
PERFORMANCE MEASUREMENT OF INTERPRETED, JUST-IN-TIME COMPILED,

AND DYNAMICALLY COMPILED EXECUTIONS

BY

TIA NEWHALL

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Computer Sciences)

at the University of Wisconsin—Madison

1999

© Copyright by Tia Newhall 1999

All Rights Reserved

i

Acknowledgments

During the course of my graduate career I have benefited from the help, support, advice and

suggestions of a great many people.

My thesis advisor, Bart Miller, provided years of technical and professional guidance, advice,

and support. I am grateful for all that he has taught me, both as a researcher and as a teacher.

I thank my committee members Marvin Solomon and Miron Livny for their time and effort

spent reading my thesis, and for providing valuable criticisms and suggestions for improving my

work. I thank my entire committee, Marvin Solomon, Miron Livny, Mary Vernon, and Douglas

Bates, for a lively and thorough discussion of my thesis work during my defense.

I am grateful I had the opportunity to be a member of the Paradyn project, and in particular for

the stimulating interactions with Paradyn project members. I am indebted to the help and sup-

port I have received from Zhichen Xu, Ari Tamches, Vic Zandy, Bruce Irvin, Mark Callaghan,

Marcelo Goncalves, Brian Wylie and all the other current and past members of the Paradyn

project. A special thanks to Karen Karavanic who has been a supportive comrade at each step in

this process.

I am indebted to NCR for the support provided by a graduate research fellowship during my

final year as a graduate student. Also, I would like to acknowledge the groups that have helped

fund my research assistantships: Department of Energy Grant DE-FG02-93ER25176, NSF grants

CDA-9623632 and EIA-9870684, and DARPA contract N66001-97-C-8532.

I thank Marvin Solomon and Andrew Prock for providing the Java application programs used

for the performance measurement studies in this dissertation.

My graduate school friends have been a constant source of moral support, advice, and amuse-

ment. In particular, I’d like to thank Mary Tork-Roth, Bill Roth, Kurt Brown, Brad Richards,

Holly Boaz, Mark Craven, Susan Goral, Susan Hert and Alain Kägi.

Most of all, I would not have been able to accomplish my goals without the love, support and

encouragement of Martha Townsend and the rest of my family. I dedicate this work to them.

ii

Contents

Acknowledgments . i

Contents . ii

List of Figures . vi

1 Introduction .1

1.1 Motivation . 1

1.1.1 Performance Measurement of Interpreted Executions . 2

1.1.2 Performance Measurement of Application’s with Multiple Execution Forms 4

1.2 Summary of Results . 5

1.3 Organization of Dissertation . 6

2 Related Work. .7

2.1 Performance tools for interpreted and JIT compiled executions 8

2.2 Traditional performance tools . 11

2.3 Tools that Map Performance Data to User’s View of Program . 12

2.4 Tools that can See Inside the Kernel . 12

2.5 Tools that Expose Abstractions from User-Level Libraries . 13

2.6 Conclusions . 13

3 Describing Performance Data that Represent VM-AP Interactions15

3.1 Representing an Interpreted Execution . 15

3.1.1 Representing a Program Execution . 15

3.1.2 Representing the VM and AP Programs . 17

3.1.3 Representing Interacting Programs . 18

3.2 Representing Constrained Parts of Program Executions . 19

3.2.1 Active Resources and Constraint Functions . 19

3.2.2 Constraint Operators . 21

3.2.3 Properties of Constraint Operators . 24

3.2.4 Foci . 24

iii

3.3 Representing Performance Data from Interpreted Executions 25

3.3.1 Using Foci to Constrain Performance Data . 25

3.3.2 Using Metrics to Constrain Performance Data . 25

3.3.3 Metric Functions for Interpreted Executions . 26

3.3.4 Combining Metrics with Foci from VM runs AP . 26

3.3.5 Performance Data Associated with Asynchronous Events 29

3.4 Conclusions . 30

4 Paradyn-J: A Performance Tool for Measuring Interpreted Java Executions31

4.1 Paradyn-J’s Implementation . 31

4.1.1 The Java Virtual Machine . 31

4.1.2 Parsing Java .class Files and Method Byte-codes . 33

4.1.3 Dynamic Instrumentation for VM Code . 34

4.1.4 Transformational Instrumentation for AP Code . 34

4.1.5 Java Interpreter-Specific Metrics . 38

4.1.6 Modifying the Performance Consultant to Search for Java Bottlenecks 38

4.2 Transformational Instrumentation Costs . 40

4.3 Advantages and Disadvantages of Transformationa Instrumentation 42

4.4 Performance Tuning Study of an Interpreted Java Application 44

4.5 Conclusions . 50

5 Motivational Example .51

5.1 Performance Measurement Study . 51

5.2 Discussion . 54

6 Describing Performance Data from Applications

with Multiple Execution Forms .56

6.1 Representing the Application’s Multiple Execution Forms . 56

6.1.1 Representing Different Forms of an AP Code Object . 56

6.1.2 Resource Mapping Functions . 58

6.2 Representing Performance Data . 62

6.2.1 Representing Form-Dependent Performance Data . 62

6.2.2 Representing Form-Independent Performance Data . 63

6.2.3 Representing Transformational Costs . 65

6.3 Changes to Paradyn-J to Support Measuring Dynamically

iv

Compiled Java Executions . 65

6.3.1 Simulating Dynamic Compilation . 66

6.3.2 Modifications to Paradyn-J . 68

6.4 Performance Tuning Study of a Dynamically Compiled

Java Application . 69

6.5 Our Performance Data and VM Developers . 74

6.6 Conclusions . 75

7 Lessons Learned from Paradyn-J’s Implementation .76

7.1 Issues Related to the Current Implementation of Paradyn-J . 76

7.2 Alternative Ways to Implement a Tool Based on Our Model . 78

7.2.1 Requirements for Implementing Our Model . 79

7.2.2 Implement as a Special Version of VM . 79

7.2.3 Using the JVMPI Interface . 80

7.2.4 Changes to JVMPI for a more Complete Implementation 80

7.3 Conclusions . 81

8 Conclusion .83

8.1 Thesis Summary . 83

8.2 Future Directions . 84

References .86

vi

List of Figures

1.1 Compiled application’s execution vs. Interpreted application’s execution. 3

1.2 Dynamic Compilation of AP byte-codes. 4

3.1 Example Resource Classes . 17

3.2 Example of Types of resource class instances in different resource hierarchies 17

3.3 Example of resource hierarchies for the virtual machine and the application

program. 18

3.4 Resource hierarchies representing the interpreted execution. 19

3.5 Active Definitions for instances of different Resource classes. 20

3.6 Generic algorithm for implementing a Resource Class’ constrain method 22

3.7 Constraint tests for constraints combined with constraint operators 22

3.8 An example of applying constraint operators for programs with multiple threads . . . 23

3.9 Properties of Constraint Operators . 24

3.10 Example Metric Definitions. 27

4.1 Memory Areas of the Java Virtual Machine. 33

4.2 Dynamic Instrumentation for Java VM code. . 34

4.3 Transformational Instrumentation for Java application byte-codes. 36

4.4 Java Interpreter Specific Metrics . 38

4.5 Performance Consultant search showing VM-specific bottlenecks in a neural

network Java application . 39

4.6 Timing measures for a Transformational Instrumentation request 41

4.7 Timing measures of Transformational Instrumentation perturbation. 41

4.8 Performance Data showing part of transformational instrumentation perturbation. . 42

4.9 Resource hierarchies from interpreted Java execution. . 44

vii

4.10 High-level performance characteristics of the interpreted Java program. 45

4.11 Performance data showing VM overhead associated with the Java application’s

execution. . 46

4.12 The fraction of CPU time spent in different AP methods. 47

4.13 VM method call overhead associated with the Sim.class. 47

4.14 Performance Data showing which methods are called most frequently. 48

4.15 Performance results from different versions of the application. 48

4.16 Table showing the number of objects created/second in AP classes and methods. . . . 49

4.17 Performance data showing which objects are created most frequently. 50

5.1 Execution time (in seconds) of each Java kernel run by ExactVM comparing

interpreted Java (Intrp column) to dynamically compiled Java (Dyn column). 53

6.1 Types of resource instances that the APCode hierarchy can contain 57

6.2 The APCode hierarchy after method foo is compiled at run-time 57

6.3 Example of a 1-to-1 resource mapping : . 59

6.4 1-to-N mappings resulting from method in-lining and specialization: 60

6.5 N-to-1 mappings resulting from method in-lining with course granularity or

mingled code: . 61

6.6 Using resource mapping functions to map performance data . 63

6.7 Performance data associated with a transformed AP code object. 66

6.8 Performance Data measuring transformation times of seven methods from a Java

neural network application program. 67

6.9 Simulation of dynamic compiling method foo. 68

6.10 Performance data for the updateWeights method from the dynamically compiled

neural network Java application. 70

6.11 Performance data for the updateWeights method from the dynamically compiled

neural network Java application. 70

6.12 Performance data for method calculateHiddenLayer . . 71

6.13 Performance data for method calculateHiddenLayer after removing some

object creates. 72

6.14 Total execution times under ExactVM for the original and the tuned versions of the

viii

neural network program. 72

6.15 Performance data from the CPU Simulation AP. 73

1

Chapter 1

Introduction

With the increasing popularity of Java, interpreted, just-in-time compiled and dynamically

compiled executions are becoming a common way for application programs to be executed. As a

result, performance profiling tools for these types of executions are in greater demand by program

developers. In this thesis, we present techniques for measuring and representing performance

data from interpreted, just-in-time and dynamically compiled program executions. Our tech-

niques solve problems related to the unique characteristics of these executions that make perfor-

mance measurement difficult, namely that there is an interdependence between the interpreter

program and the application program, and that application program code is transformed at run-

time by just-in-time and dynamic compilers.

1.1 Motivation

An interpreted execution is the execution of one program (the application) by another (the

interpreter) in which the interpreter implements a virtual machine that takes the application as

input and runs it. Interpreters act as runtime translators; program code that is targeted to run on

the virtual machine is translated to run on the host machine. Examples include interpreters for

programs written in LISP[46], Prolog[38], Basic[36], Scheme[34], Smalltalk[18], Perl[69],

TCL[48], Pascal[59], Python[68], Self[29], and Java[41]. One benefit of interpreted execution is

the platform independence of the application program; an application program can run on any

machine on which the interpreter virtual machine runs. Another benefit of interpreted execution

is that it can be used to emulate systems or parts of systems that may not be present on the

underlying operating system/architecture of the host machine; for example, simulator programs

such as SimOS [57], g88 [5], FAST [6], RSIM [49], WWT [56], and Shade [13] implement a virtual

machine, and they take as input and run application programs that are targeted to run on the

simulated architecture.

Typically, interpreted executions are orders of magnitude slower than equivalent native exe-

2

cutions [44, 58]. A faster way to run the application is to translate large parts (like entire func-

tions) to native code, and directly execute the cached translation rather than interpreting the

application one instruction at a time. Just-in-time (JIT) compilers [16, 42] and dynamic compilers

[3, 14, 29] execute applications in this manner. Also, many fast interpreters [13, 57, 18, 52, 42] do

some translating and caching of application code.

