Parallel Programmability and the Chapel Language®

Bradford L. Chamberlain*, David Callahan, Hans P. Zima®
*Cray Inc., Seattle WA, USA, bradc@cray.com
TMicrosoft Corporation, Redmond WA, USA, d.callahan@microsoft.com
YJPL, Pasadena CA, USA, and University of Vienna, Austria, zima@jpl.nasa.gov

1 Introduction

It is an increasingly common belief that the programmability of parallel machines is lacking, and that the high-end
computing (HEC) community is suffering as a result of it. The population of users who can effectively program parallel
machines comprises only a small fraction of those who can effectively program traditional sequential computers, and
this gap seems only to be widening as time passes. The parallel computing community’s inability to tap the skills
of mainstream programmers prevents parallel programming from becoming more than an arcane skill, best avoided
if possible. This has an unfortunate feedback effect, since our small community tends not to have the resources to
nurture new languages and tools that might attract a larger community—a community that could then improve those
languages and tools in a manner that is taken for granted by the open-source C and Java communities.

This gap between sequential and parallel programming is highlighted by frequent comments in the high-end user
community along the lines of “Why isn’t programming this machine more like Java/Matlab/my favorite sequential
language?” Such comments cut to the heart of the parallel programmability problem. Current parallel programming
languages are significantly different from those that a modern sequential programmer is accustomed to, and this makes
parallel machines difficult to use and unattractive for many traditional programmers. To this end, developers of new
parallel languages should ask what features from modern sequential languages they might effectively incorporate in
their language design.

At the same time, one must concede that programming parallel machines is inherently different from sequential
programming, in that the user must express parallelism, data distribution, and typically synchronization and commu-
nication. To this end, parallel language developers should attempt to develop features that ease the burdens of parallel
programming by providing abstractions for these concepts and optimizing for common cases.

This article explores these two challenges by considering language features and characteristics that would make
parallel programming easier while also bringing it closer to broad-market sequential computing. It surveys parallel
languages that currently enjoy some degree of popularity in the HEC community and attempts to characterize them
with respect to these features. And finally, it provides an introduction to the Chapel programming language, which
is being developed as part of DARPA’s High Productivity Computing Systems (HPCS) program in order to try and
improve the programmability and overall productivity of next-generation parallel machines. Productivity is defined
by HPCS as a combination of performance, programmability, portability, and robustness. Chapel strives to positively
impact all of these areas, focusing most heavily on programmability.

*This material is based upon work supported by the Defense Advanced Research Projects Agency under its Contract No. NBCH3039003. The
research described in this paper was partially carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with
the National Aeronautics and Space Administration.

2 Principles for Productive Parallel Language Design

2.1 Programmer Responsibilities

Before describing the features that we believe productive parallel programming languages ought to provide, we begin
by listing the responsibilities that we consider to be the programmer’s rather than the compiler’s. There are many
research projects that take a different stance on these issues, and we list our assumptions here not to contradict those
approaches, but rather to bound the space of languages that we consider in this paper and to clarify our starting
assumptions in these matters.

Identification of Parallelism While a holy grail of parallel computing has historically been to automatically trans-
form good sequential codes into good parallel codes, our faith in compilers and runtime systems does not extend this
far given present-day technology. As a result, we believe that it should be the programmer’s responsibility to explicitly
identify the subcomputations within their code that can and/or should execute in parallel. We also believe that a good
language design can greatly help the programmer in this respect by including abstractions that make common forms of
parallel computation simpler to express and less prone to simple errors. Such concepts should make the expression of
parallel computation natural for the programmer and shift the compiler’s efforts away from the detection of parallelism
and towards its efficient implementation.

Synchronization To the extent that a language’s abstractions for parallelism do not obviate the need for synchro-
nization, the programmer will need to specify it explicitly. While it is possible to create abstractions for data parallel
computation that require little or no user-level synchronization [9, 34], support for task parallelism tends to necessitate
synchronization of some form. As with parallelism, good language design should result in high-level abstractions for
synchronization rather than simply providing low-level locks and mutual exclusion.

Data Distribution and Locality As with detection of parallelism, we have little faith that compilers and runtime
systems will automatically do a good job of allocating and distributing data to suit a user’s computation and minimize
communication. For this reason, we expect that the performance-minded programmer will ultimately need to specify
how data aggregates should be distributed across the machine and to control the locality of interacting variables.
Once again, it would seem that languages could provide abstractions and distribution libraries to ease the burden of
specifying such distributions. Depending on the language semantics, one might also want a means of specifying where
on the machine a specific subcomputation should be performed, potentially in a data-driven manner.

2.2 Productive Parallel Language Desiderata

In this section, we enumerate a number of qualities that we believe to be worth consideration in the design of a
productivity-oriented parallel language. Since different programmers have differing goals and tastes, it is likely that
readers will find some of these characteristics more crucial and others less so. Along these same lines, this list
clearly reflects the preferences and biases of the authors, and may neglect characteristics that other language design
philosophies might consider crucial. For these reasons, this section should be considered an exploration of themes and
characteristics rather than a definitive list of requirements.

2.2.1 A Global View of Computation

We call a programming model fragmented if it requires programmers to express their algorithms on a task-by-task
basis, explicitly decomposing data structures and control flow into per-task chunks. One of the most prevalent frag-
mented programming models is the Single Program, Multiple Data (SPMD) model, in which a program is written
with the assumption that multiple instances of it will be executed simultaneously. In contrast to fragmented models, a
global-view programming model is one in which programmers express their algorithms and data structures as a whole,
mapping them to the processor set in orthogonal sections of code, if at all. These models execute the program’s entry
point with a single logical thread, and the programmer introduces additional parallelism through language constructs.

1 var n: int = 1000;
2> var locN: int = n/numTasks;
s var A, B: [0..locN+1] float;
4 var myltLo: int = 1;
s var myItHi: int = locN;
¢ if (iHaveLeftNeighbor) then
7 send (left , A(1));
1 var n: int = 1000; s else
> var A, B: [1..n] float; 9 myltLo = 2;
3 forall i in 2..n—1 10 if (iHaveRightNeighbor) {
4 B(i) = (A(i—=1) + A(i+1)) / 2; 1 send (right , A(locN));
12 recv(right , A(locN+1));
13} else
14 mylItHi = locN—1;
15 if (iHaveLeftNeighbor) then
16 recv(left, A(0));
17 forall i in myltLo.. myItHi do
18 B(i) = (A(i—1) + A(i+1)) / 2;

(a) (b)

Figure 1: Pseudocode fragments illustrating a data parallel three-point stencil written in (a) global-view and (b) frag-
mented styles. The global-view code starts with a single logical thread and introduces additional parallelism via the
forall statement. It also allocates and accesses its arrays holistically. In contrast, the fragmented code assumes that
numT asks threads are executing the code concurrently, and requires the programmer to divide data into per-processor
chunks and manage communication explicitly (illustrated here using message passing, though other communication
schemes could also be substituted).

