + Deck.__str__(self)

Initially, s is a string that identifies the hand. If the hand is empty, the program appends the words
is empty and returns s.

Otherwise, the program appends the word contains and the string representation of the Deck,
computed by invoking the __str__ method in the Deck class on self.

It may seem odd to send self, which refers to the current Hand, to a Deck method, until you
remember that a Hand is a kind of Deck. Hand objects can do everything Deck objects can, so
it is legal to send a Hand to a Deck method.

In general, it is always legal to use an instance of a subclass in place of an instance of a parent
class.

The CardGame class

The CardGame class takes care of some basic chores common to all games, such as creating the
deck and shuffling it:

class CardGame(object):
def __init__(self):

self.deck = Deck()
self.deck.shuffle()

230 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

This is the first case we have seen where the initialization method performs a significant computa-
tion, beyond initializing attributes.

To implement specific games, we can inherit from CardGame and add features for the new game.
As an example, we’ll write a simulation of Old Maid.

The object of Old Maid is to get rid of cards in your hand. You do this by matching cards by rank
and color. For example, the 4 of Clubs matches the 4 of Spades since both suits are black. The
Jack of Hearts matches the Jack of Diamonds since both are red.

To begin the game, the Queen of Clubs is removed from the deck so that the Queen of Spades has
no match. The fifty-one remaining cards are dealt to the players in a round robin. After the deal,
all players match and discard as many cards as possible.

When no more matches can be made, play begins. In turn, each player picks a card (without
looking) from the closest neighbor to the left who still has cards. If the chosen card matches a
card in the player’s hand, the pair is removed. Otherwise, the card is added to the player’s hand.
Eventually all possible matches are made, leaving only the Queen of Spades in the loser’s hand.

In our computer simulation of the game, the computer plays all hands. Unfortunately, some nu-
ances of the real game are lost. In a real game, the player with the Old Maid goes to some effort
to get their neighbor to pick that card, by displaying it a little more prominently, or perhaps failing
to display it more prominently, or even failing to fail to display that card more prominently. The
computer simply picks a neighbor’s card at random.

OldMaidHand class

A hand for playing Old Maid requires some abilities beyond the general abilities of a Hand.
We will define a new class, OldMaidHand, that inherits from Hand and provides an additional
method called remove_matches:

class OldMaidHand(Hand):
def remove_matches(self):

count = 0
original_cards = self.cards[:]
for card in original_cards:

match = Card(3 - card.suit, card.rank)
if match in self.cards:

self.cards.remove(card)
self.cards.remove(match)
print("Hand %s: %s matches %s" % (self.name, card, match))
count = count + 1

return count

We start by making a copy of the list of cards, so that we can traverse the copy while removing
cards from the original. Since self.cards is modified in the loop, we don’t want to use it to
control the traversal. Python can get quite confused if it is traversing a list that is changing!

1.21. Inheritance 231

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

For each card in the hand, we figure out what the matching card is and go looking for it. The match
card has the same rank and the other suit of the same color. The expression 3 - card.suit
turns a Club (suit 0) into a Spade (suit 3) and a Diamond (suit 1) into a Heart (suit 2). You should
satisfy yourself that the opposite operations also work. If the match card is also in the hand, both
cards are removed.

The following example demonstrates how to use remove_matches:

>>> game = CardGame()
>>> hand = OldMaidHand("frank")
>>> game.deck.deal([hand], 13)
>>> print(hand)
Hand frank contains
Ace of Spades
2 of Diamonds
7 of Spades
8 of Clubs
6 of Hearts
8 of Spades
7 of Clubs
Queen of Clubs
7 of Diamonds
5 of Clubs
Jack of Diamonds
10 of Diamonds
10 of Hearts

>>> hand.remove_matches()
Hand frank: 7 of Spades matches 7 of Clubs
Hand frank: 8 of Spades matches 8 of Clubs
Hand frank: 10 of Diamonds matches 10 of Hearts
>>> print(hand)
Hand frank contains
Ace of Spades
2 of Diamonds
6 of Hearts
Queen of Clubs
7 of Diamonds
5 of Clubs
Jack of Diamonds

Notice that there is no __init__method for the OldMaidHand class. We inherit it from Hand.

OldMaidGame class

Now we can turn our attention to the game itself. OldMaidGame is a subclass of CardGame
with a new method called play that takes a list of players as a parameter.

232 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Since __init__ is inherited from CardGame, a new OldMaidGame object contains a new
shuffled deck:

class OldMaidGame(CardGame):
def play(self, names):

remove Queen of Clubs
self.deck.remove(Card(0,12))

make a hand for each player
self.hands = []
for name in names:

self.hands.append(OldMaidHand(name))

deal the cards
self.deck.deal(self.hands)
print("---------- Cards have been dealt")
self.printHands()

remove initial matches
matches = self.removeAllMatches()
print("---------- Matches discarded, play begins")
self.printHands()

play until all 50 cards are matched
turn = 0
numHands = len(self.hands)
while matches < 25:

matches = matches + self.playOneTurn(turn)
turn = (turn + 1) % numHands

print("---------- Game is Over")
self.printHands()

The writing of printHands() is left as an exercise.

Some of the steps of the game have been separated into methods. remove_all_matches
traverses the list of hands and invokes remove_matches on each:

class OldMaidGame(CardGame):
...
def remove_all_matches(self):

count = 0
for hand in self.hands:

count = count + hand.remove_matches()
return count

count is an accumulator that adds up the number of matches in each hand and returns the total.

When the total number of matches reaches twenty-five, fifty cards have been removed from the

1.21. Inheritance 233

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

hands, which means that only one card is left and the game is over.

The variable turn keeps track of which player’s turn it is. It starts at 0 and increases by one each
time; when it reaches numHands, the modulus operator wraps it back around to 0.

The method playOneTurn takes a parameter that indicates whose turn it is. The return value is
the number of matches made during this turn:

class OldMaidGame(CardGame):
...
def play_one_turn(self, i):

if self.hands[i].is_empty():
return 0

neighbor = self.find_neighbor(i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].add(pickedCard)
print("Hand %s picked %s" % (self.hands[i].name, pickedCard))
count = self.hands[i].remove_matches()
self.hands[i].shuffle()
return count

If a player’s hand is empty, that player is out of the game, so he or she does nothing and returns 0.

Otherwise, a turn consists of finding the first player on the left that has cards, taking one card from
the neighbor, and checking for matches. Before returning, the cards in the hand are shuffled so that
the next player’s choice is random.

The method find_neighbor starts with the player to the immediate left and continues around
the circle until it finds a player that still has cards:

class OldMaidGame(CardGame):
...
def find_neighbor(self, i):

numHands = len(self.hands)
for next in range(1,numHands):

neighbor = (i + next) % numHands
if not self.hands[neighbor].is_empty():

return neighbor

If find_neighbor ever went all the way around the circle without finding cards, it would return
None and cause an error elsewhere in the program. Fortunately, we can prove that that will never
happen (as long as the end of the game is detected correctly).

We have omitted the print_hands method. You can write that one yourself.

The following output is from a truncated form of the game where only the top fifteen cards (tens
and higher) were dealt to three players. With this small deck, play stops after seven matches instead
of twenty-five.

234 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

>>> import cards
>>> game = cards.OldMaidGame()
>>> game.play(["Allen","Jeff","Chris"])
---------- Cards have been dealt
Hand Allen contains
King of Hearts
Jack of Clubs
Queen of Spades
King of Spades
10 of Diamonds

Hand Jeff contains
Queen of Hearts
Jack of Spades
Jack of Hearts
King of Diamonds
Queen of Diamonds

Hand Chris contains
Jack of Diamonds
King of Clubs
10 of Spades
10 of Hearts
10 of Clubs

Hand Jeff: Queen of Hearts matches Queen of Diamonds
Hand Chris: 10 of Spades matches 10 of Clubs
---------- Matches discarded, play begins
Hand Allen contains
King of Hearts
Jack of Clubs
Queen of Spades
King of Spades
10 of Diamonds

Hand Jeff contains
Jack of Spades
Jack of Hearts
King of Diamonds

Hand Chris contains
Jack of Diamonds
King of Clubs
10 of Hearts

Hand Allen picked King of Diamonds
Hand Allen: King of Hearts matches King of Diamonds

1.21. Inheritance 235

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Hand Jeff picked 10 of Hearts
Hand Chris picked Jack of Clubs
Hand Allen picked Jack of Hearts
Hand Jeff picked Jack of Diamonds
Hand Chris picked Queen of Spades
Hand Allen picked Jack of Diamonds
Hand Allen: Jack of Hearts matches Jack of Diamonds
Hand Jeff picked King of Clubs
Hand Chris picked King of Spades
Hand Allen picked 10 of Hearts
Hand Allen: 10 of Diamonds matches 10 of Hearts
Hand Jeff picked Queen of Spades
Hand Chris picked Jack of Spades
Hand Chris: Jack of Clubs matches Jack of Spades
Hand Jeff picked King of Spades
Hand Jeff: King of Clubs matches King of Spades
---------- Game is Over
Hand Allen is empty

Hand Jeff contains
Queen of Spades

Hand Chris is empty

So Jeff loses.

Glossary

inheritance The ability to define a new class that is a modified version of a previously defined
class.

parent class The class from which a child class inherits.

child class A new class created by inheriting from an existing class; also called a subclass.

Exercises

1. Add a method, print_hands, to the OldMaidGame class which traverses self.hands
and prints each hand.

236 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Linked lists

Embedded references

We have seen examples of attributes that refer to other objects, which we called embedded refer-
ences. A common data structure, the linked list, takes advantage of this feature.

Linked lists are made up of nodes, where each node contains a reference to the next node in the
list. In addition, each node contains a unit of data called the cargo.

A linked list is considered a recursive data structure because it has a recursive definition.

A linked list is either:

1. the empty list, represented by None, or

2. a node that contains a cargo object and a reference to a linked list.

Recursive data structures lend themselves to recursive methods.

The Node class

As usual when writing a new class, we’ll start with the initialization and __str__ methods so
that we can test the basic mechanism of creating and displaying the new type:

class Node(object):
def __init__(self, cargo=None, next=None):

self.cargo = cargo
self.next = next

def __str__(self):
return str(self.cargo)

As usual, the parameters for the initialization method are optional. By default, both the cargo and
the link, next, are set to None.

The string representation of a node is just the string representation of the cargo. Since any value
can be passed to the str function, we can store any value in a list.

We could also write getters and setters for the cargo and next instance variables:

class Node(object):
...
...
def getCargo(self):

return self.cargo
def getNext(self):

return self.next

1.22. Linked lists 237

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def setCargo(self,c):
self.cargo = c

def setNext(self,n):
self.next = n

To test the implementation so far, we can create a Node and print it:

>>> node = Node("test")
>>> print(node)
test
>>> print(node.getNext())
None

To make it interesting, we need create more than one node, and link them together:

>>> node1 = Node(1)
>>> node2 = Node(2)
>>> node3 = Node(3)

This code creates three nodes, but we don’t have a linked-list yet because the nodes are not linked.
The state diagram looks like this:

To link the nodes, we have to make the first node refer to the second and the second node refer to
the third:

>>> node1.setNext(node2)
>>> node2.setNext(node3)

The reference of the third node is None, which indicates that it is the end of the list. Now the state
diagram looks like this:

Now you know how to create nodes and link them together. What might be less clear at this point
is why.

238 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Lists as collections

Lists are useful because they provide a way to assemble multiple objects into a single entity, some-
times called a collection. In the example, the first node of the list serves as a reference to the entire
list.

To pass the list as a parameter, we only have to pass a reference to the first node. For example, the
function print_list takes a single node as an argument (curr, short for current). Assuming
that is the head of the list, is accumulates the cargo from each node, printing out the contents of
the list at the end:

def print_list(curr):
output = ""
while curr:
output += str(curr) + " "
curr = curr.getNext()

print(output)

To invoke this method, we pass a reference to the first node:

>>> print_list(node1)
1 2 3

Inside print_list we have a reference to the first node of the list, but there is no variable that
refers to the other nodes. We have to use the next value from each node to get to the next node.