Interpreted, JIT compiled, and dynamically compiled program executions are increasingly

being used as the norm in running applications. For example, Java applications are almost always

run by a Java virtual machine that is implemented as an interpreter [41], JIT compiler [16] or

dynamic compiler [23, 63, 9]. The platform independence of Java programs, and the ability to

attach Java programs to web pages combined with the increasing popularity of the world wide

web, have contributed to the use of Java for various types of applications including parallel and

distributed computing [19, 67, 12], and Web-based computing and meta-computing [4, 8, 20]; Java

is increasingly being used for large, complex applications. As a result, Java programmers are

becoming more concerned with their program’s performance, and thus have more of a need for

performance measurement tools that can help them answer questions about their program’s per-

formance. Therefore, being able to build performance measurement tools for interpreted, JIT com-

piled, and dynamically compiled executions will become increasingly important. However, there

are two unique characteristics of these types of executions that make performance measurement

difficult. First, in interpreted executions there is an interdependence between the interpreter’s

execution and the interpreted application’s execution. Second, performance measurement of

dynamically compiled and JIT compiled executions is complicated by the application program’s

multiple execution forms.

In this thesis, we discuss techniques for collecting and representing performance data from

interpreted, JIT compiled and dynamically compiled program executions that solve problems

associated with the unique characteristics of these types of executions that make performance

measurement difficult: (1) the interdependence between the interpreter’s and the interpreted

application’s execution, and (2) the multiple execution forms of JIT compiled and dynamically

compiled application code that is translated at run-time by the virtual machine.

1.1.1 Performance Measurement of Interpreted Executions

The interdependence between the execution of the interpreter and the interpreted code makes

performance measurement difficult. The implementation of the interpreter determines how appli-

cation code is executed and constructs in the application trigger the execution of specific code in

the interpreter. The difficulties this causes are illustrated by comparing an interpreted code’s exe-

cution to a compiled code’s execution (shown in Figure 1.1). A compiled code is in a form that can

be executed directly on a particular operating system/architecture platform. Tools that measure

the performance of the execution of a compiled code provide performance measurements in terms

of platform-specific costs associated with executing the code; process time, number of page faults,

3

I/O blocking time, and cache miss rate are some examples of platform-specific measures. In con-

trast, an interpreted code is in a form that can be executed by the interpreter. The interpreter vir-

tual machine is itself an application program that executes on the OS/architecture platform. One

obvious difference between compiled and interpreted application execution is the extra layer of

the interpreter program that, in part, determines the performance of the interpreted application.

We call the Interpreter layer the virtual machine (VM) and the Application layer the application

program (AP). The VM is any program that implements a virtual machine for another application

that it takes as input and runs.

Performance data that explicitly describes the interaction between the virtual machine and

the application program is critical to understanding the performance of the interpreted execution,

and will help a program developer more easily determine how to tune the application to make it

run faster. For example, if performance data shows that the amount of VM overhead associated

with the VM interpreting call instructions in AP method foo accounts for a large fraction of

foo ’s execution time, then the program developer knows that one way to improve foo ’s inter-

preted execution is to reduce some of this VM overhead in foo ’s execution.

Because there is an Application layer and an Interpreter layer in an interpreted execution,

there are potentially two different program developers who would be interested in performance

measurement of the interpreted execution: the VM developer and the AP developer. Both want

performance data described in terms of platform-specific costs associated with executing parts of

their applications. However, each views the platform and the application program as different lay-

ers of the interpreted execution. The VM developer sees the AP as input to the VM (as shown in

the second column of Figure 1.1). The AP developer sees the AP as a program that is run on the

virtual machine implemented by the VM (shown in the last column of Figure 1.1).

The VM developer is interested in platform-specific performance measurements associated

with the virtual machine’s execution and characterized in terms of its input (the AP); the VM

developer wants performance data that characterizes the VM’s performance in terms of the appli-

cation code it interprets. An example of this type of performance data is the amount of process

time used while VM function objectCreate is interpreting instructions from an AP method.

Figure 1.1 Compiled application’s execution vs. Interpreted application’s execution.
A VM developer and an AP developer view the interpreted execution differently.

Application

Platform (OS/Arch)

Application

Interpreter

Platform (OS/Arch)

Interpreted ExecutionCompiled Execution

application

platform

input

application

platform

VM developer’s view AP developer’s view

4

The AP developer, on the other hand, views the platform as the virtual machine implemented by

the interpreter program. An AP developer wants VM-specific performance measurements that

allow an AP developer to see inside the virtual machine to understand the fundamental costs

associated with the virtual machine’s execution of the application. An example of this type of per-

formance data is the amount of VM object creation overhead in the execution of AP method foo .

A performance tool must present performance data that describes specific VM-AP interactions in

a language that matches the program developer’s view of the execution.

Our approach can address any environment where one program runs another. The machine

hardware can be viewed as running the operation system that runs the user program. The part of

our solution for describing performance data for interacting VM and AP layers is applicable to

describing performance data associated with interactions between multiple levels.

1.1.2 Performance Measurement of Application’s with Multiple
Execution Forms

Performance measurement of JIT and dynamically compiled application programs is difficult

because of the application’s multiple execution forms (AP code is transformed into other forms

while it is executed). For example, a Java program starts out interpreted in byte-code form. While

it is executed, a Java dynamic compiler VM may translate parts of the byte-code to native code

that is directly executed on the host machine. Figure 1.2 shows the two execution modes of an

environment that uses dynamic compilation to execute an AP that starts out in byte-code form: (1)

the VM interprets AP byte-codes; (2) native code versions of AP methods that the VM compiles at

runtime are directly executed by the operating system/architecture platform with some residual

VM interaction (for example, activities like object creation, thread synchronization, exception

handling, garbage collection, and calls from native code to byte-code methods may require VM

interaction). The VM acts like a runtime library to the native form of an AP method. At any point

in the execution, the VM may compile a method, while some methods may never be compiled.

Because parts of the application program are transformed from one form to another by the

Figure 1.2 Dynamic Compilation of AP byte-codes. During a dynamically compiled
execution methods may be interpreted by the VM and/or compiled into native code and
directly executed. The native code may still interact with the VM; the VM acts like a runtime
library to the AP.

Application byte-code

Dynamic Compiler VM

Platform (OS/Arch)

Interpret

Application
native code

Directly Execute

5

VM at runtime, the location and structure of application code can change during execution. From

the standpoint of performance measurement, this causes several problems. First, a performance

tool must measure each form of the Java method, requiring different types of instrumentation

technologies. Second, a tool must be aware of the relationship between the byte-code and native

code version of a method, so that performance data can be correlated. Third, because AP code is

transformed at run-time, its transformation is part of the execution; a performance tool must rep-

resent performance data associated with the transformational activities. Finally, since even the

native code methods interact with the VM (with the VM acting more like a run-time library), per-

formance data that explicitly describes these VM interactions with the native form of an AP

method will help a programer better understand the application’s execution.

1.2 Summary of Results

This dissertation presents new methods for collecting and representing performance data for

interpreted, JIT compiled, and dynamically compiled executions. We present a representational

model for describing performance data from these types of executions that addresses problems

associated with the interdependence between the execution of the AP and the VM, and addresses

problems associated with the multiple execution forms of the AP. We show how a performance tool

based on our model provides performance data that allows program developers to easily deter-

mine how to tune their programs to improve the program’s performance. We demonstrate the

effectiveness of the model by using performance data from our tool to improve the execution times

of several Java application programs.

Our model allows for a concrete description of behaviors in interpreted, JIT compiled and

dynamically compiled executions, and it is a reference point for what is needed to implement a

performance tool for measuring these types of executions. An implementation of our model can

answer performance questions about specific interactions between the VM and the AP, and it can

represent performance data in a language that both an application program developer and a vir-

tual machine developer can understand. The model describes performance data in terms of the

different forms of an application program object, describes run-time transformational costs associ-

ated with dynamically compiled AP code, and correlates performance data collected for one form

of an AP object with other forms of the same object.

We present Paradyn-J, a prototype performance tool for measuring interpreted and dynami-

cally compiled Java executions. Paradyn-J is an implementation of our model for describing per-

formance data from these types of executions. To demonstrate our ideas, we show how Paradyn-J

describes performance data that can be only represented by tools based on our model, and how

this data provides information that is useful to both an AP developer and a VM developer in

determining how to tune the program to make it run faster. We present results using performance

data from Paradyn-J to tune an all-interpreted Java CPU simulator program. Performance data

from Paradyn-J identifies expensive Java VM activities (method call and object creation over-

6

head), and represents specific VM costs associated with constrained parts of the Java application.

With this data we were easily able to determine how to tune the Java application to improve its

performance by a factor of 1.7. We also present results using Paradyn-J to tune a dynamically

compiled Java neural network application. In this performance tuning study, we simulate the

dynamic compilation of several application methods. Paradyn-J provides performance measures

associated with the byte-code and native code forms of the dynamically compiled methods, and in

particular, measures VM object creation overhead associated with each form of the method. These

data allow us easily to determine how to tune one of the dynamically compiled methods to

improve its performance by 10%.

1.3 Organization of Dissertation

This dissertation is organized into seven chapters. We begin by discussing related work in

Chapter 2.

In Chapter 3 we present the first part of our solution: our model for describing performance

data from interpreted executions. Chapter 4 presents Paradyn-J, a performance tool for measur-

ing interpreted Java executions that is based on our model. We describe Paradyn-J’s implementa-

tion, and demonstrate our ideas by showing how performance data from Paradyn-J can be used to

improve the performance of a Java CPU simulator application.

We present results from a performance study comparing dynamically compiled and inter-

preted Java application executions in Chapter 5. We use this study to motivate the need for

detailed performance data from dynamically compiled executions.

In Chapter 6, we describe the second part of our solution: a model for describing performance

data from program executions that have multiple execution forms. We describe modifications to

Paradyn-J for measuring a simulation of dynamically compiled Java executions, and demonstrate

our model by using performance data from Paradyn-J to tune a dynamically compiled method

function from a Java neural network application.

Chapter 7 discusses implementation issues particular to implementing a performance tool

based on our model. We also discuss some of the complexities of our implementation of Paradyn-J

and examine some other ways in which a performance tool implementing our model could be built.

Finally, in Chapter 8, we present our conclusions, and suggest future directions for this work.

7

Chapter 2

Related Work

Past research in application-level performance measurement tools has addressed many issues

related to the measurement of interpreted, JIT compiled and dynamically compiled program exe-

cutions. In particular, there are several performance measurement tools for JIT compiled and

interpreted executions that provide useful information to an AP developer, including a few that

provide a limited number of fixed VM costs (such as number of object creates, and counts of gar-

bage collections activities). However, there is no tool that can describe performance data for gen-

eral interactions between the VM and the AP (such as VM method call overhead due to calls made

from a particular AP method); no existing tool exports VM resources and, as a result, arbitrary,

general performance measurement of the VM and of VM-AP interactions is not possible using

existing tools. Also, there is no tool that we know of that can correlate performance data for the

different execution forms of dynamically compiled AP code.