As a simple data-parallel example, consider the expression of a three-point stencil on a vector of values. Figure 1
shows pseudocode for how this computation might appear in both global-view and fragmented programming models.
In the global-view version, the problem size is defined on line 1 and used to declare two vectors on line 2. Lines 3—4
express the computation itself, using the global problem size to express the loop bounds and indices.

In the fragmented version, the global problem size (defined on line 1) is divided into a per-task problem size on
line 2. This local problem size is then used to allocate the vectors, including extra elements to cache values owned by
neighboring tasks (line 3). Lines 4-5 set up default local bounds for the iteration space. The conditionals in lines 6, 10,
and 15 express the communication required to exchange boundary values with neighbors. They also modify the local
iteration bounds for tasks without neighbors. The computation itself is expressed on lines 17-18 using the local view
of the problem size for looping and indices. Note that as written, this code is only correct when the global problem
size divides evenly between the number of tasks—more effort would be required to write a general implementation of
the algorithm that relaxes this assumption.

As a second example of global-view and fragmented models, consider a task-parallel divide-and-conquer algorithm
like Quicksort. Figure 2 shows this computation as it might appear in each programming model. In the global-view
version, the code computes the pivot in line 1 and then uses a cobegin statement in line 2 to indicate that the two
“conquer” steps in lines 3 and 4 can be executed in parallel.

In contrast, the fragmented expression of the algorithm describes Quicksort from a single task’s point of view,
overlaying the virtual tree of recursive calls onto the available tasks. Thus, each task begins on line 2 by receiving the
portion of the data for which it is responsible from its parent in the task tree, if it has one. If it has a child at this level
of the task tree, it computes the pivot (line 4), and sends half of the work to the child (line 5). It then makes a recursive
call to sort the second half of the data (line 6) and receives the sorted data from its child task for the initial half (line 7).
If, on the other hand, it has no child at this level of the task tree, it simply sorts the data locally (line 9). In either case,
if it has a parent task, it sends the sorted result back to it (line 11).

Note that while the pseudocode presented in these two examples uses a 2-sided message passing style, other
fragmented models might use alternative communication paradigms such as 1-sided puts and gets, co-arrays, shared
memory, synchronization, etc. For this discussion the important point is not what style of communication is used, but

if (iHaveParent) then
recv(parent, lo, hi, data);

if (iHaveChild) {
var pivot = computePivot(lo, hi, data);
send (child, lo, pivot, data);
Quicksort(pivot, hi, data);
recv(child , data);

} else

9 LocalSort(lo, hi, data);

10 if (iHaveParent) then

11 send (parent , data);

(a) (b)

1 var pivot = computePivot(lo, hi, data);
> cobegin {

3 Quicksort(lo, pivot, data);

4 Quicksort(pivot, hi, data);

5

}

© 9 L A W o —

Figure 2: Pseudocode fragments illustrating a task parallel Quicksort algorithm written in (a) global-view and (b) frag-
mented styles. As before, the global-view code starts with a single logical thread, and introduces parallelism using
the cobegin statement. It operates on its data array as a whole. In contrast, the fragmented code again assumes that
numT asks threads are executing the code, and requires the user to explicitly embed the divide and conquer task tree
into the multiple program images.

rather that any fragmented model will require the programmer to explicitly specify and manage communication and
synchronization due to its focus on coding at a task-by-task level.

While these examples are merely pseudocode, intended to introduce the concepts of global-view and fragmented
programming models, they capture some of the differences that exist in real languages which implement these models:
global-view codes tend to be shorter and tend to express the overall parallel algorithm more clearly. Fragmented codes
are typically longer and tend to be cluttered with the management of per-task details such as local bounds and indices,
communication, and synchronization.

The global view is not without some cost, however. Typically, compilers and runtimes for global-view languages
must be more sophisticated, since they are ultimately responsible for breaking the algorithm into the per-processor
pieces that will allow it to be implemented on a parallel machine. In contrast, compilers for fragmented languages pri-
marily need to be good sequential compilers, although building an understanding of the specific fragmented program-
ming language into the compiler can lead to additional optimization opportunities such as communication pipelining.

The observation that fragmented languages tend to impose less of a burden on their compilers is almost certainly the
reason that today’s most prevalent parallel languages'— MPI, SHMEM, Co-array Fortran, Unified Parallel C (UPC),
and Titanium—are based on fragmented or SPMD programming models. In contrast, global-view languages such
as High Performance Fortran (HPF), Sisal, NESL, and ZPL have typically not found a solid foothold outside of the
academic arena’. One exception to this generalization is OpenMP, which provides a global-view approach in its
typical usage. However, it also provides a shared-memory abstract machine model, which tends to present challenges
to optimizing for locality and scaling to large numbers of processors on current architectures.

We believe that the dominance of the fragmented programming model is the primary inhibitor of parallel pro-
grammability today, and therefore recommend that new productivity-oriented languages focus on supporting a global
view of parallel programming. Note that support for a global view does not necessarily prevent a programmer from
coding on a task-by-task basis; however, it does save them the trouble of doing so in sections of their code that do not
require such low-level detail management.

Note that we use the term “parallel language” loosely in this paper, since approaches like MPI and SHMEM are actually library-based ap-
proaches. In defense of our laxness, consider the impact of such libraries on the execution models of the base languages with which they are
used—particularly the assumption that multiple program instances will be executing simultaneously. Compared to the relative unobtrusiveness of
traditional libraries on a language’s programming model, our casual use of the term “language” is not completely unwarranted. If it helps, think of
“language” in terms of “a means of expressing something” rather than strictly as a “programming language.”

2Note that a language or library may support a global view of computation and yet be implemented using SPMD or fragmented techniques.
Here, we use the terms to characterize the programmer’s model of writing computation, not the program’s execution model.

var n, nnz: int;

1

1 var n: int; > var Mvals: [1..nnz] float;

> var M: [1l..n, 1..n] float; 3 var col: [1l..nnz] int;

3 var V, S: [1..n] float; 4 var rptr: [l..n+1] int;

4 for i in 1..n { s var V, S: [1..n] float;

5 S(i) = 0.0; ¢ for i in 1..n {

6 for j in 1..n do 7 S(i) = 0.0;

7 S(i) += M(i,j)*V(j); 8 for j in rptr(i).. rptr(i+l)—1 do

8 } 9 S(i) += Mvals(j) = V(col(j));
0}

(a) (b)

Figure 3: Pseudocode fragments illustrating how sensitive algorithms in most languages are to data layout—in this
case (a) a dense matrix layout versus (b) a sparse compressed row layout. While the two codes express the same logical
matrix-vector multiplication operation, the lack of separation between algorithms and data structures causes the codes
to be expressed very differently.