To traverse a linked list, it is common to use a loop variable like curr to refer to each of the nodes
in succession.

This diagram shows the full list and the values that curr takes on:

Lists and recursion

It is natural to express many list operations using recursive methods. For example, the following
is a recursive algorithm for printing a list backwards:

1. Separate the list into two pieces: the first node (called the head); and the rest (called the tail).

2. Print the tail backward.

1.22. Linked lists 239

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

3. Print the head.

Of course, Step 2, the recursive call, assumes that we have a way of printing a list backward. But
if we assume that the recursive call works – the leap of faith – then we can convince ourselves that
this algorithm works.

All we need are a base case and a way of proving that for any list, we will eventually get to the
base case. Given the recursive definition of a list, a natural base case is the empty list, represented
by None.

def print_backward_helper(curr):
if curr == None:

return ""
else:

head = curr
tail = curr.getNext()
return print_backward_helper(tail) + str(head) + " "

def print_backward(firstnode):
output = print_backward_helper(firstnode)
print(output)

In the above example, we use a helper function, so we can just call print_backward(node1)
the same as we called print_list(node1). The helper function does the actual recursion and
accumulating of the string. The first line of the helper function handles the base case by returning
an empty string (and not recurring). The else case (if we are not at the end of the list) splits the list
into head and tail. The final return line adds the head cargo and a space to the reversed rest of
the list.

We invoke this method as we invoked print_list:

>>> print_backward(node1)
3 2 1

The result is the list contents printed in reverse.

You might wonder why print_list and print_backward are functions and not methods in
the Node class. The reason is that we want to use None to represent the empty list and it is not
legal to invoke a method on None. This limitation makes it awkward to write list-manipulating
code in a clean object-oriented style.

Can we prove that print_backward will always terminate? In other words, will it always reach
the base case? In fact, the answer is no. Some lists will make this method crash.

Infinite lists

There is nothing to prevent a node from referring back to an earlier node in the list, including itself.
For example, this figure shows a list with two nodes, one of which refers to itself:

240 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If we invoke print_list on this list, it will loop forever. If we invoke print_backward, it
will recurse infinitely. This sort of behavior makes infinite lists difficult to work with.

Nevertheless, they are occasionally useful. For example, we might represent a number as a list of
digits and use an infinite list to represent a repeating fraction.

Regardless, it is problematic that we cannot prove that print_list and print_backward
terminate. The best we can do is the hypothetical statement, If the list contains no loops, then these
methods will terminate. This sort of claim is called a precondition. It imposes a constraint on one
of the parameters and describes the behavior of the method if the constraint is satisfied. You will
see more examples soon.

The fundamental ambiguity theorem

One part of print_backward might have raised an eyebrow:

head = curr
tail = curr.getNext()

After the first assignment, head and curr have the same type and the same value. So why did
we create a new variable?

The reason is that the two variables play different roles. We think of head as a reference to a
single node, and we think of curr as a reference to the first node of a list. These roles are not part
of the program; they are in the mind of the programmer.

In general we can’t tell by looking at a program what role a variable plays. This ambiguity can be
useful, but it can also make programs difficult to read. We often use variable names like node and
curr to document how we intend to use a variable and sometimes create additional variables to
disambiguate.

We could have written print_backward_helper without head and tail, which makes it
more concise but possibly less clear:

def print_backward_helper(curr):
if curr == None: return ""
return print_backward_helper(curr.getNext()) + str(curr) + " "

The fundamental ambiguity theorem describes the ambiguity that is inherent in a reference to a
node: A variable that refers to a node might treat the node as a single object or as the first in a list
of nodes.

1.22. Linked lists 241

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Modifying lists

There are two ways to modify a linked list. Obviously, we can change the cargo of one of the
nodes, but the more interesting operations are the ones that add, remove, or reorder the nodes.

As an example, let’s write a method that removes the second node in the list and returns a reference
to the removed node:

def removeSecond(lst):
if lst == None: return
first = lst
second = lst.getNext()
make the first node refer to the third
first.setNext(second.getNext())
separate the second node from the rest of the list
second.setNext(None)
return second

Again, we are using temporary variables to make the code more readable. Here is how to use this
method:

>>> print_list(node1)
1 2 3
>>> removed = removeSecond(node1)
>>> print_list(removed)
2
>>> print_list(node1)
1 3

This state diagram shows the effect of the operation:

What happens if you invoke this method and pass a list with only one element (a singleton)? What
happens if you pass the empty list as an argument? Is there a precondition for this method? If so,
fix the method to handle a violation of the precondition in a reasonable way.

Wrappers and helpers

It is often useful to divide a list operation into two methods, as we did above with the helper
function. As an addition to that example, printing a list backward in the conventional list format
[3, 2, 1] we can simply add code to the print_backward method:

242 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

def print_backward(firstnode):
output = print_backward_helper(firstnode)
lstbkwd = "[" + output[:len(output)-2] + "]"
print(lstbkwd)

Again, it is a good idea to check methods like this to see if they work with special cases like an
empty list or a singleton.

When we use this method, print_backward acts as a wrapper, and it uses
print_backward_helper as a helper.

The LinkedList class

There are some subtle problems with the way we have been implementing lists. In a reversal of
cause and effect, we’ll propose an alternative implementation first and then explain what problems
it solves.

First, we’ll create a new class called LinkedList. Its attributes are an integer that contains the
length of the list and a reference to the first node. LinkedList objects serve as handles for
manipulating lists of Node objects:

class LinkedList(object):
def __init__(self):

self.length = 0
self.head = None

One nice thing about the LinkedList class is that it provides a natural place to put wrapper
functions like print_backward, which we can make a method of the LinkedList class:

class LinkedList(object):
...
def print_backward_helper(self,curr):

if curr == None:
return ""

else:
head = curr
tail = curr.getNext()
return self.print_backward_helper(tail) + str(head) + ", "

def print_backward(self):
output = self.print_backward_helper(self.head)
lstbkwd = "[" + output[:len(output)-2] + "]"
print(lstbkwd)

Another benefit of the LinkedList class is that it makes it easier to add or remove the first
element of a list. For example, addFirst is a method for LinkedLists; it takes an item of
cargo as an argument and puts it at the beginning of the list:

1.22. Linked lists 243

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class LinkedList(object):
...
def addFirst(self, cargo):

node = Node(cargo)
node.setNext(self.head)
self.head = node
self.length = self.length + 1

As usual, you should check code like this to see if it handles the special cases. For example, what
happens if the list is initially empty?

Invariants

Some lists are well formed ; others are not. For example, if a list contains a loop, it will cause
many of our methods to crash, so we might want to require that lists contain no loops. Another
requirement is that the length value in the LinkedList object should be equal to the actual
number of nodes in the list.

Requirements like these are called invariants because, ideally, they should be true of every object
all the time. Specifying invariants for objects is a useful programming practice because it makes it
easier to prove the correctness of code, check the integrity of data structures, and detect errors.

One thing that is sometimes confusing about invariants is that there are times when they are vi-
olated. For example, in the middle of addFirst, after we have added the node but before we
have incremented length, the invariant is violated. This kind of violation is acceptable; in fact,
it is often impossible to modify an object without violating an invariant for at least a little while.
Normally, we require that every method that violates an invariant must restore the invariant.

If there is any significant stretch of code in which the invariant is violated, it is important for the
comments to make that clear, so that no operations are performed that depend on the invariant.

Glossary

embedded reference A reference stored in an attribute of an object.

linked list A data structure that implements a collection using a sequence of linked nodes.

node An element of a list, usually implemented as an object that contains a reference to another
object of the same type.

cargo An item of data contained in a node.

link An embedded reference used to link one object to another.

precondition An assertion that must be true in order for a method to work correctly.

244 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

fundamental ambiguity theorem A reference to a list node can be treated as a single object or
as the first in a list of nodes.

singleton A linked list with a single node.

wrapper A method that acts as a middleman between a caller and a helper method, often making
the method easier or less error-prone to invoke.

helper A method that is not invoked directly by a caller but is used by another method to perform
part of an operation.

invariant An assertion that should be true of an object at all times (except perhaps while the
object is being modified).

Exercises

1. By convention, lists are often printed in brackets with commas between the elements, as in
[1, 2, 3]. Modify print_list so that it generates output in this format.

Stacks

Abstract data types

The data types you have seen so far are all concrete, in the sense that we have completely specified
how they are implemented. For example, the Card class represents a card using two integers. As
we discussed at the time, that is not the only way to represent a card; there are many alternative
implementations.

An abstract data type, or ADT, specifies a set of operations (or methods) and the semantics of the
operations (what they do), but it does not not specify the implementation of the operations. That’s
what makes it abstract.

Why is that useful?

1. It simplifies the task of specifying an algorithm if you can denote the operations you need
without having to think at the same time about how the operations are performed.

2. Since there are usually many ways to implement an ADT, it might be useful to write an
algorithm that can be used with any of the possible implementations.

3. Well-known ADTs, such as the Stack ADT in this chapter, are often implemented in standard
libraries so they can be written once and used by many programmers.

4. The operations on ADTs provide a common high-level language for specifying and talking
about algorithms.

1.23. Stacks 245

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

When we talk about ADTs, we often distinguish the code that uses the ADT, called the client code,
from the code that implements the ADT, called the provider code.

The Stack ADT

In this chapter, we will look at one common ADT, the stack. A stack is a collection, meaning
that it is a data structure that contains multiple elements. Other collections we have seen include
dictionaries and lists.

An ADT is defined by the operations that can be performed on it, which is called an interface. The
interface for a stack consists of these operations:

__init__ Initialize a new empty stack.

push Add a new item to the stack.

pop Remove and return an item from the stack. The item that is returned is always the last one
that was added.

is_empty Check whether the stack is empty.

A stack is sometimes called a last in, first out or LIFO data structure, because the last item added
is the first to be removed.

Implementing stacks with Python lists

The list operations that Python provides are similar to the operations that define a stack. The
interface isn’t exactly what it is supposed to be, but we can write code to translate from the Stack
ADT to the built-in operations.

This code is called an implementation of the Stack ADT. In general, an implementation is a set of
methods that satisfy the syntactic and semantic requirements of an interface.

Here is an implementation of the Stack ADT that uses a Python list:

class Stack(object):
def __init__(self):

self.items = []

def push(self, item):
self.items.append(item)

def pop(self):
return self.items.pop()

def is_empty(self):
return (self.items == [])

246 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

A Stack object contains an attribute named items that is a list of items in the stack. The
initialization method sets items to the empty list.

To push a new item onto the stack, push appends it onto items. To pop an item off the stack,
pop uses the homonymous (same-named) list method to remove and return the last item on the
list.

Finally, to check if the stack is empty, is_empty compares items to the empty list.

An implementation like this, in which the methods consist of simple invocations of existing meth-
ods, is called a veneer. In real life, veneer is a thin coating of good quality wood used in furniture-
making to hide lower quality wood underneath. Computer scientists use this metaphor to describe
a small piece of code that hides the details of an implementation and provides a simpler, or more
standard, interface.

Pushing and popping

A stack is a generic data structure, which means that we can add any type of item to it. The
following example pushes two integers and a string onto the stack:

>>> s = Stack()
>>> s.push(54)
>>> s.push(45)
>>> s.push("+")

We can use is_empty and pop to remove and print all of the items on the stack:

output = ""
while not s.is_empty():

output += "%s " % (s.pop())
print(output)

The output is + 45 54. In other words, we just used a stack to print the items backward! Granted,
it’s not the standard format for printing a list, but by using a stack, it was remarkably easy to do.

You should compare this bit of code to the implementation of print_backward in the last
chapter. There is a natural parallel between the recursive version of print_backward and
the stack algorithm here. The difference is that print_backward uses the runtime stack to
keep track of the nodes while it traverses the list, and then prints them on the way back from the
recursion. The stack algorithm does the same thing, except that is use a Stack object instead of
the runtime stack.