We show in later chapters that having performance data that measure specific VM costs asso-

ciated with AP’s execution, and that measure AP’s multiple execution forms, is critical to under-

standing the performance of interpreted, JIT or dynamically compiled executions. To provide this

type of performance data there are several issues that we must address. First, we must obtain

performance measures from both the VM and the AP’s execution. Second, we must extract

abstractions implemented by the VM program (e.g., AP threads) and measure performance data

in a way that is consistent with these abstractions. Finally, we must obtain mapping information

when AP code is compiled at run-time and use this information to map performance data between

the different execution forms of AP code. Previous work in performance measurement tools has

addressed similar issues.

We must explicitly measure the VM program. Any general purpose performance tool can pro-

vide measures of the VM program. However, we must also be able to describe VM measures in

terms of the AP-developer’s view of the execution to allow the AP developer to see inside the VM.

To do this we need to expose abstractions implemented by the VM in a language that the AP

8

developer can understand (in terms of the abstractions that the VM implements). Similar work

has been done to allow a binary application developer to see inside the operating system, giving a

view of how the OS executes an application, and to see inside user level libraries to present per-

formance data in terms of the abstractions implemented by the library.

We need to map performance data between different views of AP code that changes form at

run-time. All performance tools do some type of mapping between low-level execution activities

and high-level views of these activities; the most common is mapping performance data to a

source code view. There are also research efforts examining more complicated mappings, such as

performance measurement for data parallel programs that map low-level synchronization activi-

ties to language-level views of these activities.

In this chapter, we discuss systems that address pieces of the problems we need to solve. We

conclude that although there are currently tools that can provide some of the features we want,

there are no tools, or combinations of tools, that can explicitly represent arbitrary, general VM-AP

interactions from interpreted, JIT compiled, or dynamically compiled executions. Also, there are

no tools that can describe performance data in terms of both the AP-developer’s and the VM-

developer’s view of the execution, and there are no tools that can represent performance in terms

of different execution forms of dynamically compiled AP code, nor represent costs associated with

the run-time compilation of AP code.

2.1 Performance tools for interpreted and JIT compiled executions

There are several performance profiling tools for measuring interpreted and JIT compiled

applications. These tools provide performance data in terms of the application’s execution. Some

tools instrument AP source code prior to the AP’s execution. When run by the VM, AP instrumen-

tation code is interpreted just like any other AP code. Tools implemented in this way provide no

performance measurement of the VM’s execution. Other tools are implemented as special versions

of the VM or interact with the VM at run-time using VM API’s to obtain performance measures of

the AP’s execution; these tools have the potential to obtain measures of both the VM and AP’s exe-

cution.

Tools that instrument the application source code or byte-code prior to execution by the VM

include the Metering Lisp profiling tool [35], NetProf [50] and ProfBuilder [15]. NetProf and Prof-

Builder re-write the Java .class files by inserting calls to instrumentation library routines. When

the modified application code is run by the VM, an instrumentation library collects timing infor-

mation associated with the execution of the instrumented application code. Because these tools

instrument Java .class files, they can easily obtain fine-grained performance measures, such as

basic-block or statement level performance measures. Also, the Java byte-code instrumenting

tools do not need application source code to measure the Java application.

9

Inserting instrumentation in the application prior to its execution, and letting the VM execute

the instrumentation code along with the other instructions in the application, is an easy way to

obtain timing and counting measures in terms of the application’s code, but there are several

problems with this approach. First, there is no way to know which VM activities are included in

timing measures; timing measures associated with a method function could include thread con-

text switching1, Java class file loading, garbage collection and run-time compilation. Second,

there is no way of obtaining measurements that describe specific VM overheads associated with

VM’s execution of the application, since these measures require instrumenting VM code. Finally,

for JIT compiled and dynamically compiled executions, there is no control over how the compiler

transforms the instrumentation code; the compiler could perform optimizations that re-order

instrumentation code and method code instructions in such a way that the instrumentation code

is no longer measuring the same thing it was prior to compilation.

There are tools for measuring interpreted and JIT compiled Java programs that provide some

measure of Java VM costs associated with the application’s execution. To obtain these measures,

the tools are either implemented as special versions of the Java VM (JProbe [37], JDK’s VM [60],

Visual Quantify [53], and Jinsight [30]), or they interact with the Java VM at run-time using

API’s implemented by the VM (OptimizeIt [32], and VTune[31]). Also, there is a new Java profil-

ing interface (JVMPI [62]) with Sun’s Java 2 Platform [63]. JVMPI can be used to build perfor-

mance measurement tools that can obtain certain information about how the Java VM runs the

Java application.

Special versions of the Java VM contain profiling code that is executed as part of the VM’s

interpreter or JIT compiler code. The profiling code obtains counting and timing measures in

terms of the Java AP code that is being executed. One example is Sun’s JDK VM implementation

with built-in profiling. Instrumentation code, which is part of the VM code, can be triggered to col-

lect the total execution time and the number of calls to Java application methods, as well as to

create a call-graph. Another example is JProbe for interpreted and JIT compiled Java executions.

It provides a call graph display with cumulative CPU time and count measures for methods, a

real time memory usage display showing allocated and garbage collected object space and object

instance counts, and a source code display that is annotated with total CPU and count measures.

Rational’s Visual Quantify is a performance tool for interpreted Java executions that is integrated

with Microsoft’s Developer Studio 97. It provides a call graph display and a source code display

where lines of source code are annotated with total execution times and number of executions. It

also provides a real-time display of active Java application threads. Finally, Jinsight is a traced-

based performance tool that gathers trace data from a modified Java VM running on Microsoft’s

Windows or IBM’s AIX operating systems. It provides displays for viewing performance data in

terms of object creates, garbage collection, and execution sequences of Java code, and provides a

display of real-time application thread interaction.

1. The timing instrumentation used by these tools is not thread aware.

10

There are two Java profiling tools that interact with the Java VM at run-time using an API

implemented by the VM to obtain performance data. One example is Intel Corporation’s VTune.

VTune uses event-based sampling, and hardware performance counters available on Intel’s Pen-

tium Pro processors to collect performance data for JIT compiled Java applications. VTune runs

on Intel’s Pentium Processor based platforms running versions of Microsoft’s Windows operating

systems. The tool handles processor-event interrupts to obtain hardware performance counter

and program counter samples. It interacts with the Java VM through a special VTune API; only if

the VM implements the VTune API can VTune associate performance data with Java AP code.

Currently, Microsoft’s Visual J++ and Internet Explorer, Borland’s JBuilder 2, and Asymetrix’s

SuperCede support the VTune API. The API is used to determine where JIT compiled Java appli-

cation code is located in memory, so that the program counter samples can be correlated with Java

application code. VTune provides displays of total CPU time, and number of calls associated with

Java methods. It also provides a call graph display.

Another example of a tool that interacts with the Java VM at run-time is Intuitive Systems’

OptimizeIt. OptimizeIt is a tool for measuring interpreted and JIT compiled Java executions run

by Sun’s unmodified Java VM for versions of JDK up to the Java 2 Platform release. OptimizeIt

provides total CPU time for each Java application thread, total CPU time associated with applica-

tion methods, and a real time memory profiler that provides the number of object instances per

class. It also provides a display that correlates total CPU times for application threads with indi-

vidual lines of Java application source code. OptimizeIt starts all Java applications that it mea-

sures. At start-up, it interacts with the Java VM to initiate performance monitoring. For the 1.1

versions of JDK, it uses low-level API’s in the Java VM to obtain performance data for the applica-

tion. Also, it may need to force the run-time linker to load shared object files containing special

versions of Java VM routines that are used to obtain some VM information. Because OptimizeIt

interacts with the Java VM at run-time, it has to be ported to different versions of the VM. How-

ever, the March 1999 release of OptimizeIt is moving towards a more platform-independent

implementation by using new classes and the new JVMPI interface available with Sun’s Java 2

Platform to obtain its profiling data.

JVMPI is an API available with Sun’s Java 2 Platform that implements an interface for per-

formance measurement tools. JVMPI is a two-way function call interface between the Java VM

and a profiler agent in the VM process. A performance tool designer builds a profiling tool by

implementing the profiler agent code that interacts with the VM using calls and event callbacks

to obtain performance information. The profiler agent is written in C or C++ code using the Java

Native Interface (JNI [61]) to call JVMPI functions. A performance tool designer also implements

a front-end part of the tool that obtains performance measures from the profiler agent and dis-

plays them to the user. Through JVMPI, the Java VM exports information about some of its

abstractions such as per thread CPU time, synchronization activities, object creates, and class file

loading. It also exports information about the Java application code it runs. Using this interface, a

11

platform-independent tool can be built that provides some VM costs and run-time activities asso-

ciated with the application’s execution; the performance tool will run on any VM that implements

the JVMPI interface.

All of these profiling tools represent performance data in term of the interpreted or JIT com-

piled application’s execution. Some of these tools provide measures of specific VM costs associated

with the application’s execution. For example, JProbe, OptimizeIt and Visual Quantify provide

some type of memory profiling information associated with Java method functions. This type of

performance data helps an application developer to more easily answer questions of how to tune

the application to improve its interpreted or JIT compiled performance.

2.2 Traditional performance tools

There are many general purpose performance tools for parallel and sequential programs that

provide performance measures in terms of the program’s execution. Most of these tools for soft-

ware measurement probes to be inserted in an application program’s source code [43], or inserted

by re-compiling or re-linking with an instrumentation library [55, 73, 70, 22, 54], or by re-writing

the binary [40], or dynamically at run-time [47]. Most of these tools can be classified as either pro-

filing [22, 70, 43, 54] or event-tracing tools [55, 73, 43, 25].

Profiling tools typically insert instrumentation code to count and/or time the execution of frag-

ments of application code, run the application, and compute the total value of the performance

metrics associated with different code fragments. One problem with profiling is that detailed

information, such as time-varying data, can be lost in the summary data. Trace-based tools insert

code in the application to generate a time-stamped record of events during the program’s execu-

tion. As the program runs, trace events are written to a log. The performance tool analyzes trace

data from the log and displays it to the user. Trace-based tool can capture very detailed informa-

tion about an application’s execution; however, for long-running or massively parallel programs,

generating, storing, and analyzing the trace files becomes problematic.

Paradyn is a tool for measuring the performance of long-running, large, parallel applications.

Paradyn is designed to solve some of the problems associated with profile and trace-based tools.

The performance data collection part of the tool is designed to scale to long-running, massively

parallel applications by using two mechanisms: fixed length data structures to store time varying

performance data and dynamic instrumentation [27] (instrumentation code that can be inserted

or removed from a running program at any point in its execution).

Digital’s continuous profiling infrastructure [51] uses a slightly different technique to provide

low-overhead performance data. It periodically samples the Alpha performance counter hardware

to obtain profiling information: a device driver services interrupts from the Alpha performance

counters; on each interrupt, the driver records the process identifier and program counter for the

interrupted program; samples are buffered in the kernel, and periodically extracted by a daemon

12

process that stores them in an on-disk database. Performance tools can be written to extract infor-

mation from this database.