2.2.2 Support for General Parallelism

Parallel algorithms are likely to contain opportunities for parallel execution at arbitrary points within the program. Yet
today’s parallel languages tend to support only a single level of parallelism cleanly, after which additional parallelism
must either be ignored and expressed sequentially or expressed by resorting to a secondary parallel language. The
most common example of this in current practice is the use of MPI to express a coarse level of algorithmic parallelism,
combined with OpenMP to specify a second, finer level of parallelism within each MPI task. To a certain extent, this
“single level of parallelism” characteristic is due to the prevalence of the SPMD model in the programming models,
execution models, and implementation strategies of today’s parallel languages. Parallelism in the SPMD model is only
expressed through the cooperating program instances, making it difficult to express additional, nested parallelism.

In addition, algorithms tend to contain sub-computations that are both data- and task-parallel by nature. Yet most
of today’s parallel programming languages cleanly support only a single type of parallelism, essentially ignoring the
other. Again, due to the prevalence of the SPMD model, data parallelism tends to be the more common model. In
order for a parallel language to be general, it should cleanly support both data and task parallelism.

We believe that when languages make it difficult to express nested instances of data and task parallelism, they limit
their general applicability within the space of parallel computations and will eventually leave the programmer stuck
and frustrated. To this end, we recommend that productivity-oriented parallel languages focus on supporting general
forms of parallelism—both data and task parallelism, as well as the composition of parallel code sections.

2.2.3 Separation of Algorithm and Implementation

A great majority of today’s languages—sequential as well as parallel—do a poor job of expressing algorithms in a
manner that is independent of their data structures’ implementation in memory. For example, consider the changes
required to convert a typical sequential matrix-vector multiplication algorithm from a dense array to a sparse array
using a compressed row storage (CRS) format, as illustrated in Figure 3. To perform the conversion, a new scalar, nnz
is added to describe the number of non-zeroes in the array, while the 2D array M is converted into three 1D arrays of
varying sizes: Mwals, col, and rowptr. In addition, the inner loop and accesses to M and V have changed to the point
that they are virtually unrecognizable as matrix-vector multiplication to anyone but the experienced CRS programmer.
As aresult, we have failed in our goal of writing the algorithm independently of data structure. In contrast, languages
such as Matlab which do a better job of separating data representation issues from the expression of computation result
in codes that are less sensitive to their data structures’ implementation details [29].

Note that one need not rely on an example as advanced as converting a dense algorithm into a sparse one to
run afoul of such sensitivities. Even when dealing with simple dense arrays, the loop nests in most HEC codes are
influenced by factors such as whether a matrix is stored in row- or column-major order, what the architecture’s cache-
line size is, or whether the processor is a vector or scalar processor. Yet, the algorithm being expressed is semantically

independent of these factors. Most novice programmers are taught that algorithms and data structures ought to be
orthogonal to one another, yet few of our languages support such separation cleanly without sacrificing performance.

In the realm of parallel computing, these problems are compounded since a computation’s expression is sensitive
not only to the traditional sequential concerns, but also to the distribution of data aggregates between multiple proces-
sors and the communication that may be required to fetch non-local elements to a processor’s local memory. Consider
how sensitive today’s fragmented parallel codes tend to be to such decisions as: whether they use a block or block-
cyclic distribution; whether the distribution is applied to a single dimension or multiple dimensions; or whether or not
the problem sizes divide evenly between the processors. Altering these decisions tends to affect so much code that
making such changes occurs only when absolutely necessary, rather than as part of the normal experimentation that
ought to take place while developing new codes. And yet, much of it is orthogonal to the numerical computation that
is being expressed. Unfortunately, fragmented programming models have limited means for addressing this problem
since data is allocated by each program instance, limiting the user’s ability to express computation over a distributed
data structure in a manner that is orthogonal to its distribution.

In order to support such a separation between algorithm and data structure implementation, it would seem that
parallel languages would minimally need to support a means for defining a data aggregate’s distribution, local storage,
and iteration methods independently of the computations that operate on the data structure. In such an approach, the
compiler’s job would be to convert the global-view expression of an algorithm into the appropriate local allocations,
iterations, and communication to efficiently implement the code. In order to achieve ideal performance, it seems likely
that the language and compiler would need to have knowledge about the mechanisms used for expressing storage and
1teration.

2.2.4 Broad-Market Language Features

The gap between parallel languages and popular broad-market languages is wide and growing every year. Consider
the newly-trained programmer emerging from college with experience using Java, Matlab, or Perl in a sequential
computing setting and being asked to implement parallel code in Fortran/C + MPI. In addition to the general challenge
of writing correct parallel programs, these programmers are forced to contend with languages that seem primitive
compared to those in which they have been trained, containing features whose characteristics were determined by
compiler technology that is now decades old.

In order to bring new programmers into the parallel computing community, we believe that new parallel languages
need to bridge this gap by providing broad-market features that do not undermine the goals of parallel computing.
These features might include: object-oriented programming; function and operator overloading; garbage collection;
generic programming (the ability to apply a piece of code to a variety of types for which it is suitable without explicitly
rewriting it); latent types (the ability to elide a variable’s type when it can be determined by the compiler); support for
programming in-the-large (composing large bodies of code in modular ways); and a rich set of support routines in the
form of standardized libraries.

2.2.5 Data Abstractions

Scientific programmers write algorithms that tend to call for a wide variety of data structures, such as multidimensional
arrays, strided arrays, hierarchical arrays, sparse arrays, sets, graphs, or hash tables. Yet current parallel languages tend
to support only a minimal set of data structures, typically limited to traditional dense arrays (and C-based languages
fail to even support much in the way of a flexible multidimensional array). To the extent that these languages fail to
support objects, more complex data structures tend to be implemented in terms of simpler arrays, as exhibited by the
sparse CRS example of Figure 3b.

Despite the fact that HEC computations almost always operate on large data sets by definition, parallel languages
typically fail to provide a richer set of built-in data structures from which the programmer can select. Having such
data structures available by default, whether through a library or the language definition itself, not only saves the
programmer the task of creating them manually, it also improves code readability by encouraging programmers to use
a standard and familiar set of data structures. Such support can also create opportunities for compiler optimizations that
hand-coded data structures tend to obscure. As a specific example, the accesses to array V' in the CRS matrix-vector
multiplication of Figure 3b are an example of indirect indexing, which tends to thwart compiler optimization. Yet in

the context of CRS, this indexing has specific semantics that would have been valuable to the compiler if the language
had supported a CRS sparse matrix format directly. In past work, we have demonstrated how compiler familiarity with
a distributed sparse data structure can improve code clarity and provide opportunities for optimization [12, 9, 52]. We
believe that doing the same for other common data structures would benefit parallel productivity.