Using a stack to evaluate postfix

In most programming languages, mathematical expressions are written with the operator between
the two operands, as in 1 + 2. This format is called infix. An alternative used by some calculators
is called postfix. In postfix, the operator follows the operands, as in 1 2 +.

1.23. Stacks 247

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The reason postfix is sometimes useful is that there is a natural way to evaluate a postfix expression
using a stack:

1. Starting at the beginning of the expression, get one term (operator or operand) at a time.

• If the term is an operand, push it on the stack.

• If the term is an operator, pop two operands off the stack, perform the operation on
them, and push the result back on the stack.

2. When you get to the end of the expression, there should be exactly one operand left on the
stack. That operand is the result.

Parsing

To implement the previous algorithm, we need to be able to traverse a string and break it into
operands and operators. This process is an example of parsing, and the results—the individual
chunks of the string – are called tokens. You might remember these words from Chapter 1.

Python provides a split method in both the string and re (regular expression) modules. The
function string.split splits a string into a list using a single character as a delimiter. For
example:

>>> import string
>>> string.split("Now is the time"," ")
['Now', 'is', 'the', 'time']

In this case, the delimiter is the space character, so the string is split at each space.

The function re.split is more powerful, allowing us to provide a regular expression instead of
a delimiter. A regular expression is a way of specifying a set of strings. For example, [A-z] is the
set of all letters and [0-9] is the set of all numbers. The ^ operator negates a set, so [^0-9] is
the set of everything that is not a number, which is exactly the set we want to use to split up postfix
expressions:

>>> import re
>>> re.split("([^0-9])", "123+456*/")
['123', '+', '456', '*', '', '/', '']

Notice that the order of the arguments is different from string.split; the delimiter comes
before the string.

The resulting list includes the operands 123 and 456 and the operators * and /. It also includes
two empty strings that are inserted after the operands.

248 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Evaluating postfix

To evaluate a postfix expression, we will use the parser from the previous section and the algo-
rithm from the section before that. To keep things simple, we’ll start with an evaluator that only
implements the operators + and *:

def eval_postfix(expr):
import re
token_list = re.split("([^0-9])", expr)
stack = Stack()
for token in token_list:

if token == '' or token == ' ':
continue

if token == '+':
sum = stack.pop() + stack.pop()
stack.push(sum)

elif token == '*':
product = stack.pop() * stack.pop()
stack.push(product)

else:
stack.push(int(token))

return stack.pop()

The first condition takes care of spaces and empty strings. The next two conditions handle opera-
tors. We assume, for now, that anything else must be an operand. Of course, it would be better to
check for erroneous input and report an error message, but we’ll get to that later.

Let’s test it by evaluating the postfix form of (56+47)*2:

>>> print(eval_postfix("56 47 + 2 *"))
206

That’s close enough.

Clients and providers

One of the fundamental goals of an ADT is to separate the interests of the provider, who writes the
code that implements the ADT, and the client, who uses the ADT. The provider only has to worry
about whether the implementation is correct – in accord with the specification of the ADT – and
not how it will be used.

Conversely, the client assumes that the implementation of the ADT is correct and doesn’t worry
about the details. When you are using one of Python’s built-in types, you have the luxury of
thinking exclusively as a client.

Of course, when you implement an ADT, you also have to write client code to test it. In that case,
you play both roles, which can be confusing. You should make some effort to keep track of which
role you are playing at any moment.

1.23. Stacks 249

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Glossary

abstract data type (ADT) A data type (usually a collection of objects) that is defined by a set of
operations but that can be implemented in a variety of ways.

interface The set of operations that define an ADT.

implementation Code that satisfies the syntactic and semantic requirements of an interface.

client A program (or the person who wrote it) that uses an ADT.

provider The code (or the person who wrote it) that implements an ADT.

veneer A class definition that implements an ADT with method definitions that are invocations
of other methods, sometimes with simple transformations. The veneer does no significant
work, but it improves or standardizes the interface seen by the client.

generic data structure A kind of data structure that can contain data of any type.

infix A way of writing mathematical expressions with the operators between the operands.

postfix A way of writing mathematical expressions with the operators after the operands.

parse To read a string of characters or tokens and analyze its grammatical structure.

token A set of characters that are treated as a unit for purposes of parsing, such as the words in a
natural language.

delimiter A character that is used to separate tokens, such as punctuation in a natural language.

Exercises

1. Apply the postfix algorithm to the expression 1 2 + 3 *.This example demonstrates one
of the advantages of postfix—there is no need to use parentheses to control the order of
operations. To get the same result in infix, we would have to write (1 + 2) * 3.

2. Write a postfix expression that is equivalent to 1 + 2 * 3.

Queues

This chapter presents two ADTs: the Queue and the Priority Queue. In real life, a queue is a
line of customers waiting for service of some kind. In most cases, the first customer in line is the
next customer to be served. There are exceptions, though. At airports, customers whose flights
are leaving soon are sometimes taken from the middle of the queue. At supermarkets, a polite
customer might let someone with only a few items go first.

The rule that determines who goes next is called the queueing policy. The simplest queueing pol-
icy is called FIFO, for first- in-first-out. The most general queueing policy is priority queueing,

250 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

in which each customer is assigned a priority and the customer with the highest priority goes first,
regardless of the order of arrival. We say this is the most general policy because the priority can
be based on anything: what time a flight leaves; how many groceries the customer has; or how
important the customer is. Of course, not all queueing policies are fair, but fairness is in the eye of
the beholder.

The Queue ADT and the Priority Queue ADT have the same set of operations. The difference is in
the semantics of the operations: a queue uses the FIFO policy; and a priority queue (as the name
suggests) uses the priority queueing policy.

The Queue ADT

The Queue ADT is defined by the following operations:

__init__ Initialize a new empty queue.

insert Add a new item to the queue.

remove Remove and return an item from the queue. The item that is returned is the first one that
was added.

is_empty Check whether the queue is empty.

Linked Queue

The first implementation of the Queue ADT we will look at is called a linked queue because it is
made up of linked Node objects. Here is the class definition:

class Queue(object):
def __init__(self):

self.length = 0
self.head = None

def is_empty(self):
return (self.length == 0)

def insert(self, cargo):
node = Node(cargo)
node.next = None
if self.head == None:

if list is empty the new node goes first
self.head = node

else:
find the last node in the list
last = self.head
while last.next: last = last.next
append the new node

1.24. Queues 251

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

last.next = node
self.length = self.length + 1

def remove(self):
cargo = self.head.cargo
self.head = self.head.next
self.length = self.length - 1
return cargo

The methods is_empty and remove are identical to the LinkedList methods is_empty
and remove_first. The insert method is new and a bit more complicated.

We want to insert new items at the end of the list. If the queue is empty, we just set head to refer
to the new node.

Otherwise, we traverse the list to the last node and tack the new node on the end. We can identify
the last node because its next attribute is None.

There are two invariants for a properly formed Queue object. The value of length should be
the number of nodes in the queue, and the last node should have next equal to None. Convince
yourself that this method preserves both invariants.

Performance characteristics

Normally when we invoke a method, we are not concerned with the details of its implementation.
But there is one detail we might want to know—the performance characteristics of the method.
How long does it take, and how does the run time change as the number of items in the collection
increases?

First look at remove. There are no loops or function calls here, suggesting that the runtime of this
method is the same every time. Such a method is called a constant-time operation. In reality, the
method might be slightly faster when the list is empty since it skips the body of the conditional,
but that difference is not significant.

The performance of insert is very different. In the general case, we have to traverse the list to
find the last element.

This traversal takes time proportional to the length of the list. Since the runtime is a linear function
of the length, this method is called linear time. Compared to constant time, that’s very bad.

Improved Linked Queue

We would like an implementation of the Queue ADT that can perform all operations in constant
time. One way to do that is to modify the Queue class so that it maintains a reference to both the
first and the last node, as shown in the figure:

The ImprovedQueue implementation looks like this:

252 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class ImprovedQueue(object):
def __init__(self):

self.length = 0
self.head = None
self.last = None

def is_empty(self):
return (self.length == 0)

So far, the only change is the attribute last. It is used in insert and remove methods:

class ImprovedQueue(object):
...
def insert(self, cargo):

node = Node(cargo)
node.next = None
if self.length == 0:

if list is empty, the new node is head and last
self.head = self.last = node

else:
find the last node
last = self.last
append the new node
last.next = node
self.last = node

self.length = self.length + 1

Since last keeps track of the last node, we don’t have to search for it. As a result, this method is
constant time.

There is a price to pay for that speed. We have to add a special case to remove to set last to
None when the last node is removed:

class ImprovedQueue(object):
...
def remove(self):

cargo = self.head.cargo
self.head = self.head.next
self.length = self.length - 1
if self.length == 0:

self.last = None
return cargo

This implementation is more complicated than the Linked Queue implementation, and it is more
difficult to demonstrate that it is correct. The advantage is that we have achieved the goal – both
insert and remove are constant-time operations.

1.24. Queues 253

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Priority queue

The Priority Queue ADT has the same interface as the Queue ADT, but different semantics. Again,
the interface is:

__init__ Initialize a new empty queue.

insert Add a new item to the queue.

remove Remove and return an item from the queue. The item that is returned is the one with the
highest priority.

is_empty Check whether the queue is empty.

The semantic difference is that the item that is removed from the queue is not necessarily the
first one that was added. Rather, it is the item in the queue that has the highest priority. What
the priorities are and how they compare to each other are not specified by the Priority Queue
implementation. It depends on which items are in the queue.

For example, if the items in the queue have names, we might choose them in alphabetical order. If
they are bowling scores, we might go from highest to lowest, but if they are golf scores, we would
go from lowest to highest. As long as we can compare the items in the queue, we can find and
remove the one with the highest priority.

This implementation of Priority Queue has as an attribute a Python list that contains the items in
the queue.

class PriorityQueue(object):
def __init__(self):

self.items = []

def is_empty(self):
return self.items == []

def insert(self, item):
self.items.append(item)

The initialization method, is_empty, and insert are all veneers on list operations. The only
interesting method is remove:

class PriorityQueue(object):
...
def remove(self):

maxi = 0
for i in range(1, len(self.items)):

if self.items[i] > self.items[maxi]: maxi = i
item = self.items[maxi]
self.items[maxi:maxi+1] = []
return item

254 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

At the beginning of each iteration, maxi holds the index of the biggest item (highest priority)
we have seen so far. Each time through the loop, the program compares the i-eth item to the
champion. If the new item is bigger, the value of maxi if set to i.

When the for statement completes, maxi is the index of the biggest item. This item is removed
from the list and returned.

Let’s test the implementation:

>>> q = PriorityQueue()
>>> q.insert(11)
>>> q.insert(12)
>>> q.insert(14)
>>> q.insert(13)
>>> while not q.is_empty(): print(q.remove())
14
13
12
11

If the queue contains simple numbers or strings, they are removed in numerical or alphabetical
order, from highest to lowest. Python can find the biggest integer or string because it can compare
them using the built-in comparison operators.

If the queue contains an object type, it has to provide a __cmp__ method. When remove uses
the > operator to compare items, it invokes the __cmp__ for one of the items and passes the other
as a parameter. As long as the __cmp__ method works correctly, the Priority Queue will work.

The Golfer class

As an example of an object with an unusual definition of priority, let’s implement a class called
Golfer that keeps track of the names and scores of golfers. As usual, we start by defining
__init__ and __str__:

class Golfer(object):
def __init__(self, name, score):

self.name = name
self.score= score

def __str__(self):
return "%-16s: %d" % (self.name, self.score)

__str__ uses the format operator to put the names and scores in neat columns.

Next we define a version of __cmp__ where the lowest score gets highest priority. As always,
__cmp__ returns 1 if self is greater than other, -1 if self is less than other, and 0 if they are
equal.