2.3 Tools that Map Performance Data to User’s View of Program

All performance measurement tools provide some mapping between a low-level and high-level

view of an action. For example, most performance tools can associate performance measures of

machine code instructions with a source code view of the performance data (a machine code to

source code mapping). There are also tools that can provide more complicated hierarchical map-

pings between data parallel code and low-level runtime activities. For example, some tools for par-

allel Fortran codes are integrated with the compiler (MPP Apprentice [70] and FortranD [1]). The

compiler generates mapping information that the tool uses to correlate performance measures,

like synchronization times, with source code fragments or data parallel arrays; the execution of

application binary code can be mapped to the application developer’s view of the program.

Another example is the NV performance tool model [33] for measuring CM Fortran [66] pro-

grams. NV is designed to map performance data collected for the execution of low-level code to its

high-level view in terms of parallel data structures and statements in data parallel Fortran pro-

grams. NV is not integrated with the Fortran compiler. Instead, it uses static information from

the application’s a.out file and information obtained at run-time to map between the execution of

a high-level language statement and the low level actions that implement the statement’s execu-

tion. MemSpy [45] is a data-oriented profiling tool that provides performance measures such as

cache invalidation, and local and remote miss rates associated with parallel data objects. It works

by using the Tango simulation and tracing system [17] to instrument applications. MemSpy maps

the causes of cache misses in Tango’s simulated caches to parallel data objects.

Techniques designed for debugging optimized code [7, 26] solve a similar problem. Here, the

problem of accurately relating activities in the binary’s execution to a portion of source code is

complicated by compiler optimizations; there is not necessarily a one-to-one mapping between

source code and binary code fragments. Setting breakpoints or stepping through the execution of

the binary and mapping back to the source code is complicated by compiler optimizations that in-

line, replicate, or reorder the code.

2.4 Tools that can See Inside the Kernel

KiTrace [39] and KernInst [65] are examples of performance tools that instrument kernel

code. They allow a user to see inside the operating system by providing performance data in terms

of kernel code. For example, KernInst is a tool for instrumenting a commodity “off the shelf” ker-

nel at run-time. KernInst allows a user to instrument kernel code at an instruction level granu-

larity. KernInst provides an infrastructure to build profiling tools and provides an interface for

modifying the kernel routines at run-time. Kernel profiling tools have focused on making the OS

visible by providing performance measures of kernel routines, but have not explicitly focused on

13

associating OS activities with the application code that it executes; the performance measures are

not explicitly correlated with the user-level application code of the workloads run on the OS.

2.5 Tools that Expose Abstractions from User-Level Libraries

There are tools that can expose abstractions implemented in user-level libraries to an applica-

tion that uses the library. For example, there are tools that can provide performance data for user

level thread libraries (CMON [10], and Thread Aware Paradyn [72]), or for distributed shared

memory (Paradyn-Blizzard [71]). These tools make the abstractions implemented by the library

visible to the user; the tool measures and describes performance data in a way that is consistent

with the library’s abstractions. For example, the thread aware version of Paradyn exports a

thread view to the tool user so the user can see performance data associated with a particular

user-level thread. The tool interacts with the thread library by turning on and off timer instru-

mentation based on which thread is executing particular parts of the application code, and based

on when thread context switching occurs; the tool can correctly measure performance data in

terms of individual application threads in the presence of thread context switching.

2.6 Conclusions

There are several performance measurement tools for measuring interpreted, and JIT com-

piled executions in terms of the application program. However, one problem present in all existing

performance tools is that they do not support explicit measurement of the VM; explicit measure-

ment of the VM is necessary to help define why the application performs the way it does. All these

tools can provide a measure of the total time spent executing a Java method function, but none

can provide a measure of specific Java VM activities that are included in this time. For example, a

method may contain certain byte-code instruction sequences that are expensive for the VM to

interpret, or its execution time may include method table lookups, garbage collection activities,

class file loading, or thread context switches performed by the Java VM. A tool that can describe

performance data that measures these specific VM costs associated with the method will help an

AP developer to more easily understand the method’s performance. Sun’s new JVMPI interface

has the potential to be used for obtaining some of this information. However, it currently falls

short of providing explicit measurement of VM activities that can be associated with the execution

of AP code. In Chapter 7, we propose changes to JVMPI that would result in making some of these

data accessible to a tool builder.

Also, we know of no existing tools for measuring dynamically compiled Java. Since dynamic

compiled Java executions have the potential to be as fast as, or faster than, equivalent C++ execu-

tions [23], we expect that Java applications will increasingly be run on virtual machines imple-

mented as dynamic compilers. As a result, being able to build performance tools that can deal

with run-time compiled Java code will become increasingly important. A final issue is that with-

out exporting the VM’s code, these tools are of little use to a VM developer.

14

In our work we use and build on many of the techniques used by traditional performance mea-

surement tools, and by tools that: (1) map performance data to a high-level view of the data; and

(2) describe performance data in terms of abstractions implemented by user-level libraries. We

use similar techniques to: (1) map performance data between multiple executions forms of dynam-

ically compiled AP code; and (2) describe performance data in terms of abstractions implemented

by the VM (for example, threads, synchronization, garbage collection, and VM execution state).

In the remainder of this thesis, we show how tools that measure the VM, that measure the AP,

that measure interactions between the VM and AP, and that can measure AP code that is com-

piled at run-time, have the potential to describe any VM-AP interaction in the execution in a lan-

guage that both an AP and a VM developer can understand. As a result, such tools can describe

performance data that is critical to understanding the performance of interpreted, JIT compiled,

and dynamically compiled executions.

15

Chapter 3

Describing Performance Data that Represent VM-AP Interactions

We present a representational model for describing performance data from interpreted, JIT

compiled, and dynamically compiled executions. We focus first on the part of the model that

describes the interaction between the virtual machine and the application program during execu-

tion; we also focus on the part of the model that describes performance data in terms of both the

virtual machine developer’s and the application developer’s view of the execution. As a result, we

are able to represent performance data that describe specific VM-AP interactions in a language

that either developer can understand.

3.1 Representing an Interpreted Execution

To describe performance data from interpreted, JIT compiled, and dynamically compiled exe-

cutions, we first need to represent these types of executions. We extend Paradyn’s representation

of program resources and resource hierarchies for representing a single program’s execution [47]

to represent the execution of the AP by the VM. We first discuss a representation of the AP’s and

the VM’s executions separately, and then combine their representations to produce the model of a

virtual machine running an application program.

3.1.1 Representing a Program Execution

A running program can be viewed as a set of physical and logical components called program

resources. For example, a running program contains processes, accesses pages of memory, exe-

cutes its code, runs on a set of host machines, and may read or write to files. Each of these pro-

gram objects can be represented by a resource. A process, function, semaphore, memory block,

message tag, and file descriptor are all program resources. A program execution is represented by

the set of its program resources.

Some program resources are related in a hierarchical manner. For example, a module

resource consists of several function resources, and a function resource consists of several state-

ment resources. By grouping related resources hierarchically, we represent a program execution

16

as a set of its program resource hierarchies. A resource hierarchy is a collection of related program

resources, and can be thought of as a view of a running program in terms of these related program

resources. For example, the Process resource hierarchy views the running program as a set of pro-

cesses. It consists of a root node representing all processes in the application, and some number of

child resources–one for each process in the program execution. Other examples of resource hierar-

chies are a Code hierarchy for the code view of the program, a Machine resource hierarchy for the

set of hosts on which the application runs, and a Synchronization hierarchy for the set of synchro-

nization objects in the application. An application’s execution might be represented as the follow-

ing set of resource hierarchies: [Process,Machine,Code,SyncObj] . Other possible hierarchies

include Memory, and I/O.

We use an object-oriented representation to describe program resources. The common charac-

teristics of all resources are represented by a Resource base class. Different types of resources are

represented by classes derived from the Resource base class. For example, module, function, pro-

cess, message tag, and machine are distinct types of resources that are represented by classes

derived from the base classes. The Resource base class implements information that is common to

all resources, such as the name of the resource, resource’s parent resource instance, list of child

resource instances, and a constraint method function(s). The constraint method is a boolean func-

tion that is true when the resource is active. We discuss constraint methods in more detail in

Section 3.2.1.

The derived classes contain information that is unique to a particular resource type. For

example, the Function class might have information about a function’s address and size. Other

examples of information unique to specific resource classes are shown in Figure 3.1.

We represent a program execution, P, by a list of its resource hierarchy root node resource

instances. For example, P = [Code,Process,SyncObj,File,Memory,Machine] is the list of

resource hierarchy root nodes for the program execution P, and P[Code] is root node resource

instance of the Code hierarchy. We use the shorthand notation “root_name ” for naming the

resource instance “P[root_name] ”. For example, we will write Code for P[Code] . Figure 3.2

shows an example of two resource hierarchies and the type of resource instances that they con-

tain.

Resource instances can be represented by the path name from their resource hierarchy root

node. The function resource main can be represented by the path /Code/main.C/main . The

path represents its relationship to other resources in the Code hierarchy; main is a Function

resource whose parent is the Module resource main.C , and main.C ’s parent is the Code hierar-

chy root node resource. The resource /Code represents all of the application’s code, the resource

/Code/main.C represents all code in module main.C , and the resource /Code/main.C/main

represents all code in function main of module main.C .

17

3.1.2 Representing the VM and AP Programs

The VM is a program that runs on an operating system/architecture platform. It might be rep-

resented as: VM = [Machine,Process,Code,SyncObj] , as shown in the left half of Figure 3.3.

The AP is input to the VM that runs it. Just like any other program resources, the VM’s input

can be represented by a resource hierarchy in the VM’s program execution. However, the AP is a

special form of program input; it is itself an executing program, and as such can be represented by

a program execution (a set of resource hierarchies). For example, an interpreted application might

Resource Class Examples of type-specific information

Resource Base

name

list of child resource instances (possibly empty)

parent resource instance

constraint method

Function Derived

address

size

source code line numbers

Module Derived

address

size

source code file name

Process Derived

process identifier

address of stack pointer, heap, text & data segments

/proc file descriptor

Semaphore Derived
address of semaphore variable

type (binary or counting)

Machine Derived internet address

File Derived file descriptor

Figure 3.1 Example Resource Classes. The Resource base class implements the characteristics
that are common to all program resources, derived classes implement characteristics that are
particular to a specific type of resource

Figure 3.2 Example of Types of resource class instances in different resource hierarchies.

MessageTags
Monitors
SyncObjects

Monitor
MsgTag

Code
Module
Function

main

Code

main.c

foo
draw

mult
sum
blah

Colsblah.c

SyncObj

mon 1
mon 2
mon 3

ColsMonitor
tag 1
tag 2
tag 3

ColsMsgTags

Resource Class

18

be represented by the following resource hierarchies: AP = [Code,Thread,SyncObj] (shown in

the right half of Figure 3.3). AP’s Code hierarchy represents a view of the AP as two Class

resource instances (foo.class and blah.class), each consisting of several Method resource

instances. The SyncObj hierarchy represents a view of the AP’s synchronization objects, and the

Thread hierarchy represents a view of the AP’s threads. The resource hierarchies in Figure 3.3

represent the AP and VM executions separately.