2.2.6 Performance

Since performance is typically the bottom line in high-performance computing, it stands to reason that support for the
previous features should not ultimately prevent users from achieving the performance they require. Yet, this represents
a serious challenge since there tends to be an unavoidable tension between performance and programmability that
typically complicates programming language design.

Our guiding philosophy here is that languages should provide a spectrum of features at various levels so that code
which is less performance-oriented can be written more easily, potentially resulting in less-than-optimal performance.
As additional performance is required for a section of code, programmers should be able to rewrite it using increasingly
low-level performance-oriented features until they are able to obtain their target performance. This philosophy follows
the 90/10 rule: if 90% of the program’s time is spent in 10% of the code, the remaining code can afford to be relatively
simple to write, read, and maintain, even if it impacts performance. Meanwhile, the crucial 10% should be expressible
using a separation of concerns so that distributions, data structures, and communication algorithms can be modified
with minimal impact on the original computation. Such a separation should ideally result in increased readability,
writability, and maintainability of the performance-oriented code as compared to current approaches.

2.2.7 Execution Model Transparency

A quality that has made languages like C popular is the ability for architecture-savvy programmers to understand
roughly how their source code will map down to the target architecture. This gives programmers the ability to make
informed choices between different implementation approaches by considering and estimating the performance im-
pacts that they will have on the execution. While such mental mappings are typically imperfect given the complexity
of modern architectures and compiler optimizations, having even a coarse model of the code’s execution is far better
than working in a language which is so abstract that the mapping to the hardware is a mystery.

This would seem to be an important quality for parallel languages to have as well. While sequential program-
mers will typically be most interested in memory accesses, caches, and registers, parallel programmers will also be
concerned with how parallelism is implemented, where code is executed, which data accesses are local and remote,
and where communication takes place. A secondary benefit for creating parallel languages with transparent execution
models is that it often makes writing compilers for such languages easier by narrowing the space of implementation
options. This can result in making code perform more portably since different compilers will need to obey similar
implementation strategies at a coarse level, even if their optimizations and implementation details vary.

2.2.8 Portability

Given the evolution and diversity of parallel architectures during the past several decades, it seems crucial to make sure
that new parallel languages are portable to a diverse set of architectures. This represents a unique challenge since the
simplest way to achieve this is to have languages target a machine model that represents a lowest common denominator
for the union of parallel architectures—for example, one with a single thread per processor and distributed memory.
Yet making such a choice can limit the expressiveness of a language, as exhibited by many current parallel languages.
It can also limit the language’s ability to take advantage of architectures that offer a richer set of features. Another
approach, and the one we espouse, is to target a more sophisticated machine model that can be emulated in software on
architectures that fail to support it. For example, a language that assumes each processor can execute multiple threads
may be implemented on a single-threaded processor by managing the threads in software. In addition, we believe that
languages should be usable in a mode that is simpler and more compatible with a less-capable architecture when the
best performance is required. Continuing our example, programmers of a single-threaded architecture ought to be able
to restrict their code to use a single thread per processor in order to avoid the overhead of software multithreading.

2.2.9 Interoperability with Existing Codes

When designing a new parallel language, it is often tempting to fantasize about how much cleaner everyone’s existing
codes would be if they were rewritten in your language. However, the reality of the situation is that there is so much
code in existence, so much of which is obfuscated by struggling with many of the challenges listed above, that it is
simply unrealistic to believe that this will happen in most cases. For this reason, making new languages interoperate
with existing languages seems crucial.

For our purposes, interoperation has two main goals. The first is to deal with the mechanics of invoking functions
from an existing language to the new language and back again, passing arguments of various standard types. The
second is to have the two languages interoperate on each others’ data structures in-place, in order to avoid making
redundant copies of large distributed data structures, or redistributing them across the machine. While such approaches
may be reasonable for exploratory programming, if production codes switch between the two languages during their
core computations, such overheads are likely to impact performance too much. It is unrealistic to assume that any two
languages will be able to compute on shared data structures of arbitrary types without problems, but new languages
should strive to achieve this for common data structures and their implementations within HEC codes.

2.2.10 Bells and Whistles

There are a number of other features that one may want in a language that have less to do with the language and
more to do with its implementation, libraries, and associated tools. For example, attractive features might include
built-in support for visualizations, interpreters to support interactive exploratory programming, good debuggers and
performance monitors, and clear error messages. While these features are not as “deep” from a language-design
perspective as many of the others that have been covered in this section, one only needs to interact with a few users
(or reflect on their own experiences) to realize how valuable such ancillary features can be for productivity.

3 Parallel Language Survey

In this section, we give a brief overview of several parallel languages and describe how they meet or fall short of the
design principles in the previous section. Given the large number of parallel languages that have been developed in
recent decades, we focus primarily on languages that are in current use and that have influenced our design.

Observations on SPMD Languages Since many of the languages described in this section provide the programmer
with an SPMD view of computation, we begin by making some general observations about the SPMD programming
model. As described in the previous section, SPMD programming gives the user a fairly blunt mechanism for spec-
ifying parallel computation and distributed data structures: parallelism is only available via the multiple cooperating
instances of the program while distributed data aggregates must be created manually by having each program instance
allocate its local piece of the data structure independently. Operations on remote chunks of the data structure typically
require some form of communication or synchronization to keep the cooperating program instances in step.

The main benefits of languages supporting an SPMD programming model relate to their simplicity. The restricted
execution model of these languages tends to make them fairly simple to understand and reason about, resulting in a
high degree of transparency in their execution model. This simplicity can also result in a high degree of portability
due to the lack of reliance on sophisticated architectural features or compilers. Yet the simplicity of this model also
requires the user to shoulder a greater burden by managing all of the details related to manually fragmenting data
structures as well as communicating and synchronizing between program instances. This explicit detail management
obfuscates algorithms and creates rich opportunities for introducing bugs that are notoriously difficult to track down.

3.1 Communication Libraries

MPI MPI (Message Passing Interface) [40, 48] is the most prevalent HEC programming paradigm, designed by a
broad consortium effort between dozens of organizations. MPI supports a fragmented programming model in which
multiple program instances execute simultaneously, communicating by making calls to the MPI library. These routines

support various communication paradigms including two-sided communication, broadcasts, reductions, and all-to-all
data transfers. MPI-2 is an extension to the original MPI standard that introduces a form of single-sided communication
as well as dynamic task creation which allows programs to be spawned at arbitrary program points rather than just at
load-time [41, 30].