1.24. Queues 255

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

class Golfer(object):
...
def __cmp__(self, other):

if self.score < other.score: return 1 # less is more
if self.score > other.score: return -1
return 0

Now we are ready to test the priority queue with the Golfer class:

>>> tiger = Golfer("Tiger Woods", 61)
>>> phil = Golfer("Phil Mickelson", 72)
>>> hal = Golfer("Hal Sutton", 69)
>>>
>>> pq = PriorityQueue()
>>> pq.insert(tiger)
>>> pq.insert(phil)
>>> pq.insert(hal)
>>> while not pq.is_empty(): print(pq.remove())

Tiger Woods : 61
Hal Sutton : 69
Phil Mickelson : 72

Glossary

queue An ordered set of objects waiting for a service of some kind.

Queue An ADT that performs the operations one might perform on a queue.

queueing policy The rules that determine which member of a queue is removed next.

FIFO First In, First Out, a queueing policy in which the first member to arrive is the first to be
removed.

priority queue A queueing policy in which each member has a priority determined by external
factors. The member with the highest priority is the first to be removed.

Priority Queue An ADT that defines the operations one might perform on a priority queue.

linked queue An implementation of a queue using a linked list.

constant time An operation whose runtime does not depend on the size of the data structure.

linear time An operation whose runtime is a linear function of the size of the data structure.

Exercises

1. Write an implementation of the Queue ADT using a Python list. Compare the performance
of this implementation to the ImprovedQueue for a range of queue lengths. #. Write

256 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

an implementation of the Priority Queue ADT using a linked list. You should keep the
list sorted so that removal is a constant time operation. Compare the performance of this
implementation with the Python list implementation.

Trees

Like linked lists, trees are made up of nodes. A common kind of tree is a binary tree, in which
each node contains a reference to two other nodes (possibly None). These references are referred
to as the left and right subtrees. Like list nodes, tree nodes also contain cargo. A state diagram for
a tree looks like this:

To avoid cluttering up the picture, we often omit the Nones.

The top of the tree (the node tree refers to) is called the root. In keeping with the tree metaphor,
the other nodes are called branches and the nodes at the tips with null references are called leaves.
It may seem odd that we draw the picture with the root at the top and the leaves at the bottom, but
that is not the strangest thing.

To make things worse, computer scientists mix in another metaphor – the family tree. The top
node is sometimes called a parent and the nodes it refers to are its children. Nodes with the same
parent are called siblings.

Finally, there is a geometric vocabulary for talking about trees. We already mentioned left and
right, but there is also up (toward the parent/root) and down (toward the children/leaves). Also, all
of the nodes that are the same distance from the root comprise a level of the tree.

We probably don’t need three metaphors for talking about trees, but there they are.

Like linked lists, trees are recursive data structures because they are defined recursively. A tree is
either:

1. the empty tree, represented by None, or

2. a node that contains an object reference (cargo) and two tree references.

1.25. Trees 257

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Building trees

The process of assembling a tree is similar to the process of assembling a linked list. Each con-
structor invocation builds a single node.

class Tree(object):
def __init__(self, cargo, left=None, right=None):

self.cargo = cargo
self.left = left
self.right = right

def __str__(self):
return str(self.cargo)

The cargo can be any type, but the left and right parameters should be tree nodes. left
and right are optional; the default value is None.

To print a node, we just print the cargo.

One way to build a tree is from the bottom up. Allocate the child nodes first:

left = Tree(2)
right = Tree(3)

Then create the parent node and link it to the children:

tree = Tree(1, left, right);

We can write this code more concisely by nesting constructor invocations:

>>> tree = Tree(1, Tree(2), Tree(3))

Either way, the result is the tree at the beginning of the chapter.

Traversing trees

Any time you see a new data structure, your first question should be, How do I traverse it? The
most natural way to traverse a tree is recursively. For example, if the tree contains integers as
cargo, this function returns their sum:

def total(tree):
if tree == None: return 0
return total(tree.left) + total(tree.right) + tree.cargo

The base case is the empty tree, which contains no cargo, so the sum is 0. The recursive step makes
two recursive calls to find the sum of the child trees. When the recursive calls complete, we add
the cargo of the parent and return the total.

258 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Expression trees

A tree is a natural way to represent the structure of an expression. Unlike other notations, it
can represent the computation unambiguously. For example, the infix expression 1 + 2 * 3 is
ambiguous unless we know that the multiplication happens before the addition.

This expression tree represents the same computation:

The nodes of an expression tree can be operands like 1 and 2 or operators like + and *. Operands
are leaf nodes; operator nodes contain references to their operands. (All of these operators are
binary, meaning they have exactly two operands.)

We can build this tree like this:

>>> tree = Tree('+', Tree(1), Tree('*', Tree(2), Tree(3)))

Looking at the figure, there is no question what the order of operations is; the multiplication hap-
pens first in order to compute the second operand of the addition.

Expression trees have many uses. The example in this chapter uses trees to translate expressions to
postfix, prefix, and infix. Similar trees are used inside compilers to parse, optimize, and translate
programs.

Tree traversal

We can traverse an expression tree and print the contents like this:

def print_tree(tree):
if tree == None: return
sys.stdout.write("%s " % (tree.cargo))
print_tree(tree.left)
print_tree(tree.right)

1.25. Trees 259

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

In other words, to print a tree, first print the contents of the root, then print the entire left subtree,
and then print the entire right subtree. This way of traversing a tree is called a preorder, because
the contents of the root appear before the contents of the children. For the previous example, the
output is:

>>> tree = Tree('+', Tree(1), Tree('*', Tree(2), Tree(3)))
>>> print_tree(tree)
+ 1 * 2 3

This format is different from both postfix and infix; it is another notation called prefix, in which
the operators appear before their operands.

You might suspect that if you traverse the tree in a different order, you will get the expression in a
different notation. For example, if you print the subtrees first and then the root node, you get:

def print_tree_postorder(tree):
if tree == None: return
print_tree_postorder(tree.left)
print_tree_postorder(tree.right)
sys.stdout.write("%s " % (tree.cargo))

The result, 1 2 3 * +, is in postfix! This order of traversal is called postorder.

Finally, to traverse a tree inorder, you print the left tree, then the root, and then the right tree:

def print_tree_inorder(tree):
if tree == None: return
print_tree_inorder(tree.left)
sys.stdout.write("%s " % (tree.cargo))
print_tree_inorder(tree.right)

The result is 1 + 2 * 3, which is the expression in infix.

To be fair, we should point out that we have omitted an important complication. Sometimes when
we write an expression in infix, we have to use parentheses to preserve the order of operations. So
an inorder traversal is not quite sufficient to generate an infix expression.

Nevertheless, with a few improvements, the expression tree and the three recursive traversals pro-
vide a general way to translate expressions from one format to another.

If we do an inorder traversal and keep track of what level in the tree we are on, we can generate a
graphical representation of a tree:

def print_tree_indented(tree, level=0):
if tree == None: return
print_tree_indented(tree.right, level+1)
print(' ' * level + str(tree.cargo))
print_tree_indented(tree.left, level+1)

The parameter level keeps track of where we are in the tree. By default, it is initially 0. Each
time we make a recursive call, we pass level+1 because the child’s level is always one greater

260 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

than the parent’s. Each item is indented by two spaces per level. The result for the example tree is:

>>> print_tree_indented(tree)
3

*
2

+
1

If you look at the output sideways, you see a simplified version of the original figure.

Building an expression tree

In this section, we parse infix expressions and build the corresponding expression trees. For exam-
ple, the expression (3 + 7) * 9 yields the following tree:

Notice that we have simplified the diagram by leaving out the names of the attributes.

The parser we will write handles expressions that include numbers, parentheses, and the operators
+ and *. We assume that the input string has already been tokenized into a Python list (producing
this list is left as an exercise). The token list for (3 + 7) * 9 is:

['(', 3, '+', 7, ')', '*', 9, 'end']

The end token is useful for preventing the parser from reading past the end of the list.

The first function we’ll write is get_token, which takes a token list and an expected token as
parameters. It compares the expected token to the first token on the list: if they match, it removes
the token from the list and returns True; otherwise, it returns False:

def get_token(token_list, expected):
if token_list[0] == expected:

del token_list[0]
return True

else:
return False

Since token_list refers to a mutable object, the changes made here are visible to any other
variable that refers to the same object.

1.25. Trees 261

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The next function, get_number, handles operands. If the next token in token_list is a
number, get_number removes it and returns a leaf node containing the number; otherwise, it
returns None.

def get_number(token_list):
x = token_list[0]
if type(x) != type(0): return None
del token_list[0]
return Tree (x, None, None)

Before continuing, we should test get_number in isolation. We assign a list of numbers to
token_list, extract the first, print the result, and print what remains of the token list:

>>> token_list = [9, 11, 'end']
>>> x = get_number(token_list)
>>> print_tree_postorder(x)
9
>>> print(token_list)
[11, 'end']

The next method we need is get_product, which builds an expression tree for products. A
simple product has two numbers as operands, like 3 * 7.

Here is a version of get_product that handles simple products.

def get_product(token_list):
a = get_number(token_list)
if get_token(token_list, '*'):

b = get_number(token_list)
return Tree ('*', a, b)

else:
return a

Assuming that get_number succeeds and returns a singleton tree, we assign the first operand to
a. If the next character is *, we get the second number and build an expression tree with a, b, and
the operator.

If the next character is anything else, then we just return the leaf node with a. Here are two
examples:

>>> token_list = [9, '*', 11, 'end']
>>> tree = get_product(token_list)
>>> print_tree_postorder(tree)
9 11 *

>>> token_list = [9, '+', 11, 'end']
>>> tree = get_product(token_list)
>>> print_tree_postorder(tree)
9

262 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

The second example implies that we consider a single operand to be a kind of product. This
definition of product is counterintuitive, but it turns out to be useful.

Now we have to deal with compound products, like like 3 * 5 * 13. We treat this expression
as a product of products, namely 3 * (5 * 13). The resulting tree is:

With a small change in get_product, we can handle an arbitrarily long product:

def get_product(token_list):
a = get_number(token_list)
if get_token(token_list, '*'):

b = get_product(token_list) # this line changed
return Tree ('*', a, b)

else:
return a

In other words, a product can be either a singleton or a tree with * at the root, a number on the left,
and a product on the right. This kind of recursive definition should be starting to feel familiar.

Let’s test the new version with a compound product:

>>> token_list = [2, '*', 3, '*', 5 , '*', 7, 'end']
>>> tree = get_product(token_list)
>>> print_tree_postorder(tree)
2 3 5 7 * * *

Next we will add the ability to parse sums. Again, we use a slightly counterintuitive definition of
sum. For us, a sum can be a tree with + at the root, a product on the left, and a sum on the right.
Or, a sum can be just a product.

If you are willing to play along with this definition, it has a nice property: we can represent any
expression (without parentheses) as a sum of products. This property is the basis of our parsing
algorithm.

get_sum tries to build a tree with a product on the left and a sum on the right. But if it doesn’t
find a +, it just builds a product.

def get_sum(token_list):
a = get_product(token_list)
if get_token(token_list, '+'):

b = get_sum(token_list)
return Tree ('+', a, b)

1.25. Trees 263

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

else:
return a

Let’s test it with 9 * 11 + 5 * 7:

>>> token_list = [9, '*', 11, '+', 5, '*', 7, 'end']
>>> tree = get_sum(token_list)
>>> print_tree_postorder(tree)
9 11 * 5 7 * +

We are almost done, but we still have to handle parentheses. Anywhere in an expression where
there can be a number, there can also be an entire sum enclosed in parentheses. We just need to
modify get_number to handle subexpressions:

def get_number(token_list):
if get_token(token_list, '('):

x = get_sum(token_list) # get the subexpression
get_token(token_list, ')') # remove the closing parenthesis
return x

else:
x = token_list[0]
if type(x) != type(0): return None
token_list[0:1] = []
return Tree (x, None, None)

Let’s test this code with 9 * (11 + 5) * 7:

>>> token_list = [9, '*', '(', 11, '+', 5, ')', '*', 7, 'end']
>>> tree = get_sum(token_list)
>>> print_tree_postorder(tree)
9 11 5 + 7 * *

The parser handled the parentheses correctly; the addition happens before the multiplication.