3.1.3 Representing Interacting Programs

Both the VM’s and the AP’s executions are represented by a set of program resource hierar-

chies. However, there is an interaction between the execution of the two that must be represented

by the program execution model. The relationship between the VM and its input (the AP) is that

VM runs AP.

In an interpreted execution, the structure of the interpreted application program determines,

in part, which VM code is executed, and the implementation of the VM determines how the AP is

executed. We represent the relationship between the VM and the AP (the relationship “VM runs

AP”) by the union of VM and AP program resource hierarchies. The relationship between VM and

AP resources is further described by resource constraints (Section 3.2) and resource mapping

functions (Section 6.1.2). Figure 3.4 shows an example of resource hierarchies representing an

interpreted execution using the example hierarchies from Figure 3.3. In this example, the execu-

tion of the AP by the VM is represented by the resource hierarchies: “VM runs AP” =

[Machine,VMCode,VMProcess,VMSyncObj,APThread,APSyncObj,APCode] . Using the rep-

resentation of “VM runs AP”, we can select resources from VM and AP hierarchies to represent

specific VM-AP interactions in the interpreted execution. We discuss the representation of specific

VM-AP interactions in Section 3.2.

The runs relationship can be applied to more than two executing programs to describe a lay-

ered model. Since (A runs B) is a program execution, we can apply the runs relation to (A runs B),

and another program execution C to get ((A runs B) runs C)) which is the program execution that

represents the execution of C by B by A.

VM Resource Hierarchies: AP Resource Hierarchies:

Figure 3.3 Example of resource hierarchies for the virtual machine and the application
program.

Machine Code SyncObjProcess

VM

pid 1
pid 2

main.C
blah.C

cham
grilled

pid 3

msg tag

1
2
3

main

Code

foo.class

foo
grrr

mult
sum
blah

Colsblah.class

Thread

tid 1
tid 2
tid 3

SyncObj

mon 1
mon 2
mon 3

ColsMonitors

tid 4
tid 5

AP

19

3.2 Representing Constrained Parts of Program Executions

To query for and represent performance data that measure specific run-time activities, we

need a way to specify constrained parts of the program’s execution with which we can associate

performance measures. We introduce the concept of a focus to represent constrained parts of a

program execution; a focus uses constraints from each of its resource hierarchies to specify a spe-

cific part of the program execution. We first discuss constraints on individual resource hierarchies

and then we define a focus.

3.2.1 Active Resources and Constraint Functions

A constraint on a resource hierarchy represents a restriction of the hierarchy to a sub-set of

its resources.

• Definition 3.1: A constraint, r, is a single res csource instance from a resource hierarchy. It
represents a restriction of the hierarchy to the subset of its resources represented by r.

For example, the constraint represented by the resource instance /Process/pid_1 indi-

cates that we are interested only in parts of the program execution that involve process pid_1 . To

associate performance measures only with the parts of the execution in which process pid_1 is

actively involved, a performance tool needs to identify the execution time intervals for which the

constraint /Process/pid_1 is active.

• Definition 3.2: Intuitively, a constraint, r, is active during only those parts of the program

execution involving resource r. The precise definition of an active constraint is dependent

on the constraint’s resource type. For example, the constraint /Code/main.c/main is

active when a program counter is in function main . A list of definitions for active is pre-

sented in Figure 3.5.

• Definition 3.3: A constraint function, constrain (r) , is a boolean, time-varying function of

a constraint, r, that is true for the execution time intervals when r is active.

For example, Figure 3.7 shows the execution time interval when the constraint function of

/Code/main.C/msg_send is true. Constraint functions are resource-specific; all constraint func-

tions test whether their resource argument is active, however the type of test that is performed

Figure 3.4 Resource hierarchies representing the interpreted execution.

main

APCode

foo.class

foo
draw

mult
sum
blah

Colsblah.class

APThread APSyncObj

mon 1
mon 2
mon 3

ColsMonitors

Machine VMCode VMProcess

pid 1
pid 2

main.C
blah.C

cham
grilled

pid 3

msg tag

1
2
3

tid 1
tid 2
tid 3
tid 4
tid 5

VM runs AP

VMSyncObj

20

depends on the type of the resource argument; each derived resource class implements its own

constraint method. Figure 3.5 lists example definitions of active for resource objects of various

class types, and lists an example of how the test for active is implemented in a constraint method.

For example, one definition of a Function resource being active is that the program counter is in

the function. A constraint method to test for an active Function resource instance tests the pro-

gram counter to see if it is in the function.

The test for a synchronization object being active is that a synchronization operation is occur-

ring on that object. For example, the Semaphore resource mutex is active when it is the argu-

ment to an active semaphore function (P or V). Similarly, MessageTag resource tag_1 is active

when it is the argument to an active send or receive function, and File resource fid_1 is active

when it is the argument to an active file function (e.g., read , write , seek).

Resource Type
example instance

Intuitive Definition of Active Example Active Test

Function

/Code/foo.c/foo

Exclusive: A program counter (PC) is
in Functionfoo ’s code

Test if PC in functionfoo

Caller:foo is the caller of the
function in which the PC is

Fuction foo is in the caller
location on a stack

Inclusive: the functionfoo has been
entered by not returned from

Function foo is on a stack

Module

/Code/foo.c

At least one of modulefoo.c ’s
functions is active

(can be exclusive, inclusive, or caller
definition of active)

The OR of the active test for
foo.c ’s Function instances

Semaphore

/SyncObj/Semaphore/mutex

A synchronization operation on
semaphoremutex is active

mutex is an argument to the
active semaphoreP or V
Function resource instance

Semaphores

/SyncObj/Semaphore

A synchronization operation on a
semaphore is active

The OR of the active test
applied toSemaphore
instances

MessageTag

/SyncObj/MsgTag/tag_1

A send or receive is active for a
message with message tagtag_1

tag_1 is an argument to the
activesend or receive
Function resource instance

MessageTags

/SyncObj/MsgTag
A message send or receive is active

The OR of the active test
applied toMessageTag
instances

File

/Files/fid_1

A file operation such as read, write, or
seek on filefid_1 is active

fid_1 is an argument to the
activeread , write , or
seek Function resource
instance

Process

/Process/pid_1
Processpid_1 exists

Test for processpid_1 in
/proc file system

Machine

/Machine/cham

Machinecham is involved in
execution

Check if an application process
has been created oncham

Figure 3.5 Active Definitions for instances of different Resource classes .

21

The test for a Process resource being active is a bit strange; it tests whether the process

exists. Since the exact execution state of a process (such as run-able or blocked) is invisible, the

only definition for an active process is that the process exists.

Some types of resources can have more than one definition of active. For example, a Function

resource can be active if a program counter is in the function, or it can be active if it is on the exe-

cution stack, or it can be active if it is the caller of the function in which a program counter is.

These are three different ways to constrain a Function resource instance, therefore we need

three situation-specific constraint methods for the Function class. Each situation-specific con-

straint method implements a different test for an active function to distinguish between the exclu-

sive, inclusive, and caller definition of active.

Constraining a resource is something that is common to all resource types. Therefore the

Resource base class exports a constraint method (constrain). Since the particular test for

active depends on the resource’s type, each derived resource class overrides the base class’ con-

strain method with its own resource-specific implementation. Also, derived resource classes

implement any situation-specific constraint methods. We differentiate between a class’ situation-

specific methods by name. For example, the Code, Module, and Function classes implement

multiple constraint methods, one for each way in which a code object can be constrained: con-

strain is the exclusive constraint method, constrain_inclusive is the inclusive constraint

method, and constrain_caller is the caller constraint method. Not all resource classes have

multiple constraint functions.

Calls to a constraint method reference the resource object as a path name relative to that

object minus the hierarchy resource name. For example, a call to Code.con-

strain(main.c/main) will result in a call to the constrain method of the Function class for

the resource /Code/main.c/main . A class’ constraint method(s) are implemented to use their

path name argument to traverse the resource hierarchy and find the correct resource instance.

Once the resource instance has been found, its constrain method is invoked. Figure 3.6 shows

the algorithm for implementing a class’ constraint method(s).

3.2.2 Constraint Operators

Constraint methods can be combined by constraint operators to create more complicated bool-

ean expressions that describe when constrained parts of the program execution are active.

• Definition 3.4: The set of constraint function operators are AND, OR.

AND: (constrain1(ri)) AND (constrain2(rj)):

both constrain1(ri) and constrain2(rj) are true.

OR: (constrain1(ri) OR constrain2(rj)):

either constrain1(ri) or constrain2(rj) or both are true.

22

Constraints combined with constraint operators are true for certain time intervals of the pro-

gram execution; they are true for the parts of the program that the combination of their con-

straints represent. For example, the expression (Code.constrain(libc.so/read) AND

File.constrain(fd2)) is true over execution time intervals when a read on file descriptor fd2

is active. Figure 3.7 shows examples of constraint functions combined with different constraint

operators and the resulting execution time intervals when each tests true.

When constraint operators are used to combine constraints from programs with multiple

threads or processes, care must be taken to correctly combine the constraints in the presence of

simultaneously running threads or processes. For example, Process pid_1 executing the P or V

method on Semaphore mutex is represented by Process.constrain(pid_1) AND Syn-

cObj.constrain(mutex) . If Process pid_2 is executing P or V on Semaphore mutex over

bool constrain(path_name) {

// if we are at the right level, apply the active test

if (path_name == null)

return active();

// if we are not at the right level, call the child’s constrain method

child = find_child_resource(head(path_name));
if (! child) { return false;}

return (child.constrain(tail(path_name));

}

Figure 3.6 Generic algorithm for implementing a Resource Class’ constrain method. A
constrain method traverses the hierarchy using its path_name argument. If there are still resources
in the path name, it finds its child resource corresponding to the next level in the path, and calls its
child’s constrain method. If it is at the level corresponding to the end of the path, then it applies its
constraint test to the resource.

Figure 3.7 Constraint tests for constraints combined with constraint operators. The diagram
shows the time intervals for two events (when functions foo and blah are active), and it shows the
time intervals when these events combined with constraint operators are true. In this example, the
AND of the two events never tests true because foo and blah are not active over overlapping
execution time intervals.

Code.constrain(main.C/foo)

Code.constrain(main.C/blah)

Code.constrain(main.C/foo) OR Code.constrain(main.C/blah)

Code.constrain(main.C/foo) AND Code.constrain(main.C/blah)

Execution Time

23

execution time intervals that overlap with the time intervals when Process pid_1 is active but

pid_1 is not executing P or V on Semaphore mutex , then Process.constrain(pid_1) AND

SyncObj.constrain(mutex) should evaluate to false even though the execution time intervals

overlap when the constraints are active. To solve this problem, constrain methods from pro-

grams with multiple threads or processes return a vector of true and false values (one for the

constrain method applied to each thread), and the constraint operators combine individual

elements in these vectors.