MPI has been a great success in the HEC community due to the fact that it has a well-specified standard, freely
available implementations, and a high degree of portability and performance consistency between architectures. As a
result, MPI has become the de facto standard for parallel programming.

MPI is most often used in an SPMD style because of its simplicity, yet it does not force the user into an SPMD
programming model since instances of distinct programs can be run cooperatively. However, even when used in this
mode, MPI shares the general characteristics of SPMD languages as described above, due to the fact that its parallelism
is expressed at the granularity of a program rather than a function, statement, or expression.

The MPI interface is supported for C and Fortran, and MPI-2 adds support for C++. To a large extent, MPI’s
ability to support the separation of an algorithm from its implementation, broad-market features, data abstractions,
and interoperability with existing codes is strongly tied to the base languages with which it is used, as impacted by
the introduction of a fragmented programming model. MPI tends to serve as a favorite target of criticism in the HEC
community, due in part to its failure to satisfy many of the design principles from Section 2.2. However, the fact that so
many sophisticated parallel codes have been written using MPI is testament to its success in spite of its shortcomings.

PVM PVM (Parallel Virtual Machine) [27, 28] is another two-sided message passing interface that was developed
during the same period as MPI, but which has not enjoyed the same degree of adoption in the community. PVM’s
interface is somewhat simpler than MPI’s, and supports the ability to dynamically spawn new parallel tasks at the
program level, as in MPI-2. PVM is supported for C, C++, and Fortran. Despite numerous differences between PVM
and MPI, our analysis of PVM with respect to our desiderata is much the same: ultimately its fragmented programming
model stands in the way of making it a highly productive parallel language.

SHMEM SHMEM [4] is a single-sided communication interface that was developed by Cray in the 1990’s to support
a single processor’s ability to put data into, and get data from, another processor’s memory without that processor’s
code being involved. Such an interface maps well to Cray architectures and supports faster data transfers by removing
much of the synchronization and buffering that is necessitated by the semantics of two-sided message passing. This
one-sided communication style is arguably easier to use since programmers do not have to write their program in-
stances to know about the communication that the other is performing, yet in practice some amount of synchronization
between the programs tends to be required to know when remote values are ready to be read or written. Since its
initial development, a portable version of SHMEM has been implemented named GPSHMEM (Generalized Portable
SHMEM) and is designed to support portability of the interface to a broader range of platforms [46].

Programmers debate over whether two-sided or single-sided communication is easier due to the tradeoff between
having both program instances involved in the communication versus the subtle race conditions that can occur due to
incorrect synchronization in the one-sided model. However, from our perspective, the SHMEM interface still relies on
an SPMD programming model, and as such does little to address our wishlist for a productive language.

ARMCI and GASNet Two other single-sided communication libraries that have recently grown in popularity are
ARMCI (Aggregate Remote Memory Copy Interface) [43] and GASNet (Global Address Space Networking) [6]. Both
of these interfaces seek to support portable single-sided communication by generalizing the concepts established by
the SHMEM library. ARMCI was developed at Pacific Northwest National Laboratory and is built on native network
communication interfaces and system resources. It has been used to implement GPSHMEM, Co-array Fortran [23],
and the Global Arrays library. GASNet was developed at Berkeley. It is constructed around a core API that is based
on Active Messages [53] and is implemented on native network communication interfaces. GASNet has been used to
implement UPC [15, 16] and Titanium [50]. Both ARMCI and GASNet are primarily used as implementation layers
for libraries and languages. Their use as a stand-alone parallel programming language has similar productivity limiters
as the previous communication libraries described in this section.

3.2 PGAS Languages

A group of parallel programming languages that are currently receiving a great deal of attention are the Partitioned
Global Address Space (PGAS) languages [7]. These languages are designed around a memory model in which a
global address space is logically partitioned such that a portion of it is local to each processor. PGAS languages are
typically implemented on distributed memory machines by implementing this virtual address space using one-sided
communication libraries like ARMCI or GASNet.

PGAS languages are a welcome improvement over one-sided and two-sided message passing libraries in that
they provide abstractions for building distributed data structures and communicating between cooperating program
instances. In spite of these improvements, however, users still program with the SPMD model in mind, writing code
with the understanding that multiple instances of it will be executing cooperatively. Thus, while the PGAS languages
improve productivity, they continue to fall short of our goals of providing a global view of parallel computation and
general parallelism.

The three main PGAS languages are Co-array Fortran, UPC, and Titanium. While these are often characterized as
Fortran, C, and Java dialects of the same programming model, this is an over-generalization. In the paragraphs below,
we highlight some of their features and differences.

Co-Array Fortran Co-array Fortran (CAF) (formerly known as F——) is an elegant extension to Fortran to support
SPMD programming [44]. Its success has been such that its features will be included in the next Fortran standard [45].
CAF supports the ability to refer to the multiple cooperating instances of an SPMD program (known as images)
through a new type of array dimension called a co-array. By declaring a variable with a co-array dimension, the user
specifies that each program image will allocate a copy of the variable. Each image can then access remote instances
of the variable by indexing into the co-array dimensions using indices that refer to the logical image space. Co-arrays
are expressed using square brackets which make them stand out syntactically from traditional Fortran arrays and array
references. Synchronization routines are also provided to coordinate between the cooperating images.

While PGAS languages like CAF tend to provide a more coherent view of distributed data structures than message-
passing libraries, they still require users to fragment arrays into per-processor chunks. For example, in Co-array
Fortran an n-element array would typically be allocated as a co-array of size n/numlImages, causing the user to deal
with many of the same data structure fragmentation details as in MPI programming. The greatest programmability
improvement comes in the area of simplifying communication, since co-arrays provide a truly elegant abstraction for
data transfer as compared to one-sided and two-sided communication. Moreover, the syntactic use of square brackets
provides the user with good insight into the program’s execution model.

UPC UPC is similar to Co-array Fortran in that it extends C to support PGAS-style computation [8, 51, 24]. How-
ever, UPC supports a very different model for distributing arrays in which declaring an array variable with the shared
keyword causes the linearly-ordered array elements to be distributed between the program instances (or threads) in a
cyclic or block-cyclic manner. This mechanism provides a more global view of the user’s arrays, yet it is restricted
enough that locality-minded programmers will still tend to break arrays into THREADS arrays of n/THREADS
elements each. The biggest downside to UPC’s distributed arrays is that since they are based on C arrays, they inherit
many of the same limitations. In particular, performing a 2D blocked decomposition of a 2D array is non-trivial, even
if the problem size and number of threads are statically known.