In the final version of the program, it would be a good idea to give get_number a name more
descriptive of its new role.

Handling errors

Throughout the parser, we’ve been assuming that expressions are well-formed. For example, when
we reach the end of a subexpression, we assume that the next character is a close parenthesis. If
there is an error and the next character is something else, we should deal with it.

def get_number(token_list):
if get_token(token_list, '('):

x = get_sum(token_list)
if not get_token(token_list, ')'):

raise 'BadExpressionError', 'missing parenthesis'

264 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

return x
else:

the rest of the function omitted

The raise statement creates an exception; in this case we create a new kind of exception, called a
BadExpressionError. If the function that called get_number, or one of the other functions
in the traceback, handles the exception, then the program can continue. Otherwise, Python will
print an error message and quit.

The animal tree

In this section, we develop a small program that uses a tree to represent a knowledge base.

The program interacts with the user to create a tree of questions and animal names. Here is a
sample run:

Are you thinking of an animal? y
Is it a bird? n
What is the animals name? dog
What question would distinguish a dog from a bird? Can it fly
If the animal were dog the answer would be? n

Are you thinking of an animal? y
Can it fly? n
Is it a dog? n
What is the animals name? cat
What question would distinguish a cat from a dog? Does it bark
If the animal were cat the answer would be? n

Are you thinking of an animal? y
Can it fly? n
Does it bark? y
Is it a dog? y
I rule!

Are you thinking of an animal? n

Here is the tree this dialog builds:

1.25. Trees 265

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

At the beginning of each round, the program starts at the top of the tree and asks the first question.
Depending on the answer, it moves to the left or right child and continues until it gets to a leaf
node. At that point, it makes a guess. If the guess is not correct, it asks the user for the name of the
new animal and a question that distinguishes the (bad) guess from the new animal. Then it adds a
node to the tree with the new question and the new animal.

Here is the code:

def yes(ques):
ans = raw_input(ques).lower()
return ans[0] == 'y'

def animal():
start with a singleton
root = Tree("bird")

loop until the user quits
while True:

print
if not yes("Are you thinking of an animal? "): break

walk the tree
tree = root
while tree.left != None:

prompt = tree.cargo + "? "
if yes(prompt):

tree = tree.right
else:

tree = tree.left

make a guess
guess = tree.cargo
prompt = "Is it a " + guess + "? "
if yes(prompt):

print("I rule!")
continue

get new information
prompt = "What is the animal's name? "
animal = raw_input(prompt)
prompt = "What question would distinguish a %s from a %s? "
question = raw_input(prompt % (animal, guess))

add new information to the tree
tree.cargo = question
prompt = "If the animal were %s the answer would be? "
if yes(prompt % animal):

tree.left = Tree(guess)

266 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

tree.right = Tree(animal)
else:

tree.left = Tree(animal)
tree.right = Tree(guess)

The function yes is a helper; it prints a prompt and then takes input from the user. If the response
begins with y or Y, the function returns True.

The condition of the outer loop of animal is True, which means it will continue until the break
statement executes, if the user is not thinking of an animal.

The inner while loop walks the tree from top to bottom, guided by the user’s responses.

When a new node is added to the tree, the new question replaces the cargo, and the two children
are the new animal and the original cargo.

One shortcoming of the program is that when it exits, it forgets everything you carefully taught it!
Fixing this problem is left as an exercise.

Glossary

binary tree A tree in which each node refers to zero, one, or two dependent nodes.

root The topmost node in a tree, with no parent.

leaf A bottom-most node in a tree, with no children.

parent The node that refers to a given node.

child One of the nodes referred to by a node.

siblings Nodes that share a common parent.

level The set of nodes equidistant from the root.

binary operator An operator that takes two operands.

subexpression An expression in parentheses that acts as a single operand in a larger expression.

preorder A way to traverse a tree, visiting each node before its children.

prefix notation A way of writing a mathematical expression with each operator appearing before
its operands.

postorder A way to traverse a tree, visiting the children of each node before the node itself.

inorder A way to traverse a tree, visiting the left subtree, then the root, and then the right subtree.

1.25. Trees 267

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Exercises

1. Modify print_tree_inorder so that it puts parentheses around every operator and pair
of operands. Is the output correct and unambiguous? Are the parentheses always necessary?

2. Write a function that takes an expression string and returns a token list.

3. Find other places in the expression tree functions where errors can occur and add appropriate
raise statements. Test your code with improperly formed expressions.

4. Think of various ways you might save the animal knowledge tree in a file. Implement the
one you think is easiest.

Debugging

Different kinds of errors can occur in a program, and it is useful to distinguish among them in order
to track them down more quickly:

1. Syntax errors are produced by Python when it is translating the source code into byte code.
They usually indicate that there is something wrong with the syntax of the program. Ex-
ample: Omitting the colon at the end of a def statement yields the somewhat redundant
message SyntaxError: invalid syntax.

2. Runtime errors are produced by the runtime system if something goes wrong while the pro-
gram is running. Most runtime error messages include information about where the error
occurred and what functions were executing. Example: An infinite recursion eventually
causes a runtime error of maximum recursion depth exceeded.

3. Semantic errors are problems with a program that compiles and runs but doesn’t do the right
thing. Example: An expression may not be evaluated in the order you expect, yielding an
unexpected result.

The first step in debugging is to figure out which kind of error you are dealing with. Although the
following sections are organized by error type, some techniques are applicable in more than one
situation.

Syntax errors

Syntax errors are usually easy to fix once you figure out what they are. Unfortunately, the error
messages are often not helpful. The most common messages are SyntaxError: invalid
syntax and SyntaxError: invalid token, neither of which is very informative.

On the other hand, the message does tell you where in the program the problem occurred. Actually,
it tells you where Python noticed a problem, which is not necessarily where the error is. Sometimes
the error is prior to the location of the error message, often on the preceding line.

268 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If you are building the program incrementally, you should have a good idea about where the error
is. It will be in the last line you added.

If you are copying code from a book, start by comparing your code to the book’s code very care-
fully. Check every character. At the same time, remember that the book might be wrong, so if you
see something that looks like a syntax error, it might be.

Here are some ways to avoid the most common syntax errors:

1. Make sure you are not using a Python keyword for a variable name.

2. Check that you have a colon at the end of the header of every compound statement, including
for, while, if, and def statements.

3. Check that indentation is consistent. You may indent with either spaces or tabs but it’s best
not to mix them. Each level should be nested the same amount.

4. Make sure that any strings in the code have matching quotation marks.

5. If you have multiline strings with triple quotes (single or double), make sure you have ter-
minated the string properly. An unterminated string may cause an invalid token error
at the end of your program, or it may treat the following part of the program as a string until
it comes to the next string. In the second case, it might not produce an error message at all!

6. An unclosed bracket – (, {, or [– makes Python continue with the next line as part of the
current statement. Generally, an error occurs almost immediately in the next line.

7. Check for the classic = instead of == inside a conditional.

If nothing works, move on to the next section...

I can’t get my program to run no matter what I do.

If the compiler says there is an error and you don’t see it, that might be because you and the
compiler are not looking at the same code. Check your programming environment to make sure
that the program you are editing is the one Python is trying to run. If you are not sure, try putting
an obvious and deliberate syntax error at the beginning of the program. Now run (or import) it
again. If the compiler doesn’t find the new error, there is probably something wrong with the way
your environment is set up.

If this happens, one approach is to start again with a new program like Hello, World!, and make
sure you can get a known program to run. Then gradually add the pieces of the new program to
the working one.

Runtime errors

Once your program is syntactically correct, Python can import it and at least start running it. What
could possibly go wrong?

1.26. Debugging 269

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

My program does absolutely nothing.

This problem is most common when your file consists of functions and classes but does not actually
invoke anything to start execution. This may be intentional if you only plan to import this module
to supply classes and functions.

If it is not intentional, make sure that you are invoking a function to start execution, or execute one
from the interactive prompt. Also see the Flow of Execution section below.

My program hangs.

If a program stops and seems to be doing nothing, we say it is hanging. Often that means that it is
caught in an infinite loop or an infinite recursion.

1. If there is a particular loop that you suspect is the problem, add a print statement imme-
diately before the loop that says entering the loop and another immediately after that says
exiting the loop.

2. Run the program. If you get the first message and not the second, you’ve got an infinite loop.
Go to the Infinite Loop section below.

3. Most of the time, an infinite recursion will cause the program to run for a while and then
produce a RuntimeError: Maximum recursion depth exceeded error. If that happens, go to
the Infinite Recursion section below.

4. If you are not getting this error but you suspect there is a problem with a recursive method
or function, you can still use the techniques in the Infinite Recursion section.

5. If neither of those steps works, start testing other loops and other recursive functions and
methods.

6. If that doesn’t work, then it is possible that you don’t understand the flow of execution in
your program. Go to the Flow of Execution section below.

Infinite Loop

If you think you have an infinite loop and you think you know what loop is causing the problem,
add a print statement at the end of the loop that prints the values of the variables in the condition
and the value of the condition.

For example:

while x > 0 and y < 0:
do something to x
do something to y

print "x: ", x

270 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

print "y: ", y
print "condition: ", (x > 0 and y < 0)

Now when you run the program, you will see three lines of output for each time through the loop.
The last time through the loop, the condition should be false. If the loop keeps going, you will
be able to see the values of x and y, and you might figure out why they are not being updated
correctly.

Infinite Recursion

Most of the time, an infinite recursion will cause the program to run for a while and then produce
a Maximum recursion depth exceeded error.

If you suspect that a function or method is causing an infinite recursion, start by checking to make
sure that there is a base case. In other words, there should be some condition that will cause the
function or method to return without making a recursive invocation. If not, then you need to rethink
the algorithm and identify a base case.

If there is a base case but the program doesn’t seem to be reaching it, add a print statement at the
beginning of the function or method that prints the parameters. Now when you run the program,
you will see a few lines of output every time the function or method is invoked, and you will see
the parameters. If the parameters are not moving toward the base case, you will get some ideas
about why not.

Flow of Execution

If you are not sure how the flow of execution is moving through your program, add print state-
ments to the beginning of each function with a message like entering function foo, where foo is
the name of the function.

Now when you run the program, it will print a trace of each function as it is invoked.

When I run the program I get an exception.

If something goes wrong during runtime, Python prints a message that includes the name of the
exception, the line of the program where the problem occurred, and a traceback.

The traceback identifies the function that is currently running, and then the function that invoked
it, and then the function that invoked that, and so on. In other words, it traces the path of function
invocations that got you to where you are. It also includes the line number in your file where each
of these calls occurs.

The first step is to examine the place in the program where the error occurred and see if you can
figure out what happened. These are some of the most common runtime errors:

1.26. Debugging 271

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

NameError You are trying to use a variable that doesn’t exist in the current environment. Re-
member that local variables are local. You cannot refer to them from outside the function
where they are defined.

TypeError There are several possible causes:

1. You are trying to use a value improperly. Example: indexing a string, list, or tuple with
something other than an integer.

2. There is a mismatch between the items in a format string and the items passed for
conversion. This can happen if either the number of items does not match or an invalid
conversion is called for.

3. You are passing the wrong number of arguments to a function or method. For methods,
look at the method definition and check that the first parameter is self. Then look at
the method invocation; make sure you are invoking the method on an object with the
right type and providing the other arguments correctly.

KeyError You are trying to access an element of a dictionary using a key value that the dictionary
does not contain.

AttributeError You are trying to access an attribute or method that does not exist.

IndexError The index you are using to access a list, string, or tuple is greater than its length minus
one. Immediately before the site of the error, add a print statement to display the value of
the index and the length of the array. Is the array the right size? Is the index the right value?

I added so many print statements I get inundated with output.

One of the problems with using print statements for debugging is that you can end up buried in
output. There are two ways to proceed: simplify the output or simplify the program.

To simplify the output, you can remove or comment out print statements that aren’t helping, or
combine them, or format the output so it is easier to understand.

To simplify the program, there are several things you can do. First, scale down the problem the
program is working on. For example, if you are sorting an array, sort a small array. If the program
takes input from the user, give it the simplest input that causes the problem.