To prevent an incorrect evaluation of the constraint operator in the presence of simulta-

neously running threads, a constraint operator is applied to corresponding individual elements

from constraint’s vector of boolean values to produce a result vector. The values in the result vec-

tor are combined with OR to obtain the final result. The following is the algorithm for combining

N constraints with a constraint operator:

1. Each constrain method is evaluated to produce N vectors of boolean values.

2. The constraint operator is applied to corresponding elements from each of the N vectors to

produce a result vector (i.e. the ith element from one vector is combined with the ith element

from the other vectors to produce the ith element of the result vector).

3. The individual boolean values in the result vector are combined with OR to obtain the final

true or false result.

Examples 1 and 2 from Figure 3.8 show constrain methods combined with AND. The first

example evaluates to true because the first element from each constrain method’s vector is true,

and the second example evaluates to false because the AND of each corresponding vector element

is false. The third example shows the constraints from the second example combined with the OR

operator. In this case the final result is true.

1. SyncObj.constrain(mutex) [T, F ... , F]
AND & & ... &
Process.constrain(pid_1) [T, F ... , F]

= [T, F ... , F] = TRUE

2. SyncObj.constrain(mutex) [T, F ... , F]
AND & & ... &
Process.constrain(pid_2) [F, T ... , F]

= [F, F ... , F] = FALSE

3. SyncObj.constrain(mutex) [T, F ... , F]
OR or or ... or
Process.constrain(pid_2) [F, T ... , F]

= [T, T ... , F] = TRUE

Figure 3.8 An example of applying constraint operators for programs with multiple threads.
Each constrain method returns a vector of true or false values. Next, each corresponding element of
the two vectors is combined with the constraint operator to produce a result vector, then the elements
in the result vector are combined with OR to obtain the final true or false result.

24

3.2.3 Properties of Constraint Operators

Multiple constraints can be combined with multiple constraint operators to represent more

complicated constrained parts of the execution of “VM runs AP”, and to represent performance

data for those events. We combine constraints with AND and OR as they are normally defined,

and thus all properties of the standard definition of AND and OR hold (idempotency, commutativ-

ity, associativity, absorption and distributivity). Figure 3.9 lists the properties of constraint opera-

tors and shows how constraint operators are combined. These properties are used to determine

how to combine multiple constraints. In Section 3.3.4, we discuss combining constraints in our

representation of performance data.

3.2.4 Foci

By combining one constraint from each resource hierarchy, specific parts of the running pro-

gram are represented. We call this representation a focus.

• Definition 3.5: A focus is a selection of resources, one from each resource hierarchy. It rep-

resents a constrained part of the program’s execution. A focus is active when all of its

resources are active (it is the AND of the constraint functions, one constraint function

from each resource hierarchy).

An example focus is </Threads/tid2,/SyncObj/Monitors/mon_1,

/Code/foo.class/foo> from the AP resource hierarchies shown in Figure 3.3. It represents

the part of the AP’s execution when thread tid2 , monitor mon_1, and method foo are active. The

part of the execution represented by this focus is occurring when the AND of its corresponding

constraint functions is true: Threads.constrain(tid2) AND SyncObj.constrain(Moni-

tor/mon_1) AND Code.constrain(foo.class/foo) .

Constraining a resource hierarchy to its root node is the same as not constraining the hierar-

chy. For example, the focus </Process,/Code/main.c> is active when /Code/main.c AND

Property AND OR

Idempotency (A AND A) = A (A OR A) = A

Commutativity (A AND B) = (B AND A) (A OR B) = (B OR A)

Associativity
(A AND B) AND C) =
(A AND (B AND C))

(A OR B) OR C) =
(A OR (B OR C))

Absorption (A OR (A AND B)) = A (A AND (A OR B)) = A

Distributivity
(A AND (B OR C)) =
(A AND B) OR (A AND C)

(A OR (B AND C)) =
(A OR B) AND A OR C)

Figure 3.9 Properties of Constraint Operators.

25

/Process are active, which is the same as when /Code/main.c is active; constraining to all pro-

cesses is equivalent to not constraining to a particular process.

3.3 Representing Performance Data from Interpreted Executions

To describe performance data that measure the interaction between an AP and a VM, we pro-

vide a mechanism to selectively constrain performance data to any aspect of the execution of “VM

runs AP”. There are two complementary (and occasionally overlapping) ways to do this. One is to

create functions that measure specific aspects of performance, and the other is to restrict perfor-

mance measurement to foci that represent restricted parts of the execution.

3.3.1 Using Foci to Constrain Performance Data

One way to selectively constrain performance data is to associate a performance measure with

a focus from “VM runs AP” that describes a constrained part of the execution of the application

program by the virtual machine. If the focus contains resources that are constrained on both VM

and AP resource hierarchies, then it represents a specific VM-AP interaction. The following is an

example from Figure 3.4: </Machine,/Code/main.C/invokeMethod,/Pro-

cess/pid_1,/SyncObj,/APThreads,/APSyncOjbect,/APCode/foo.class/foo> , repre-

sents the part of the VM’s execution when process pid_1 is executing function invokeMethod in

main.C , and is interpreting instructions in method foo of the AP. By combining metrics with this

focus, performance data for the specified VM-AP interaction can be described.

3.3.2 Using Metrics to Constrain Performance Data

The second way to selectively constrain performance data is by specifying a metric that mea-

sures a particular aspect of performance. For example, CPU utilization, synchronization waiting

time, and number of procedure calls are performance metrics.

• Definition 3.6: A metric function, f, is a time-varying function that consists of two parts (f

= [C] T):

(1) Constraint functions [C] : an expression of constraint functions combined

with constraint operators.

(2) Counter or timer function T: a function that counts the frequency or

time of program events. Examples include process time, elapsed time and

procedure calls.

A metric function’s counter or timer function, T, accumulates value only during those exe-

cution time intervals when the metric function’s constraint functions, [C], are true.

Metric functions are created by measuring their timer or counter functions only during the

execution time intervals when their constraint functions are active. Some metric functions have

null constraints. For example, the following are metric functions with null constraints:

• CPU_utilization = []processTime /sec. Amount of process time per second.

• execution_time = []wallTime /sec. The amount of wall time per second.

26

More complicated metric functions can be built by combining timer or counter functions with

constraints, as in the following examples:

• io_wait = [Code.constrain(libc.so.1/read) OR

Code.constrain(libc.so.1/write)] wallTime/ sec.

The amount of time spent reading plus the amount of time spent writing.

• io_count = [Code.constrain(libc.so.1/read) OR

Code.constrain(libc.so.1/write)] count/sec.

The number of times per second that either read or write are executed.

• func_calls = [Code.constrain(*/*)] count/sec.

The number of functions called per second.

The metric function func_calls contains a constraint using asterisk symbols to indicate

that the constraint should be applied to all resources at that level in the hierarchy. For example,

Code.constrain(*/*) means apply the constrain method to all Function resource

instances of all Module resource instances; the metric’s count function should be incremented

each time a function becomes active in the program execution.

A metric consists of a metric function and a specification of how to apply the metric function to

different foci. We will discuss combining metrics with foci in more detail in Section 3.3.4.

3.3.3 Metric Functions for Interpreted Executions

VM-specific metric functions measure activities that are specific to a particular virtual

machine. VM-specific metrics are designed to present performance data to an AP developer who

may have little or no knowledge of the internal workings of the VM; they encode knowledge of the

virtual machine in a representation that is closer to the semantics of the AP language. Thus, an

AP developer can measure VM costs associated with the execution of the AP without having to

know the details of the implementation of the VM. For an interpreter that fetches and decodes an

AP code object on each execution, we could define a metric timeToFetch to measure the time to

fetch a code object, and a metric timeToDecode to measure the time to decode a code object.

These are examples of VM-specific metric functions that measure a particular interaction

between the AP and the VM (the VM fetching and decoding AP code). The knowledge of the parts

of the VM that perform these actions are encoded in the VM-specific metric. In other words, the

VM-specific metric function contains constraints on VM resource hierarchies. For example, if the

VM routine fetchCode() gets the next set of AP instructions to interpret, then timeToFetch

may be defined as: [VMCode.constrain(main.C/fetchCode)] cpuTime/sec .

3.3.4 Combining Metrics with Foci from VM runs AP

We represent performance data as a metric–focus pair. A performance metric consist of a met-

ric function and a specification of how to apply the metric to different foci (which constraint func-

tions to apply to each of the resource hierarchies).

27

• Definition 3.7: A metric is a measure of some aspect of performance of a program execu-

tion. It consists of two parts: (1) a metric function, and (2) a specification of how to apply

the metric to different foci.

We specify how to apply the metric to different foci by indicating which constraint method to

apply to the foci’s resources; we list the name of the resource-specific or situation-specific con-

straint method from each resource hierarchy. It does not always make sense to apply a metric to

any possible focus from the program execution. For example, it does not make sense to associate

the func_calls metric with a focus constrained to a particular message tag. For the

func_calls metric, we do not specify a constraint function from the SyncObj resource hierarchy.

As a result, the specification of how to apply the metric to different foci also indicates on which

hierarchies a focus can be constrained. Figure 3.10 shows examples of metric definitions.

For example, the io_wait metric, when combined with a focus refined on the Code hierarchy,

uses the Code class’ constrain_caller situation-specific constraint method to attribute the

reading and writing time to the function that called read or write . For the CPU metrics, any

focus refined on the Code hierarchy will use the constrain method to compute CPU exclusive

time (cpu), and the constrain_inclusive method to compute CPU inclusive time

(cpu_inclusive). Neither CPU metric can be combined with foci constrained on the SyncObj

hierarchy.

Metrics combined with foci restrict the metric to a specific part of the program execution. The

result is the AND of the metric and the focus. For example:

• (CPU, < /Process/pid1, /Code/main.c/foo>)

process time when process pid1 is executing code in function foo :

= ([Process.constrain(pid1)] AND

Metric Metric Function How to apply to foci
func_calls [Code.constrain(*/*)] count/sec Code.constrain

Process.constrain
Machine.constrain

cpu []processTime/sec Code.constrain
SyncObj.constrain
Process.constrain
Machine.constrain

cpu_inclusive []processTime/sec Code.constrain_inclusive
SyncObj.constrain
Process.constrain
Machine.constrain

io_wait [Code.constrain(libc.so/read) OR
Code.constrain(libc.so/write)]

wallTime/sec

Code.constrain_caller
SyncObj.constrain
Process.constrain
Machine.constrain

Figure 3.10 Example Metric Definitions. Metric function plus how to apply the metric to a given
focus.

28

[Code.constrain(main.c/foo)])
AND [](processTime/sec)

• (io_wait, </Code/main.c/foo>)

I/O blocking time due to I/O calls from function foo :

= Code.constrain(main.c/foo) AND
([Code.constrain(libc.so.1/read)

OR Code.constrain(libc.so.1/write)] wallTime/sec)
= ([Code.constrain(main.c/foo) AND

Code.constrain(libc.so.1/read)]
OR [Code.constrain_caller(main.c/foo) AND

Code.constrain(libc.so.1/write)]) (wallTime/sec)

Combining a metric value with a focus from “VM runs AP” constrains performance measure-

ment to a specific event in the execution of the application program by the virtual machine. The

following are some examples of performance data represented as metric-focus pairs from “VM

runs AP”:

1. (CPUtime, </VMCode/main.C/invokeMethod>): Process time spent in VM function

invokeMethod .