UPC also supports a slightly more global view of control by introducing a new loop structure, the upc_forall loop,
in which global iterations of a C-style “for loop” are assigned to threads using an affinity expression. While this support
for a global iteration space is useful, it also tends to be somewhat at odds with the general UPC execution model which
is SPMD by nature until a upc_forall loop is encountered.

UPC’s most useful feature is perhaps its support for pointers into the partitioned global shared address space.
Pointers may be declared to be private (local to a thread) or shared, and may point to data that is also either private or
shared. This results in a rich abstraction for shared address space programming that successfully maintains a notion of
affinity since a symbol’s shared/private characteristic is part of the type system and therefore visible to the programmer
and compiler.

10

Titanium Titanium is a PGAS language that was developed at Berkeley as an SPMD dialect of Java [54, 36]. Tita-
nium adds several features to Java in order to make it more suited for HEC, including: multidimensional arrays sup-
porting iterators, subarrays, and copying; immutable “value” classes; operator overloading; and regions that support
safe, performance-oriented memory management as an alternative to garbage collection. To support coordination be-
tween the SPMD program instances, Titanium supports: a number of synchronization and communication primitives;
single methods and variables which give the compiler and programmer the ability to reason about synchronization in
a type-safe manner; and a notion of private/shared references and data similar to that of UPC.

In many respects, Titanium is the most promising of the PGAS languages in terms of our productivity wishlist.
It has the most support for broad-market features that current sequential programmers—particularly those from the
Java community—would come to expect. The fact that it is an object-oriented language gives it better capabilities for
separating algorithms from implementations and providing mechanisms for creating data abstractions. Its support for
single annotations and private/shared distinctions help it achieve performance and to expose its execution model to
the user. The chief disadvantage to Titanium is that, like other PGAS languages, it supports an SPMD programming
model which thwarts its ability to support a global view of data structures and control, as well as to express general
parallelism.

3.3 OpenMP

OpenMP is a set of directives and library routines that are used to specify parallel computation in a shared memory
style for C, C++, and Fortran [18, 13]. OpenMP is a drastic departure from the communication libraries and PGAS
languages described above in that it is the first programming model described in this survey that can be used in a
non-fragmented manner. OpenMP is typically used to annotate instances of parallelism within a sequential program—
most notably, by identifying loops in which parallel computation should occur. The OpenMP compiler and runtime
implement this parallelism using a team of cooperating threads. While OpenMP can be used in a fragmented manner,
querying the identity of a thread within a parallel region and taking actions based on that identity, it is more often
used in a global-view manner, identifying the opportunity for parallelism and letting the the compiler and runtime
manage the thread-level details. This ability to inject parallelism incrementally into a sequential program is considered
OpenMP’s greatest strength and productivity gain.

While the OpenMP standard supports nested parallelism, most implementations only handle a single level of
parallelism at a time. OpenMP is currently not suited for task parallelism, though there is interest in evolving it to
handle such problems. The biggest downside to OpenMP is its reliance on a shared-memory programming model,
which has generally not proven to be scalable to large numbers of processors. For this reason, OpenMP is typically
used within shared memory portions of a larger distributed memory machine—for example, to express thread level
parallelism within an MPI program running on a cluster of SMPs. OpenMP’s other downside is that, like MPI, it
is used in combination with C, C++, and Fortran, limiting its ability to support higher-level data abstractions and
broad-market features from more modern languages.

3.4 HPF

High Performance Fortran (HPF) [34, 38, 35] is a parallel extension to Fortran 90 that was developed by the High
Performance Fortran Forum, a coalition of academic and industrial language experts. HPF is an evolution of earlier
parallel Fortran dialects such as Fortran-D [25], Vienna Fortran [14, 55], and Connection Machine Fortran [2]. HPF is
a global-view language supporting distributed arrays and a single logical thread of computation. It supports a number
of directives that allow users to provide hints for array distribution and alignment, loop scheduling, and other details
relevant to parallel computation. HPF compilers implement the user’s code by generating an SPMD program in which
the compiler-generated code and runtime manage the details of implementing distributed arrays and interprocessor
communication.

HPF meets our productivity goals by providing a global view of computation, but does not provide for general
parallelism. Because of its SPMD execution model and single logical thread of execution, it is good at expressing a
single level of data parallelism cleanly, but not at expressing task or nested parallelism. HPF also suffers from a lack of
transparency in its execution model—it is difficult for both users and compilers to reason about how a code will/should
be implemented [42]. Depending on who you talk to, HPF’s lack of success is attributed to some combination of: this

11

lack of a transparent execution model; its inability to achieve good performance quickly enough (alternatively, the
impatience of its user community); its lack of support for higher-level data abstractions such as distributed sparse
arrays, graphs, and hash tables; and a number of other theories. In our work on Chapel, we build on HPF’s general
approach for global-view programming on distributed arrays while adding richer support for general parallelism and
data structures.

3.5 ZPL

ZPL is an array-based parallel language developed at the University of Washington [9, 20, 49]. Like HPF, ZPL supports
global-view parallel computation on distributed arrays where the management details are implemented by the compiler
and runtime using an SPMD implementation. As with HPF, ZPL’s execution model only supports programs with a
single level of data parallelism at a time, making it similarly limited in terms of generality.

ZPL is unique among global-view languages in that it supports execution model transparency in its syntax via a
concept known as the WYSIWYG performance model [10]. Traditional operations are semantically restricted in ZPL
to only be applicable to array expressions that are distributed in an aligned manner. To operate on arrays that are not
aligned, a series of array operators are used to express different access patterns including translations, broadcasts,
reductions, parallel prefix operations, and gathers/scatters. These stylized operators show up clearly in the syntax and
can be used to reason about where programs require communication and what type it is. In this way, programmers
are able to make coarse algorithmic tradeoffs by inspecting the syntax of their programs. In practice, ZPL achieves
performance that is competitive with hand-coded Fortran+MPI, and is portable to most platforms that support MPI.
ZPL supports array computations using a language concept known as a region® to represent distributed index sets,
including sparse arrays [11, 12, 9]. In our Chapel work, we expand upon the region concept to support distributed sets,
graphs, and hash tables. We also strive to implement the general parallelism and broad-market features that ZPL fails
to provide.

3.6 Cilk

Cilk is a global-view parallel language that supports a multithreaded execution model [31, 47]. To the programmer,
Cilk codes look like C programs that have been annotated with operations to spawn and synchronize threads. Moreover,
the elision of Cilk’s keywords result in a C program that validly implements Cilk’s semantics. Cilk’s runtime system is
in charge of scheduling the parallel computation so that it will run efficiently on a platform, and it utilizes aggressive
work sharing and stealing techniques to balance the computational load and avoid swamping the system with too much
parallelism.