Second, clean up the program. Remove dead code and reorganize the program to make it as easy
to read as possible. For example, if you suspect that the problem is in a deeply nested part of the
program, try rewriting that part with simpler structure. If you suspect a large function, try splitting
it into smaller functions and testing them separately.

Often the process of finding the minimal test case leads you to the bug. If you find that a program
works in one situation but not in another, that gives you a clue about what is going on.

Similarly, rewriting a piece of code can help you find subtle bugs. If you make a change that you
think doesn’t affect the program, and it does, that can tip you off.

272 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Semantic errors

In some ways, semantic errors are the hardest to debug, because the compiler and the runtime
system provide no information about what is wrong. Only you know what the program is supposed
to do, and only you know that it isn’t doing it.

The first step is to make a connection between the program text and the behavior you are seeing.
You need a hypothesis about what the program is actually doing. One of the things that makes that
hard is that computers run so fast.

You will often wish that you could slow the program down to human speed, and with some de-
buggers you can. But the time it takes to insert a few well-placed print statements is often short
compared to setting up the debugger, inserting and removing breakpoints, and walking the program
to where the error is occurring.

My program doesn’t work.

You should ask yourself these questions:

1. Is there something the program was supposed to do but which doesn’t seem to be happening?
Find the section of the code that performs that function and make sure it is executing when
you think it should.

2. Is something happening that shouldn’t? Find code in your program that performs that func-
tion and see if it is executing when it shouldn’t.

3. Is a section of code producing an effect that is not what you expected? Make sure that you
understand the code in question, especially if it involves invocations to functions or methods
in other Python modules. Read the documentation for the functions you invoke. Try them
out by writing simple test cases and checking the results.

In order to program, you need to have a mental model of how programs work. If you write a
program that doesn’t do what you expect, very often the problem is not in the program; it’s in your
mental model.

The best way to correct your mental model is to break the program into its components (usually
the functions and methods) and test each component independently. Once you find the discrepancy
between your model and reality, you can solve the problem.

Of course, you should be building and testing components as you develop the program. If you
encounter a problem, there should be only a small amount of new code that is not known to be
correct.

I’ve got a big hairy expression and it doesn’t do what I expect.

Writing complex expressions is fine as long as they are readable, but they can be hard to debug.
It is often a good idea to break a complex expression into a series of assignments to temporary

1.26. Debugging 273

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

variables.

For example:

self.hands[i].addCard (self.hands[self.findNeighbor(i)].popCard())

This can be rewritten as:

neighbor = self.findNeighbor (i)
pickedCard = self.hands[neighbor].popCard()
self.hands[i].addCard (pickedCard)

The explicit version is easier to read because the variable names provide additional documentation,
and it is easier to debug because you can check the types of the intermediate variables and display
their values.

Another problem that can occur with big expressions is that the order of evaluation may not be
what you expect. For example, if you are translating the expression x/2pi into Python, you
might write:

y = x / 2 * math.pi;

That is not correct because multiplication and division have the same precedence and are evaluated
from left to right. So this expression computes (x/2)pi.

A good way to debug expressions is to add parentheses to make the order of evaluation explicit:

y = x / (2 * math.pi);

Whenever you are not sure of the order of evaluation, use parentheses. Not only will the program
be correct (in the sense of doing what you intended), it will also be more readable for other people
who haven’t memorized the rules of precedence.

I’ve got a function or method that doesn’t return what I expect.

If you have a return statement with a complex expression, you don’t have a chance to print the
return value before returning. Again, you can use a temporary variable. For example, instead
of:

return self.hands[i].removeMatches()

you could write:

count = self.hands[i].removeMatches()
return count

Now you have the opportunity to display the value of count before returning.

274 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

I’m really, really stuck and I need help.

First, try getting away from the computer for a few minutes. Computers emit waves that affect the
brain, causing these effects:

1. Frustration and/or rage.

2. Superstitious beliefs (the computer hates me) and magical thinking (the program only
works when I wear my hat backward).

3. Random-walk programming (the attempt to program by writing every possible program and
choosing the one that does the right thing).

If you find yourself suffering from any of these symptoms, get up and go for a walk. When you are
calm, think about the program. What is it doing? What are some possible causes of that behavior?
When was the last time you had a working program, and what did you do next?

Sometimes it just takes time to find a bug. We often find bugs when we are away from the computer
and let our minds wander. Some of the best places to find bugs are trains, showers, and in bed, just
before you fall asleep.

No, I really need help.

It happens. Even the best programmers occasionally get stuck. Sometimes you work on a program
so long that you can’t see the error. A fresh pair of eyes is just the thing.

Before you bring someone else in, make sure you have exhausted the techniques described here.
Your program should be as simple as possible, and you should be working on the smallest input that
causes the error. You should have print statements in the appropriate places (and the output they
produce should be comprehensible). You should understand the problem well enough to describe
it concisely.

When you bring someone in to help, be sure to give them the information they need:

1. If there is an error message, what is it and what part of the program does it indicate?

2. What was the last thing you did before this error occurred? What were the last lines of code
that you wrote, or what is the new test case that fails?

3. What have you tried so far, and what have you learned?

When you find the bug, take a second to think about what you could have done to find it faster.
Next time you see something similar, you will be able to find the bug more quickly.

Remember, the goal is not just to make the program work. The goal is to learn how to make the
program work.

1.26. Debugging 275

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Graphics API for Students of Python: GASP

Introduction

Describe gasp here...

Coordinates

(0, 0) is at the bottom left of the window. The window is 640 pixels by 480, by default. (You can
make it a different size if you want to.) Coordinates are given in units of one pixel.

All functions that take coordinates take them as a tuple (x, y).

Circle((300, 200), 10) # :) This is good
Circle(300, 200, 10) # :(This is bad

Colors

To access the color module GASP has to offer. Call color.* where * is the color you wish to
call. For example: ‘ color.BLACK ‘ This is the color black. Check out the gasp color refrence
chart to see all of the availble color options.

The Essentials

from gasp import *

begin_graphics()

... # all of your code

end_graphics()

These are the essentials. ‘ from gasp import * ‘ imports the gasp module, begin_graphics()
starts the graphics window, and end_graphics() quits the graphics window and ends the pro-
gram. It’s dead simple, but also dead necessary.

Graphics Functions

276 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

begin_graphics()

begin_graphics(width=800, height=600, title="My Game", background=color.YELLOW)

This creates a graphics window with the dimensions 800x600, a title of My Game , and a back-
ground color of yellow. With no arguments you get a white 640x480 graphics window titled Gasp
.

width The width of the window in pixels.

height The windows height in pixels.

title A string that will be the title of the window.

background It is the background of the graphics window. It can either be a color or an image

end_graphics()

endgraphics()

Ends a graphics window.

clear_screen()

clear_screen()

Clears everything off of the graphics window. It looks like a new graphcs window as if you just
called begin_graphics().

remove_from_screen()

remove_from_screen(obj)

removes those objects from the screen

obj A screen object of a list of screen_objects you would like to remove from the screen

Screen Objects

The objects that you will be displayed in your graphics window. You can manipulate these objects
using the screen object methods

1.27. Graphics API for Students of Python: GASP 277

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Plot

Plot(pos, color=color.BLACK, size=1)

It puts a dot on the screen.

pos The coordinate on the screen that you wish to plot.

color The color you wish the dot to be.

size An integer that determinse the size the of the dot

Line

Line(start, end, color=color.BLACK)

Creates a line on the screen.

start The starting coordinate of the line.

end The coordinate at which the line will end.

color The color of the line

Box

Box(center, width, height, filled=False, color=color.BLACK, thickness=1)

This creates a Box on the screen

center A coorinate where the center of your box will be.

width The width in pixels of the box.

height The height of the box in pixels.

filled A boolean value that determines if your box will be filled

color The color of your box.

thickness The thickness in pixels of your box’s lines.

Polygon

Polygon(points, filled=False, color=color.BLACK, thickness=1)

Creates a polygon on the screen

points A list of coorinates that is each point on the polygon. The must be more than two items in
the list

278 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

filled A boolean value. If it is False the polygon will not be filled. Else, the polygon will not be
filled

color The color of the polygon’s lines

thickness An integer that determines the thickness of the lines.

Circle

Circle(center, radius, filled=False, color=color.BLACK, thickness=1)

Draws a circle, its center is a set of coordinates, and the radius is in pixels. It defaults to not
being filled and the color black.

center The circle’s center coordinate.

width An integer that is the radius of the circle

filled A boolean value that determines if your circle will be filled

color The color of your circle.

thickness The thickness in pixels of the circles lines.

Arc

Arc(center, radius, start_angle, end_angle, filled=False, color=color.BLACK, thickness=1)

Creates an arc on the screen.

center A coordinate that is the center of the arc.

radius An integer that is the distance between the center and the outer edge of the arc.

start_angle The start angle in degrees of the arc

end_angle The end angle in degrees of your arc

filled A boolean value that if True it fills the arc

color The color the arc

thickness The thickness in pixels of the arc

Oval

Oval(center, width, height, filled=False, color=color.BLACK, thickness=1)

Puts an oval on the screen wherever you want.

center The center coordinate of the Oval

1.27. Graphics API for Students of Python: GASP 279

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

width The width in pixels of the oval

height The height of the oval in pixels

filled A boolean value determining if the oval will be filles or not.

color The oval’s color

thickness The thickness of the ovals lines

Image

Image(file_path, center, width=None, height=None):

Loads an image onto the screen. If you only pass a width and not a height it automatically scales
the height to fit the width you passed it. It behaves likewise when you pass just a height.

file_path The path to the image

center The center coordinates of the image

width The width of the image in pixels. If width equals None then it defaults to the image file’s
width

height The height of the image in pixels. If no height is passed it defaults to the image file’s height

Screen Object Methods

The methods that manipulates screen objects

move_to()

move_to(obj, pos)

Move a screen object to a pos

obj A screen object you wish to move.

pos The coordinate on the screen that the object will move to

move_by()

move_by(obj, dx, dy)

Move a screen object relative to it’s position

obj The screen object you wish to move

280 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

dx How much the object will move in the ‘x’ direction. Positive or negative.

dy How much the object will move in the ‘y’ direction. A pixel value.

rotate_to()

rotate_to(obj, angle)

Rotate an object to an angle

obj The screen object that will be rotated

angle The angle in degrees that the object will be rotated to

rotate_by()

rotate_by(obj, angle)

Rotate an object a certain degree.

obj The screen object you wish to rotate

angle The degree that the object will be rotate. Can be positive or negative.

Text

Text()

Text(text, pos, color=color.BLACK, size=12)

Puts text on the screen

text A string of the text that will be displayed

pos The center coordinate of the text

color The color of the text

size The font size

Mouse

mouse_position()

mouse_position()

Returns the current mouse coordinate

1.27. Graphics API for Students of Python: GASP 281

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

mouse_buttons()

mouse_buttons()

returns a dictionary of the buttons state. There is a ‘left’, ‘middle’, and ‘right’ key.

Keyboard

keys_pressed()

keys_pressed()

returns a list of all of the keys pressed at that moment.

Gasp Tools

screen_shot

screen_shot(filename)

Saves a screenshot of the current graphics screen to a png file.

filename The file path relative to the current directory that the image will be written to.

Configuring Ubuntu for Python Development

Note: the following instructions assume that you are connected to the Internet and that
you have both the main and universe package repositories enabled. All unix shell
commands are assumed to be running from your home directory ($HOME). Finally,
any command that begins with sudo assums that you have administrative rights on
your machine. If you do not — please ask your system administrator about installing
the software you need.

What follows are instructions for setting up an Ubuntu 9.10 (Karmic) home environment for use
with this book. I use Ubuntu GNU/Linux for both development and testing of the book, so it is the
only system about which I can personally answer setup and configuration questions.

In the spirit of software freedom and open collaboration, please contact me if you would like to
maintain a similar appendix for your own favorite system. I’d be more than happy to link to it or
put it on the Open Book Project site, provided you agree to answer user feedback concerning it.