2. (CPUtime, </APCode/foo.class/foo>): Process time spent in AP function foo .

3. (numCycles, </APCode/foo.class/foo>): Number of cycles spent in AP function foo. This

type of measurement may be possible for a simulator VM running an AP where the simulator

keeps its own representation of time (in this case a cycle count associated with executing AP

code), or it may be possible on machines with hardware cycle counters that are accessible to

the performance tool.

4. (CPUtime, </VMCode/main.C/invokeMethod, /APCode/foo.class/foo>): Process time

spent in the VM function invokeMethod while the VM is interpreting AP function foo . If

invokeMethod is called to set up state or to find the target of a call instruction each time a

method call instruction is interpreted in method foo code, then this metric-focus combination

measures the method call overhead associated with all method calls made by AP function

foo .

5. (methodCallTime, <APCode/foo.class/foo>): Same performance measurement as example

4, except it is represented by a VM-specific metric methodCallTime combined with a focus

that is refined on only the AP resource hierarchies (this performance data is in terms of an

AP-developer’s view of the interpreted execution.

Examples 4 and 5 above illustrate how a VM-specific metric function, combined with an AP

focus, is equivalent to another metric function combined with a focus containing both AP and VM

resources. The methodCallTime metric encodes information about VM function invokeMethod

that is used to compute its value. In general, there is a relationship between some metrics and

foci; a metric implies part of a focus: methodCallTime = [VMCode.con-

strain(main.C/invokeMethod)] CPUtime/sec . Computing the methodCallTime metric

involves identifying and measuring locations in the VM that perform the activity that the metric

is measuring; when methodCallTime is applied to a focus, invokeMethod is an implied part of

the focus;

29

Examples 4 and 5 also demonstrate how the same performance measure can be represented

in terms of both the VM developer’s and the AP developer’s view of the execution. Example 5 is

performance data that is in a language that an AP developer can understand. Typically, the AP

developer has little or no knowledge of the internal structure of the VM. Therefore, the AP devel-

oper is not able to specify specific VM-AP interactions by specifying a focus refined on both AP and

VM resource hierarchies. Instead, the AP developer combines a VM-specific metric with a focus

that is refined on only AP resource hierarchies. The VM-specific metric encodes information about

the virtual machine in a form that represents the AP developer’s view of how the AP is executed

by the VM.

On the other hand, the VM developer knows the internals of the VM and wants to see plat-

form specific costs associated with constrained parts of VM’s execution characterized in terms of

the parts of the AP that it runs. For a VM developer, performance data associated with specific

VM-AP interactions is represented as a focus that is constrained on both VM and AP hierarchies

combined with a non-VM-specific metric.

3.3.5 Performance Data Associated with Asynchronous Events

There are some types of activities that cannot be easily represented by foci. Foci represent an

active state of the interpreted execution. For asynchronous activities like garbage collection and

writes, we may want to see performance data associated with this activity and with the part of the

program’s execution that triggered this activity. For example, we may want to see the amount of

time spent garbage collecting a particular object associated with the function in which the object

was freed. Since garbage collection is asynchronous, the function that frees the object is not neces-

sarily active when the object is garbage collected.

We represent performance data that measures asynchronous activities as a special type of

metric (an asynchronous metric) associated with a focus. Asynchronous metric functions consist of

two parts: one part is a function for setting state when the focus is true, the other part is a func-

tion for computing the performance measure when the state is true. For example, the metric func-

tion async_GTime, which measures garbage collection time associated with an object and the

function that freed the object, consists of the following two parts: (1) when the object goes out of

scope in the function, update a state table with the object’s identifier, and the function’s identifier;

(2) when an object is garbage collected, if it has a state table entry, then start a timer and stop a

timer around its GC activity and assign this cost to the function.

In general, to compute asynchronous metrics some extra state must be kept that specifies

which part of the program to attribute an activity. Purify [24] is an example of a debugging tool

that does something like this to identify memory access errors at run-time and to associate these

with parts of the application code where the memory was accessed, allocated, initialized and/or

de-allocated.

30

3.4 Conclusions

In this chapter we presented a representational model for describing performance data from

interpreted executions that can explicitly represent VM-AP interactions, and that is in a form

that both the VM and AP developers can understand. Our model allows an AP developer to see

inside the VM an understand the fundamental costs associated with the VM’s execution of the AP.

It also allows a VM developer to characterize the VM’s performance in terms of the AP code that it

executes. Our model is a guide for what to build into a performance tool for measuring interpreted

program executions.

31

Chapter 4

Paradyn-J: A Performance Tool for Measuring

Interpreted Java Executions

We present Paradyn-J, a performance tool for measuring interpreted Java executions. Para-

dyn-J is a proof-of-concept implementation of our model for representing performance data that

describes interactions between the VM and the AP. We discuss Paradyn-J’s implementation, and

demonstrate how performance data from Paradyn-J can answer questions about the Java applica-

tion’s and the Java virtual machine’s execution. We present results from a performance tuning

study of a Java application program; using performance data from Paradyn-J, we tune a Java

application and improve its performance by more than a factor of 1.5. In Chapter 7 we discuss

alternative ways in which a Java profiling tool based on our model can be implemented.

4.1 Paradyn-J’s Implementation

Paradyn-J is an extension of the Paradyn Parallel Performance Tools [47] for measuring inter-

preted Java executions. Paradyn-J is implemented for versions 1.0.2 and 1.1.6 of Sun Microsys-

tem’s JDK running on SPARC-Solaris platforms.

We first discuss those parts of the Java VM with which our tool must interact to measure

interpreted Java executions. We then discuss Paradyn-J’s implementation. In particular, we dis-

cuss how Paradyn-J discovers AP program resources, how Paradyn-J instruments Java AP byte-

codes and Java VM native code to collect performance data that measure specific VM-AP interac-

tions, and how Paradyn-J provides performance data in terms of both the VM developer’s and the

AP developer’s view of the interpreted execution.

4.1.1 The Java Virtual Machine

We briefly discuss the Java virtual machine and how it executes Java application byte-codes.

The Java Virtual Machine [41] is an abstract stack-based processor architecture. A Java program

32

is written in the Java object-oriented programing language. A Java program consists of some

number of classes. Each class is compiled into its own .class file by the Java compiler. A class’

method functions are compiled into byte-code instructions. The byte-code instructions are the

Java virtual machine’s instruction set; Java byte-codes can run on any platform that has a Java

VM implementation.

The Java VM starts execution by invoking the main routine of the Java application class. To

execute main , the VM loads the .class file containing main , verifies that the .class file is well-

formed, and initializes the class (initializing the superclass of the class first). The VM delays bind-

ing each symbolic reference (i.e. method call target) from the class until the initial time each ref-

erence is executed. By delaying binding, the VM only incurs loading, verification, and

initialization costs for classes that are necessary to a particular execution of the program. As a

result, Java application class files can be loaded at any point in the interpreted execution.

The VM divides memory into three parts: the object memory, the execution stack, and the

class code and constantpool. The class code and constantpool part contains the application’s

method byte-codes and the per-class constantpools. A class’ constantpool is like its symbol table.

The object memory is used to store dynamic objects in the program execution (object instances,

local variables, method arguments, and method operand stacks); associated with each method is

an operand stack, and the executing byte-code instructions push and pop operand values from

this stack. The final area of memory is the execution stack. There is one execution stack for each

active thread; the execution stack consists of a number of frames. Each time a method is called a

new stack frame is created to hold the state of the executing method. When a method call returns,

its frame is popped off the stack and execution continues in the calling frame.

The virtual machine contains four registers used to hold the current state of the machine; PC

points to the next byte-code instruction to execute, Frame points to the current stack frame,

opTop points to the top of the executing method’s operand stack, and Vars points to the method’s

local variables. At any point in the execution, the Java VM is executing code from a single

method1. The registers and stack frame are used to locate all state necessary to execute the

method’s byte codes. When a method call byte-code instruction is executed, the VM creates a new

execution stack frame for the method, and allocates space in Object Memory for the method’s

operand stack, arguments, and local variables. Figure 4.1 shows the three areas of memory in the

virtual machine.

Paradyn-J interacts with the Java VM routines that load Java application .class files, and

accesses the VM’s internal data structures that store AP method byte-codes, AP class constant-

1. For version 1.1.6 of JDK using Solaris threads and running on a multi-processor, it is possible

that more than one thread is running at one time. In this case, the Frame register points to a list

of execution stacks. Each element in the list contains an execution stack for one of the currently

running threads.

33

pools, execution stack frames, VM registers, and application’s operand stacks to instrument Java

AP byte-codes

4.1.2 Parsing Java .class Files and Method Byte-codes

New class files can be loaded by the Java VM at any point in the Java execution. Classes and

their methods are program resources that Paradyn-J needs to discover and possibly measure;

Paradyn-J must be able to discover new code resources whenever the VM loads an AP class file. To

do this, instrumentation code is added to the Java VM routines that perform class file loading.

When a class file is loaded by the VM, instrumentation code is executed that passes Paradyn-J the

information necessary to locate the loaded class.

Part of class file loading includes the VM transforming the class into an expanded form that is

easier to execute. We delay parsing the class and its method byte-codes until after the class has

been transformed by the VM. We instrument the functions in the VM that perform these transfor-

mations to find the location of the transformed method byte-codes. We then parse the transformed

byte-codes and create method resources for the class, and we find the method’s instrumentation

points (the method’s entry, exit, and call sites). At this point, instrumentation requests can be

Figure 4.1 Memory Areas of the Java Virtual Machine. There are three main areas the class
constant pool, the execution stack, and object memory.The VM also has four registers to define the
current state of the system. The currently executing method is in the stack frame indicated by the
Frame register.

Optop

operand stack

Arguments

Constant Pool

Calling Frame

Local Vars

Execution Stack Class code & constantpoolsObject Memory

Class blah

Operand
Stack

args

local
vars

object

Registers

Method

constant pool

method byte-code

PC

Class foo

constant pool

method byte-code

operand stack

Arguments

Constant Pool

Calling Frame

Local Vars

Operand
Stack

args

local
vars

object Method

. .
 .

Vars Frame

34

made for the class’ methods. Measurement of the loading time is initiated before the class’

resources are created.

4.1.3 Dynamic Instrumentation for VM Code

Paradyn-J uses Paradyn’s dynamic instrumentation [27] to insert and delete instrumentation

code into Java virtual machine code at any point in the interpreted execution. Paradyn’s method

for instrumenting functions is to allocate heap space in the application process, generate instru-

mentation code in the heap, insert a branch instruction from the instrumented function to the

instrumentation code, and relocate the function’s instructions that were replaced by the branch to

the instrumentation code in the heap. The relocated instructions can be executed before or after

the instrumentation code. When the instrumented function is executed it will branch to the

instrumentation code, execute the instrumentation code before and/or after executing the func-

tion’s relocated instruction(s), and then branch back to the function.

Because the SPARC instruction set has instructions to save and restore stack frames, the

instrumentation code and the relocated instructions can execute in their own stack frames and

using their own register window. This way instrumentation code will not destroy the values in the

function’s stack frame or registers. Figure 4.2 shows an example of dynamically instrumenting a

VM function.