Cilk is attractive with respect to our productivity desiderata in that it provides a global view of nestable parallelism.
While Cilk threads can be used to implement data parallelism, the language provides little in the way of abstractions to
make operating on distributed arrays trivial—the user would have to manage such data structures manually. As a result,
Cilk seems best-suited for nested task parallelism—an important area since so few languages support it. The current
version of Cilk is also limited to shared memory platforms, resulting in potential scaling and portability problems as
in OpenMP. While previous versions of Cilk ran on clusters of workstations [37], this capability has not been carried
forward. A final point of interest about Cilk is that while its execution model is not transparent, it does have an analytic
performance model that allows users to predict asymptotic program performance.

4 Chapel Overview

In this section, we describe a number of key Chapel language features, relating them to the goals that we established in
Section 2.2. Due to the space limitations of this paper, we provide a brief introduction to a number of Chapel concepts
without covering them in exhaustive detail. For a more complete introduction to the language, the reader is referred to
the Chapel Language Specification [17].

3Note that this is a a completely distinct concept from Titanium’s region, mentioned earlier.

12

4.1 Base Language Concepts in Chapel

Chapel is a global-view parallel language that supports a block-imperative programming style. In fact, the “pseu-
docode” fragments presented in Figures 1a, 2a, and 3 are written in Chapel. Syntactically, Chapel diverges from other
block-imperative HEC languages like C and Fortran. At times, this is due to our differing goals (e.g., support for
generic programming and a better separation of algorithm and data structures), and at times due to differing sensi-
bilities. The decision to avoid building directly on C or Fortran also reflects our belief that looking too similar to
an existing language can cause users to fall back on their sequential programming styles and assumptions rather than
considering their algorithm afresh, as is often necessary when writing parallel programs. We believe that interoperabil-
ity with existing languages is far more important than extending an existing syntax. That said, elements of Chapel’s
syntax will be familiar to users of C, Fortran, Java, Modula, and Ada.

Basic Types and Variables Chapel supports a number of built-in types that are standard for HEC: floating point and
integer types of varying widths, complex values, boolean values, and strings. Variable declarations in Chapel take the
general form:

var <name> [: <definition> | [= <initializer>] ;

where name gives the name of the variable, definition indicates its type and structural properties, and initializer supplies
its initial value. For code robustness reasons, each type in Chapel has a default initial value used for uninitialized
variable declarations, though these may be overridden or suppressed by the user. Chapel’s declaration syntax differs
from the more common “type first” style used in C and Fortran primarily due to our goal of supporting generic
programming by eliding a variable’s type (described below). In addition, we have a preference for variable definitions
that can be read left-to-right, and for array specifications that can define multiple variables and that need not be split
by a variable’s name.

Locales In Chapel, we use the term locale to refer to the unit of a parallel architecture that is capable of performing
computation and has uniform access to the machine’s memory. For example, on a cluster architecture, each node and
its associated local memory would be considered a locale. Chapel supports a locale type and provides every program
with a built-in array of locales to represent the portion of the machine on which the program is executing. Effectively,
the following variables are provided by the system:

const numLocales: int = ...;
const Locales: [1..numLocales] locale = ...;

Programmers may reshape or partition this array of locales in order to logically represent the locale set as their algo-
rithm prefers. Locales are used for specifying the mapping of Chapel data and computation to the physical machine
using features described below.

Other Basic Types Chapel supports fuples of homogeneous and heterogeneous types as a means of bundling several
values together in a lightweight fashion. It also supports a sequence type that is used to represent ordered homogeneous
collections in cases where richer data aggregates like arrays are overkill. Chapel’s semantics for operations on arrays
are defined in terms of sequence semantics.

Chapel also supports type unions which are similar to C’s union types, except that they must be used in a type-safe
manner. For example, having written to a union variable via member x, the variable cannot then be accessed via
member .

Control Flow and Functions Chapel supports a variety of standard control flow statements as in most block-
imperative languages—Iloops, conditionals, select statements (like “switch” or “case” statements), breaks, continues,
gotos, and returns. Chapel supports function definitions that support default argument values, argument matching by
name, and argument intents. Functions can be overloaded, as can most of the standard operators. Function resolution
is performed in a multiple-dispatch manner.

13

4.2 Parallelism in Chapel

Chapel is designed around a multithreaded execution model in which parallelism is not described using a processor- or
task-based model, but in terms of independent computations implemented using threads. Rather than giving the pro-
grammer access to threads via low-level fork/join mechanisms and naming, Chapel provides higher-level abstractions
for parallelism using anonymous threads that are implemented by the compiler and runtime system. We choose this
model both to relieve users of the burden of thread management and due to its generality. Although most architectures
do not currently have hardware support for multithreading, we believe that the benefits gained in programmability
and generality will outweigh the potential performance impacts of managing these threads in software. Moreover, as
multicore processors become more readily available, we anticipate that support for multithreading will become more
commonplace.

4.2.1 Data Parallelism

Domains and Arrays Chapel supports data parallelism using a language construct known as a domain—a named,
first-class set of indices that is used to define the size and shape of arrays and to support parallel iteration. Note that we
use the term array in Chapel to represent a general mapping from an index set of arbitrary type to a set of variables.
This results in a richer array concept than the rectilinear blocks of data supported by most HEC languages. Chapel’s
domains are an evolution of the region concept that was developed in ZPL, generalized here to support sets, graphs,
and associative arrays. Chapel has three main classes of domains, described in the following paragraphs.

Arithmetic domains are those in which indices are represented using multidimensional integer coordinates, to
support rectilinear index sets as in traditional array languages. Arithmetic domains may have dynamic sizes and
bounds, and they may be dense, strided, or sparse in each dimension. The following declarations create a simple 2D
arithmetic domain and array:

var D: domain(2) = [1l..m, 1l..n]; // a 2D arithmetic domain storing indices (1,1)...(m,n)
var A: [D] float; // an m X n array of floating point values

Indefinite domains represent an index set of arbitrary type, as specified by the user. For example, a programmer
might choose to use floating point values, strings, or object references as an indefinite domain’s index type. Indef-
inite domains are used to implement sets or associative arrays, and can be thought of as providing hash table-like
functionality. The following example creates an array of integers indexed using strings:

var People: domain(string); // a domain storing string indices, initially empty

var Age: [People] int; // an array of integers indexed via strings in the People domain
People += "John”; // add string “John” to the People domain

Age(”John”) = 62; // set John’s age

Opaque domains are those in which the indices have no values or algebra in relation to one another—they are
simply anonymous indices, each of which is unique. Opaque domains can be used to represent graphs or link-based
data structures in which there is no requirement to impose an index value or ordering on the nodes that comprise the
data structure. Opaque domains and arrays are declared as follows:

var Points: domain(opaque); // a domain storing opaque indices
var Weight: [Points] int; // an integer array indexed via "Points” indices
var aPoint: index (opaque) = Points.new(); // create and store a new anonymous index

As shown above, Chapel arrays are declared by specifying the domain(s) that define the array’s size and shape in
combination with an element type that is to be stored for each element within the array. In general, domains may be
dynamically modified to add or subtract indices from the set that they describe. When this occurs, any arrays defined
using the domain are reallocated to reflect the changes to the domain’s index set. Thus, the declaration of an array over
a domain establishes an invariant relationship between the two concepts that is maintained dynamically throughout the
array’s lifetime.