Thanks!

282 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Jeffrey Elkner
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

Vim

Vim can be used very effectively for Python development, but Ubuntu only comes with the vim-tiny
package installed by default, so it doesn’t support color syntax highlighting or auto-indenting.

To use Vim, do the following:

1. From the unix command prompt, run:

$ sudo apt-get install vim-gnome

2. Create a file in your home directory named .vimrc that contains the following:

syntax enable
filetype indent on
set et
set sw=4
set smarttab
map <f2> :w\|!python %

When you edit a file with a .py extension, you should now have color systax highlighting and auto
indenting. Pressing the key should run your program, and bring you back to the editor when the
program completes.

To learn to use vim, run the following command at a unix command prompt:

$ vimtutor

GASP

Several of the case studies use GASP (Graphics API for Students for Python), which is the only
additional library needed to use this book.

To install GASP on Ubuntu 9.04 (Jaunty) or later, run the following command at a unix command
prompt:

$ sudo apt-get install python-gasp

or use the synaptic package manager.

1.28. Configuring Ubuntu for Python Development 283

mailto:jeff@elkner.net
http://www.vim.org

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Getting GASP from Launchpad

To install the latest version of GASP into your home directory, run the following commands at a
unix command prompt:

$ sudo apt-get install bzr
$ bzr branch lp:gasp-code

$HOME environment

The following creates a useful environment in your home directory for adding your own Python
libraries and executable scripts:

1. From the command prompt in your home directory, create bin and lib/python subdirectories
by running the following commands:

$ mkdir bin lib
$ mkdir lib/python

2. Add the following lines to the bottom of your .bashrc in your home directory:

PYTHONPATH=$HOME/lib/python
EDITOR=vim

export PYTHONPATH EDITOR

This will set your prefered editor to Vim, add your own lib/python subdirectory for your
Python libraries to your Python path, and add your own bin directory as a place to put
executable scripts. You need to logout and log back in before your local bin directory will
be in your search path.

Making a python script executable and runnable from anywhere

On unix systems, Python scripts can be made executable using the following process:

1. Add this line as the first line in the script:

#!/usr/bin/env python

2. At the unix command prompt, type the following to make myscript.py executable:

$ chmod +x myscript.py

3. Move myscript.py into your bin directory, and it will be runnable from anywhere.

284 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/Path_(variable)

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

Customizing and Contributing to the Book

Note: the following instructions assume that you are connected to the Internet and that
you have both the main and universe package repositories enabled. All unix shell
commands are assumed to be running from your home directory ($HOME). Finally,
any command that begins with sudo assums that you have administrative rights on
your machine. If you do not — please ask your system administrator about installing
the software you need.

This book is free as in freedom, which means you have the right to modify it to suite your needs,
and to redistribute your modifications so that our whole community can benefit.

That freedom lacks meaning, however, if you the tools needed to make a custom version or to
contribute corrections and additions are not within your reach. This appendix attempts to put those
tools in your hands.

Thanks!

Jeffrey Elkner
Governor’s Career and Technical Academy in Arlington
Arlington, Virginia

Getting the Source

This book is marked up in ReStructuredText using a document generation system called Sphinx.

The source code is located on the Launchpad website at
http://bazaar.launchpad.net/~thinkcspy/thinkcspy/english2e/files.

The easiest way to get the source code on an Ubuntu 9.10 computer is:

1. run sudo apt-get install bzr on your system to install bzr.

2. run bzr branch lp:thinkcspy.

The last command above will download the book source from Launchpad into a directory named
thinkcspy which contains the Sphinx source and configuration information needed to build the
book.

Making the HTML Version

To generate the html version of the book:

1. run sudo apt-get install python-sphinx to install the Sphinx documentation
system.

1.29. Customizing and Contributing to the Book 285

mailto:jeff@elkner.net
http://en.wikipedia.org/wiki/Markup_language
http://en.wikipedia.org/wiki/ReStructuredText
http://en.wikipedia.org/wiki/Sphinx_%28documentation_generator%29
http://en.wikipedia.org/wiki/Launchpad_%28website%29
http://bazaar.launchpad.net/~thinkcspy/thinkcspy/english2e/files
http://en.wikipedia.org/wiki/Bazaar_%28software%29

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

2. cd thinkcspy - change into the thinkcspy directory containing the book source.

3. make html.

The last command will run sphinx and create a directory named build containing the html verion
of the text.

Note: Sphinx supports building other output types as well, such as PDF. This requires
that LaTeX be present on your system. Since I only personally use the html version, I
will not attempt to document that process here.

GNU Free Documentation License

Version 1.3, 3 November 2008

Copyright © 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc.

Everyone is permitted to copy and distribute verbatim copies of this license document, but chang-
ing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document
“free” in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it,
with or without modifying it, either commercially or noncommercially. Secondarily, this License
preserves for the author and publisher a way to get credit for their work, while not being considered
responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must
themselves be free in the same sense. It complements the GNU General Public License, which is
a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software
needs free documentation: a free program should come with manuals providing the same freedoms
that the software does. But this License is not limited to software manuals; it can be used for
any textual work, regardless of subject matter or whether it is published as a printed book. We
recommend this License principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a notice placed
by the copyright holder saying it can be distributed under the terms of this License. Such a notice
grants a world-wide, royalty-free license, unlimited in duration, to use that work under the condi-
tions stated herein. The “Document”, below, refers to any such manual or work. Any member of

286 Chapter 1. Learning with Python

http://en.wikipedia.org/wiki/PDF
http://en.wikipedia.org/wiki/LaTeX
http://fsf.org/

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

the public is a licensee, and is addressed as “you”. You accept the license if you copy, modify or
distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of
it, either copied verbatim, or with modifications and/or translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals
exclusively with the relationship of the publishers or authors of the Document to the Document’s
overall subject (or to related matters) and contains nothing that could fall directly within that overall
subject. (Thus, if the Document is in part a textbook of mathematics, a Secondary Section may
not explain any mathematics.) The relationship could be a matter of historical connection with the
subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those
of Invariant Sections, in the notice that says that the Document is released under this License. If
a section does not fit the above definition of Secondary then it is not allowed to be designated as
Invariant. The Document may contain zero Invariant Sections. If the Document does not identify
any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-
Cover Texts, in the notice that says that the Document is released under this License. A Front-
Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format
whose specification is available to the general public, that is suitable for revising the document
straightforwardly with generic text editors or (for images composed of pixels) generic paint pro-
grams or (for drawings) some widely available drawing editor, and that is suitable for input to text
formatters or for automatic translation to a variety of formats suitable for input to text formatters.
A copy made in an otherwise Transparent file format whose markup, or absence of markup, has
been arranged to thwart or discourage subsequent modification by readers is not Transparent. An
image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo
input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-
conforming simple HTML, PostScript or PDF designed for human modification. Examples of
transparent image formats include PNG, XCF and JPG. Opaque formats include proprietary for-
mats that can be read and edited only by proprietary word processors, SGML or XML for which
the DTD and/or processing tools are not generally available, and the machine-generated HTML,
PostScript or PDF produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are
needed to hold, legibly, the material this License requires to appear in the title page. For works
in formats which do not have any title page as such, “Title Page” means the text near the most
prominent appearance of the work’s title, preceding the beginning of the body of the text.

The “publisher” means any person or entity that distributes copies of the Document to the public.

1.30. GNU Free Documentation License 287

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely
XYZ or contains XYZ in parentheses following text that translates XYZ in another language.
(Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”,
“Dedications”, “Endorsements”, or “History”.) To “Preserve the Title” of such a section when you
modify the Document means that it remains a section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License
applies to the Document. These Warranty Disclaimers are considered to be included by reference in
this License, but only as regards disclaiming warranties: any other implication that these Warranty
Disclaimers may have is void and has no effect on the meaning of this License.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommer-
cially, provided that this License, the copyright notices, and the license notice saying this License
applies to the Document are reproduced in all copies, and that you add no other conditions whatso-
ever to those of this License. You may not use technical measures to obstruct or control the reading
or further copying of the copies you make or distribute. However, you may accept compensation
in exchange for copies. If you distribute a large enough number of copies you must also follow the
conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display
copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Doc-
ument, numbering more than 100, and the Document’s license notice requires Cover Texts, you
must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover
Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly
and legibly identify you as the publisher of these copies. The front cover must present the full title
with all words of the title equally prominent and visible. You may add other material on the covers
in addition. Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones
listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must
either include a machine-readable Transparent copy along with each Opaque copy, or state in or
with each Opaque copy a computer-network location from which the general network-using pub-
lic has access to download using public-standard network protocols a complete Transparent copy
of the Document, free of added material. If you use the latter option, you must take reasonably
prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Trans-
parent copy will remain thus accessible at the stated location until at least one year after the last

288 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the Document well before redis-
tributing any large number of copies, to give them a chance to provide you with an updated version
of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections
2 and 3 above, provided that you release the Modified Version under precisely this License, with
the Modified Version filling the role of the Document, thus licensing distribution and modification
of the Modified Version to whoever possesses a copy of it. In addition, you must do these things
in the Modified Version:

• A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document,
and from those of previous versions (which should, if there were any, be listed in the History
section of the Document). You may use the same title as a previous version if the original
publisher of that version gives permission.

• B. List on the Title Page, as authors, one or more persons or entities responsible for author-
ship of the modifications in the Modified Version, together with at least five of the principal
authors of the Document (all of its principal authors, if it has fewer than five), unless they
release you from this requirement.

• C. State on the Title page the name of the publisher of the Modified Version, as the publisher.

• D. Preserve all the copyright notices of the Document.

• E. Add an appropriate copyright notice for your modifications adjacent to the other copyright
notices.

• F. Include, immediately after the copyright notices, a license notice giving the public per-
mission to use the Modified Version under the terms of this License, in the form shown in
the Addendum below.

• G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts
given in the Document’s license notice.

• H. Include an unaltered copy of this License.

• I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at
least the title, year, new authors, and publisher of the Modified Version as given on the Title
Page. If there is no section Entitled “History” in the Document, create one stating the title,
year, authors, and publisher of the Document as given on its Title Page, then add an item
describing the Modified Version as stated in the previous sentence.

• J. Preserve the network location, if any, given in the Document for public access to a Trans-
parent copy of the Document, and likewise the network locations given in the Document

1.30. GNU Free Documentation License 289

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

for previous versions it was based on. These may be placed in the “History” section. You
may omit a network location for a work that was published at least four years before the
Document itself, or if the original publisher of the version it refers to gives permission.

• K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the
section, and preserve in the section all the substance and tone of each of the contributor
acknowledgements and/or dedications given therein.

• L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their
titles. Section numbers or the equivalent are not considered part of the section titles.

• M. Delete any section Entitled “Endorsements”. Such a section may not be included in the
Modified Version.

• N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title
with any Invariant Section.

• O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary
Sections and contain no material copied from the Document, you may at your option designate
some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections
in the Modified Version’s license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of
your Modified Version by various parties—for example, statements of peer review or that the text
has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as
a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage
of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made
by) any one entity. If the Document already includes a cover text for the same cover, previously
added by you or by arrangement made by the same entity you are acting on behalf of, you may not
add another; but you may replace the old one, on explicit permission from the previous publisher
that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their
names for publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms
defined in section 4 above for modified versions, provided that you include in the combination all
of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant
Sections of your combined work in its license notice, and that you preserve all their Warranty
Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant
Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same

290 Chapter 1. Learning with Python

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

name but different contents, make the title of each such section unique by adding at the end of
it, in parentheses, the name of the original author or publisher of that section if known, or else a
unique number. Make the same adjustment to the section titles in the list of Invariant Sections in
the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original
documents, forming one section Entitled “History”; likewise combine any sections Entitled “Ac-
knowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled
“Endorsements”.

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this
License, and replace the individual copies of this License in the various documents with a sin-
gle copy that is included in the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this
License, provided you insert a copy of this License into the extracted document, and follow this
License in all other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents
or works, in or on a volume of a storage or distribution medium, is called an “aggregate” if the
copyright resulting from the compilation is not used to limit the legal rights of the compilation’s
users beyond what the individual works permit. When the Document is included in an aggregate,
this License does not apply to the other works in the aggregate which are not themselves derivative
works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if
the Document is less than one half of the entire aggregate, the Document’s Cover Texts may be
placed on covers that bracket the Document within the aggregate, or the electronic equivalent of
covers if the Document is in electronic form. Otherwise they must appear on printed covers that
bracket the whole aggregate.

8. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Docu-
ment under the terms of section 4. Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include translations of some or all Invariant
Sections in addition to the original versions of these Invariant Sections. You may include a trans-
lation of this License, and all the license notices in the Document, and any Warranty Disclaimers,

1.30. GNU Free Documentation License 291

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

provided that you also include the original English version of this License and the original versions
of those notices and disclaimers. In case of a disagreement between the translation and the original
version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the
requirement (section 4) to Preserve its Title (section 1) will typically require changing the actual
title.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided
under this License. Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and
will automatically terminate your rights under this License.

However, if you cease all violation of this License, then your license from a particular copyright
holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally
terminates your license, and (b) permanently, if the copyright holder fails to notify you of the
violation by some reasonable means prior to 60 days after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright
holder notifies you of the violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that copyright holder, and you cure
the violation prior to 30 days after your receipt of the notice.

Termination of your rights under this section does not terminate the licenses of parties who have
received copies or rights from you under this License. If your rights have been terminated and not
permanently reinstated, receipt of a copy of some or all of the same material does not give you any
rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation
License from time to time. Such new versions will be similar in spirit to the present version, but
may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies
that a particular numbered version of this License “or any later version” applies to it, you have the
option of following the terms and conditions either of that specified version or of any later version
that has been published (not as a draft) by the Free Software Foundation. If the Document does
not specify a version number of this License, you may choose any version ever published (not as a
draft) by the Free Software Foundation. If the Document specifies that a proxy can decide which
future versions of this License can be used, that proxy’s public statement of acceptance of a version
permanently authorizes you to choose that version for the Document.

292 Chapter 1. Learning with Python

http://www.gnu.org/copyleft/

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

11. RELICENSING

“Massive Multiauthor Collaboration Site” (or “MMC Site”) means any World Wide Web server
that publishes copyrightable works and also provides prominent facilities for anybody to edit those
works. A public wiki that anybody can edit is an example of such a server. A “Massive Multiau-
thor Collaboration” (or “MMC”) contained in the site means any set of copyrightable works thus
published on the MMC site.

“CC-BY-SA” means the Creative Commons Attribution-Share Alike 3.0 license published by Cre-
ative Commons Corporation, a not-for-profit corporation with a principal place of business in San
Francisco, California, as well as future copyleft versions of that license published by that same
organization.

“Incorporate” means to publish or republish a Document, in whole or in part, as part of another
Document.

An MMC is “eligible for relicensing” if it is licensed under this License, and if all works that were
first published under this License somewhere other than this MMC, and subsequently incorporated
in whole or in part into the MMC, (1) had no cover texts or invariant sections, and (2) were thus
incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on
the same site at any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document
and put the following copyright and license notices just after the title page:

Copyright (C) YEAR YOUR NAME.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.3
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts.
A copy of the license is included in the section entitled "GNU
Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with . . .
Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the
Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge
those two alternatives to suit the situation.

1.31. ADDENDUM: How to use this License for your documents 293

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

If your document contains nontrivial examples of program code, we recommend releasing these
examples in parallel under your choice of free software license, such as the GNU General Public
License, to permit their use in free software.

• search

294 Chapter 1. Learning with Python

INDEX

Symbols
‘‘for‘‘ loop, 124
‘‘is‘‘ operator, 122
‘‘join‘‘, 131
‘‘range‘‘ function, 120
‘‘split‘‘, 131

A
abecedarian series, 87
abstract data type (ADT), 250
abstraction, 114
accumulator, 227
algorithm, 15, 19, 82, 83, 210
aliases, 132
alternative execution, 44
ambiguity, 18
argument, 35, 39
argv, 154
assignment, 23, 69

multiple, 69
tuple, 162

assignment operator, 30
assignment statement, 23, 30, 69
attribute, 154, 205

B
base case, 166, 175
binary operator, 267
binary tree, 267
block, 43, 50
body, 39, 43, 50, 83
boolean expression, 42, 50
boolean function, 60, 65
boolean value, 42, 50
bracket operator, 86

branch, 44, 50
bug, 15, 19
byte code, 19

C
cargo, 244
chained conditional, 45, 51
character, 86
character classification, 94
child, 267
child class, 236
class, 204
class attribute, 227
client, 250
clone, 132
command line, 154
command line argument, 154
command prompt, 154
comment, 29, 30
comparison of strings, 89
comparison operator, 51
compile, 13, 19
composition, 30, 36, 60
composition (of functions), 65
composition of functions, 29
compound data type, 99
compound data types, 86
compound statement, 39, 43

body, 43
header, 43

computation pattern, 91
concatenate, 30
concatenation, 27, 87
condition, 51, 71
conditional

295

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

chained, 45
conditional branching, 43
conditional execution, 43
conditional statement, 51
conditionals

nested, 45
constant, 114
constant time, 256
continue statement, 154
counter, 83
counting pattern, 91
cursor, 75, 83

D
data structure, 175
data structures, 165

recursive, 165
data type, 22, 30
dead code, 56, 65
debugging, 15, 19
decrement, 83
default value, 91, 100
definition

function, 32
delimiter, 133, 154, 250
development plan, 78, 83
dictionary, 180, 196
dir function, 92
directory, 154
docstring, 92, 100
doctest, 63
dot notation, 92, 94, 100
dot operator, 154
dot product, 219
Doyle, Arthur Conan, 16

E
element, 133
elif, 43
else, 43
embedded reference, 244
encapsulate, 83
encapsulation, 77
encode, 227
enumerate, 124

escape sequence, 75, 83
eureka traversal, 91
evaluate, 30
event, 197
event loop, 197
event-driven program, 197
exception, 16, 19, 168, 175
executable, 19
expression, 25, 26, 30

boolean, 42

F
factorial, 171
fibonacci, 171
FIFO, 256
file, 154
file system, 154
float, 22, 30
flow of execution, 34, 39
for loop, 87
for loop traversal (for), 98
formal language, 17, 19
frame, 38, 39
fruitful function, 66
function, 32, 39, 81

argument, 35
composition, 36
len, 87
parameter, 35

function call, 40
function composition, 40, 60
function definition, 32, 40
function frame, 38
function type, 92
functional programming style, 210
fundamental ambiguity theorem, 245

G
GASP, 49
generalization, 77
generalize, 83
generic data structure, 250

H
hand trace, 72

296 Index

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

handle an exception, 175
handling an exception, 168
header, 40
hello world

|hyperpage, 18
helper, 245
high-level language, 13, 19
hint, 197
Holmes, Sherlock, 16

I
if, 43
if statement, 43
immutable, 89, 100, 120, 161
immutable data type, 175
implementation, 250
import, 35, 40
import statement, 35, 154
in, 90
in operator, 90
in operator (in), 98
increment, 83
incremental development, 58, 66
index, 86, 100, 133

negative, 87
indexing ([]), 98
infinite loop, 71, 83
infinite recursion, 166, 175
infix, 250
inheritance, 236
initialization (of a variable), 83
initialization method, 219
inorder, 267
input, 28
instance, 204
instantiate, 204
int, 22, 30
integer, 22
integer division, 26, 30
Intel, 75
interface, 250
interpret, 13, 19
invariant, 245
item assignment, 120
iteration, 69, 71, 83

J
Jython, 154

K
key, 180, 197
key-value pair, 180, 197
keyboard input, 28
keyword, 24, 31

L
leaf, 267
len function, 87
length function (len), 98
level, 267
linear time, 256
link, 244
linked list, 244
linked queue, 256
Linux, 16
list, 133
list comprehension, 172, 175
list traversal, 133
literalness, 18
local variable, 37, 41, 78
logarithm, 75
logical operator, 42, 51
loop, 71, 83
loop body, 71
loop variable, 83
low-level language, 13, 19
lowercase, 94

M
Make Way for Ducklings, 87
mapping type, 180, 197
McCloskey, Robert, 87
method, 155, 219
mode, 155
modifier, 133, 210
modifiers, 164
module, 92, 155
modulus operator, 42, 51
multiple assignment, 69, 83
mutable, 89, 120, 161
mutable data type, 175

Index 297

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

mutable type, 133

N
namespace, 155
naming collision, 155
natural language, 17, 19
negative index, 87
nested conditionals, 45
nested list, 133
nested loop, 114
nesting, 51
newline, 75, 83
Newton’s method, 81
node, 244
non-volatile memory, 155
None, 56, 66
NoneType, 56

O
object, 133, 204
object code, 20
object-oriented language, 219
object-oriented programming, 219
objects and values, 122
operand, 26, 31
operations on strings, 95
operator, 26, 31

in, 90
logical, 42
modulus, 42

operator overloading, 219
optional parameter, 91, 100
order of operations, 27
overflow, 197

P
parameter, 35, 41
parent, 267
parent class, 236
parse, 17, 20, 250
pass, 43
pass statement, 43
path, 155
pattern of computation, 91
Pentium, 75

planned development, 210
Poetry, 18
polymorphic, 219
portability, 20
portable, 13
postfix, 250
postorder, 267
precondition, 244
prefix notation, 267
preorder, 267
print statement, 18, 20
Priority Queue, 256
priority queue, 256
problem solving, 20
program, 15, 20
program development, 77
program tracing, 72
programming language, 13
Programs, 18
prompt, 47, 51
Prose, 18
prototype development, 210
provider, 250
pure function, 133, 210
pure functions, 164
pydoc, 155
Python Library Reference, 94
Python shell, 20

Q
Queue, 256
queue, 256
queueing policy, 256

R
raise, 175
random, 114
recursion, 166, 175
recursive call, 166, 175
recursive data structure, 165
recursive definition, 165, 175
redundancy, 18
return, 46, 56
return statement, 46, 56
return value, 56, 66

298 Index

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

root, 267
rules of precedence, 27, 31
runtime error, 16, 20, 87, 89

S
safe language, 16
scaffolding, 58, 66
scalar multiplication, 219
script, 20
semantic error, 16, 20
semantics, 16, 20
sequence, 133
siblings, 267
side effect, 133
singleton, 245
slice, 88, 100
slicing ([:]), 98
source code, 20
stack diagram, 38, 41
stack trace, 38
standard library, 155
state diagram, 23, 31
statement, 25, 31

assignment, 69
if, 43
pass, 43
return, 46

statement block, 43
step size, 133
str, 31
string, 22
string comparison, 89
string comparison (>, <, >=, <=, ==), 98
string formatting, 95
string module, 92, 94
string operations, 27
string slice, 88
strings and lists, 131
subexpression, 267
syntax, 16, 20
syntax error, 16, 20

T
tab, 75, 84
table, 75

tail recursion, 171, 175
TDD, 128
temporary variable, 56, 66
Test-driven development, 128
test-driven development (TDD), 133
text file, 155
token, 20, 250
trace, 84
traceback, 38, 41
tracing a program, 72
traversal, 87, 91
traverse, 100
trichotomy, 114
triple quoted string, 62
tuple, 161, 175

assignment, 162
return value, 163

tuple assignment, 162, 175
two-dimensional table, 76
type

conversion, 47
type conversion, 47, 51

U
underscore character, 24
unit testing, 63, 66
uppercase, 94

V
value, 22, 31, 180

boolean, 42
None, 56

variable, 23, 31
local, 37, 78
temporary, 56

variable name, 31
veneer, 250
volatile memory, 156

W
while, 71
while loop, 71
while statement, 71
whitespace, 94, 100
wrapper, 245

Index 299

How to Think Like a Computer Scientist: Learning with Python Documentation,
Release 2nd Edition

wrapping code in a function, 44, 51

300 Index

	Learning with Python
	Index