Index Types and Subdomains Chapel supports an index type that is parameterized by a domain value. A variable of
a given index type may store any of the indices that its domain describes. The following code declares and initializes
an index variable for each of the three domains declared above:

14

forall ij in D { forall i in People { forall pt in Points {
A(ij) = .. Age(i) = ...; Weight (pt) = ...;

} } }
. [ij in D] A(ij) [i in People] Age(i) [pt in Points] Weight(pt) ...
(a) (b) (c)

Figure 4: Forall loops in statement and expression form for the three domains declared at the beginning of Sec-
tion 4.2.1. The loop variables are declared implicitly to be the domain’s index type, and are scoped by the loop body.
More specifically, ij is an index(D)—a 2-tuple of integers from domain D; i is an index(People)—a string from
the People domain; and p is an index(Point)—an opaque index from the Point domain.

var centerD: index(D) = (m/2, n/2); // the center of domain D
var name: index(People) = ”John”; // a name from domain People
var anotherPoint: index(Points) = Points.new(); // a new point from the Points domain

A domain variable may be declared as a subdomain of another domain, constraining its indices to be a subset of
those described by its parent. For example, the following code creates a subdomain for each of the three domains
declared above:

var innerD: subdomain(D) = [2..m—1, 2..n—1]; // the inner indices of domain D
var Adults: subdomain(People) = ...; // the adults in the People domain
var HeavyPoints: subdomain(Points) = ...; // the heavy points from the Points domain

Index types and subdomains are beneficial because the compiler can often reason about them to eliminate bounds
checks. For example, if an index value from innerD is used to access array A, no bounds check is required since
innerD is a subdomain of A’s domain D. Index types and subdomains also provide readers of Chapel code with
additional semantic information about a variable’s value. In contrast, code can be difficult to understand when every
variable used to access an arithmetic array is declared as an integer.

Iteration, Slicing, and Promotion Parallel iteration is specified in Chapel using forall loops in either statement or
expression form. Forall loops iterate over domains, arrays, or other expressions that evaluate to a sequence of values.
Forall loops may optionally define loop variables that take on the values described by the collection being traversed.
For example, a forall loop over a domain will create loop variables of that domain’s index type that will take on the
index values described by the domain. Loop variables are only defined for the body of the forall loop. Figure 4
illustrates forall loops for our running domain examples.

Chapel users can index into arrays an element at a time using individual index values, such as those resulting from
a forall loop over a domain. Alternatively, they may index into arrays in an aggregate manner by using a domain
expression to specify an arbitrary subset of the array’s values. This provides an array slicing mechanism similar to
that of Fortran 90, yet with richer semantics since Chapel domains can describe arbitrary index sets. For example, the
following expressions use our previous subdomain declarations to slice into arrays declared over their parent domains:

... A(innerD) ...
. Age(Adults) ...
. Weight(HeavyPoints) ...

Promotion, Reductions, and Scans Chapel supports the promotion of scalar operators and functions over data
aggregates such as whole array references or array slices. Whole-array assignment is a trivial example involving the
promotion of the scalar assignment operator. The semantics of such promotions are defined using sequence-based
interpretations of the array expressions. Promoted operators take sequence expressions of compatible rank and shape.
Chapel also supports a cross-product style of promotion. Promotions over aggregates are implicitly parallel.

Chapel also supports other specialized forms of data parallel computation such as reductions and parallel prefix
computations (scans). These operators can be invoked using built-in operations like sum or min, or users can specify
their own operations that define the component functions of a scan or reduction [21].

15

As example uses of promotion and reductions, consider the following Chapel statements which compute approx-
imate norms for a 3D n X n x n array, A. These promote the standard exponentiation operator and absolute value
function across A’s elements, using sum and max reductions to collapse the resulting values to a scalar:

var rnm2 = sqrt ((sum reduce Axx2) / nx*x%3);
var rnmu = max reduce abs(A);

Domain Distributions A domain’s indices may be decomposed between multiple locales, resulting in a distributed
allocation for each array defined using that domain. Domain distributions also provide a default work location for
threads implementing parallel computation over a domain’s indices or an array’s values. Because of the constrained
relationship between an array and its defining domain, two arrays declared using the same domain are guaranteed
to have the same size, shape, and distribution throughout their lifetimes, allowing the compiler to reason about the
distribution of aligned arrays. Subdomains also inherit their parent domain’s distribution unless explicitly over-ridden,
providing additional alignment information.

Chapel will support a number of traditional distributions (e.g., block, cyclic, recursive bisection, graph partitioning
algorithms) as part of its standard library. However, a primary goal of the language is to allow users to implement
their own distributions when they have application-specific knowledge for how an array should be distributed that is
not captured by the standard distributions.

Support for these user-defined distributions is one of our most aggressive research areas in the Chapel project, and
arich enough topic to warrant a paper of its own [22]. For this discussion, it suffices to say that a distribution specifies
how a domain’s indices are mapped to a set of target locales, as well as how domain indices and array elements should
be stored within each locale’s memory. Our current framework requires distribution authors to create five classes that
represent: the distribution; a domain declared using the distribution; a single locale’s portion of such a domain; an
array declared using the domain; and a single locale’s portion of such an array. These classes will be expected to
support a standard interface of accessors, iterators, query functions, and data transfer methods which the compiler will
target during its rewrites of the user’s global-view code. Domain distributions are a key part of Chapel’s separation of
concerns, allowing users to define data structures independently of the computations that operate on them.

4.2.2 Task Parallelism

Chapel supports task parallelism using stylized forms of specifying parallel statements and synchronizing between
them. The primary way to launch a series of parallel tasks is to use the cobegin statement, a compound statement
which asserts that each of its component statements can be executed in parallel. A variation on the cobegin statement
is the begin statement which identifies a statement that can execute in parallel with the statements that follow it.
Parallel tasks can also be specified symmetrically using the forall loops described in the previous section.

Chapel’s parallel tasks can coordinate with one another using synchronization variables that support full/empty
semantics in addition to their normal data values. By default, reads to a synchronization variable only complete when
the variable is “full” and leave it “empty”, while writes do the opposite. The user may explicitly specify alternate
semantics such as writing to the variable and leavin