4.1.4 Transformational Instrumentation for AP Code

We use an instrumentation technique called Transformational Instrumentation to dynami-

cally instrument Java application byte-codes. Our technique solves two problems associated with

instrumenting Java byte-codes at run-time. One problem is that there are no Java Class Library

methods or JDK API’s (prior to release 1.2) for obtaining CPU time for AP processes or threads.

As a result, Paradyn-J must use some native code to obtain CPU time measures for instrumented

Figure 4.2 Dynamic Instrumentation for Java VM code. In this example VM function
invokeMethod is instrumented. An instruction in invokeMethod is replaced with a branch
instruction that jumps to the instrumentation code in the heap, and the overwritten invokeMethod
instruction is relocated to the instrumentation code.

Java VM Code

invokeMethod() {

}

jump
relocated
invokeMethod
instruction

save
jump
restore

instrumentation code
to save and restore
invokeMethod’s state instrumentation code

to compute the metric

35

byte-codes. The second problem is that our byte-code instrumentation needs operand stack space,

and argument and local variable space to execute. For every AP method on the call stack, the VM

creates an execution stack frame, an operand stack, and argument and local variable space for

executing the method’s byte-code instructions; our instrumentation byte-codes also need this

space to execute.

There are two ways to obtain extra execution space for our byte-code instrumentation. The

first way is to allocate extra space on the instrumented method’s operand stack and allocate extra

argument and local variable space for the instrumentation code. When the VM executes the

instrumentation code, the instrumentation instructions will execute in the method’s stack frame

using this extra allocated space. The second way is to insert a method call byte-code instruction to

jump to byte-code instrumentation; the call will create a new execution stack frame, operand

stack, and argument and local variable space for the instrumentation byte-codes.

If we use the first approach, and execute instrumentation byte-codes within the method’s

stack frame, then we must increase each method’s maximum stack size, argument size, and local

variable size when its .class file is loaded by the VM. We also need to change the class’ constant-

pool at load time to add entries to point to methods that our instrumentation code may call

(method call byte-code instructions are resolved using constantpool entries). Changes to a

method’s operand stack, argument and local variable sizes must be done at the time the .class file

is loaded. The load-time changes are necessary because at instrumentation time (when the VM is

paused at any point in its execution to insert byte-code instrumentation), the VM may be updat-

ing the AP’s current execution state. As a result, values used to represent AP’s execution state

may be in VM local variables on the stack or in machine registers; we cannot safely change any of

AP’s execution state at instrumentation time, because our changes may be overwritten by VM

routines. Instead, every AP method’s maximum stack size, argument size, local variable size, has

to be modified when the .class file is loaded by the VM; an estimate of the maximum amount of

space used by byte-code instrumentation must be added to these sizes. For similar reasons, we

cannot modify the class’ constantpool at instrumentation time. Therefore, entries for all possible

methods called by instrumentation code must be added to the constantpool when the .class file is

loaded. In most cases, many of the constantpool entries, and much of the extra space allocated on

the operand stack and argument and local variable space will go unused, resulting in increased

garbage collection and Java heap allocation for unused space.

The second approach to safely executing instrumentation code is to use a call instruction to

jump to instrumentation code. When the VM interprets a call instruction, it creates a new execu-

tion context for the called method, so instrumentation code will execute in its own stack frame

with its own operand stack. There are two problems with this approach. First, method instruc-

tions that are overwritten with calls to instrumentation code cannot be relocated to the instru-

mentation code in the heap; in the instrumentation code there is no way to restore the method’s

execution context that is necessary to execute the relocated byte-code instructions. Second, inter-

36

preting method call instructions is expensive. We solve the first problem by relocating the entire

method to the heap with extra space for inserting the method call instructions that call instru-

mentation code. However, the second problem is unavoidable since method call instructions are

already necessary for obtaining CPU measures from native code.

In Paradyn-J we use the second approach. We call our technique of relocating methods when

first instrumented, and instrumenting byte-codes with native code is called Transformational

Instrumentation. Transformational Instrumentation works as follows (illustrated in Figure 4.3):

the first time an instrumentation request is made for a method, relocate the method to the heap

and expand its size by adding nop byte-code instructions around each instrumentation point.

When a branch to instrumentation code is inserted in the method, it replaces the nop instruc-

tions; no method byte-codes are overwritten and, as a result, all method byte-codes are executed

using the their own operand stack and stack frame. The first bytes in the original method are

overwritten with a goto_w byte-code instruction that branches to the relocated method. SPARC

instrumentation code is generated in the heap, and method call byte-code instructions are

inserted at the instrumentation points (the nop byte-code instructions) to jump to the SPARC

instrumentation code.

The VM will create a new execution stack frame and operand stack for the instrumentation

code, if the jump to the instrumentation code is made by a method call byte-code instruction; all

branches to instrumentation code are calls to the static method do_baseTramp(int id) that

Figure 4.3 Transformational Instrumentation for Java application byte-codes. The darker
colored boxes represent pre-instrumented Java VM data structures, the lighter colored boxes are
added to instrument a Java Method.

Constpool
Methods

code
stack size

Constpool size

goto_w
Modified byte-code

Method Table

do_basetramp(i)

invoke native method
do_basetramp(i)

do_basetramp
method info. . .

Class object Constant Pool

BaseTramp.class

id i

do_basetramp(i)

libbaseTramp.so
Original byte-code

SPARC instrumentation

nop

nop

37

executes the instrumentation code. The id argument is used to indicate from which instrumenta-

tion point it was called. To call do_baseTramp we insert one byte-code instruction to push the id

operand on the operand stack and one byte-code instruction to call the method. Also, since method

calls are resolved using the calling class’ constantpool, the class’ constantpool must be modified to

add entries that provide information about do_baseTramp . A class’ constantpool only has to be

modified once (when the class file is loaded), and only has to be modified with entries to resolve

one method call (the call to do_baseTramp). Finally, the state of the virtual machine (its execu-

tion stacks, and register values) must be checked to see if it is safe to insert these changes. If it is

not safe, the changes must be delayed until some point in the execution when it is safe to insert

these changes. To implement delayed instrumentation, special instrumentation code is inserted in

a method that is lower in the execution stack and that is at a point where Paradyn-J determines

that it will be safe to insert the instrumentation. When this special instrumentation is executed it

notifies Paradyn-J that it should attempt to insert any delayed instrumentation code.

We re-use much of Paradyn’s code generation facilities for generating SPARC instrumentation

code to generate instrumentation code for Java AP methods. SPARC instrumentation code can be

used to instrument Java byte-codes if we define do_baseTramp to be a native method. Java’s

native method facility is a mechanism through which routines written in C or C++ can be called

by Java byte-codes. The C code for do_baseTramp is complied into a shared library, and a Java

BaseTramp class is created that declares do_baseTramp to be a static native method function.

When this class is compiled, the Java compiler generates byte-code stub procedures for the native

method that can be called by other byte-code to trigger the VM to load and execute the native code

in the shared library.

The C implementation of the do_baseTramp routine contains a vector of function pointers

that call SPARC instrumentation code. The id argument is an index into the vector to call the

instrumentation code. The do_baseTramp method will return to the calling method via the

native method interface.

To get the Java VM to execute the do_baseTramp method, first Paradyn-J has to get the VM

to load the BaseTramp class file. One way to do this is to add instrumentation to the VM that

will call its load routines to explicitly load the BaseTramp class. Another alternative is to find

the main method and, before it is executed, instrument it to include a call to a BaseTramp method

function. This will trigger the VM to load the BaseTramp class at the point when the function is

called. The first option is better because Paradyn-J has control over when the BaseTramp class

has been loaded and, as a result, knows when byte-code instrumentation can be inserted. In our

current implementation, we get the application to load the BaseTramp class by modifying the

application’s source code; a call to a BaseTramp method is added to the application’s main

method. As a result, we have to re-compile one AP class (the source file that contains the method

main) . Paradyn-J can be implemented to get rid of this extra compiling step; the current version

is a simplification for our prototype implementation.

38

Instrumentation type tags associated with AP and VM resources are used to determine if gen-

erated SPARC instrumentation code should be inserted into Java method byte-codes using Trans-

formational Instrumentation or should be inserted into Java VM code using Dynamic

Instrumentation. The tag types may also be required to generate different instrumentation code.

For example, return values for SPARC routines are stored in a register, while return values for

Java methods are pushed onto the method’s operand stack. Instrumentation code that gets the

return value from a Java method will differ from instrumentation code that gets the return value

from a SPARC function. In this case, the type tag can be used to generate the correct code.

4.1.5 Java Interpreter-Specific Metrics

We have created several VM-specific metrics that measure aspects of the Java VM’s execution

of the Java application (Figure 4.4).

The loadTime metric is an example of a metric that needs to be measured for a particular

Java application class before there are any resources created for the class; loadTime measures

VM costs associated with Java application class file loading, and we do not parse and create

resources for this class until after the class has been loaded by the VM. To obtain this measure,

we instrument the VM routines that handle loading the Java application .class files, and trans-

forming them from .class file format to expanded versions of the class that are stored in internal

VM data structures. At the exit point of the VM loading routine, we collect the performance values

and store them with the new resources that we create for this class. When a user makes a perfor-

mance data query for loadTime associated with an AP class resource, we do not insert any

instrumentation to collect the metric’s value; instead, we just fetch the value that we already col-

lected and stored with the AP class resource when it was loaded by the VM. When a user makes a

performance query for the other metrics, Paradyn-J inserts instrumentation code into the AP and

VM to collect the requested performance data.

4.1.6 Modifying the Performance Consultant to Search for Java
Bottlenecks

One of Paradyn’s main technologies is an automated performance bottleneck searcher, called

the Performance Consultant. The Performance Consultant starts out searching for high level per-

Java Specific Metric What it measures

loadTime Amount of wall clock time to load a Java .class file

GCTime Amount of time the VM spends garbage collecting

obj_create Amount of time due to VM handling object creates

MethodCall_CS Amount of CPU time due to context switching on a method call

Figure 4.4 Java Interpreter Specific Metrics.

39

formance bottlenecks by testing hypotheses based on performance data values. It refines hypothe-

ses that test true to more specific explanations for the bottleneck and to more constrained parts of

the executing program. The Performance Consultant searches for bottlenecks in three main cate-

gories: I/O, synchronization, and CPU. For traditional binary executions this is sufficient, how-

ever, for Java executions there is another important class of bottlenecks that should be added to

the search: Java VM bottlenecks. One reason why a Java application’s execution may be slow is

because the AP triggers certain activities in the VM that are expensive. Two such activities,

which we discovered from our performance measurement tests, are VM method call and VM

object creation overhead. These activities occur whenever the VM interprets method call byte-

code instructions and object creation instructions in the Java application. We modified the Perfor-

mance consultant to search for VM method call overhead and VM object creation overhead if the

high-level CPU bound hypothesis tests true for the application. With this modification, an AP

developer can use the Performance Consultant to automatically search for VM-specific perfor-

mance bottlenecks in the Java application program.

An example of a Performance Consultant search for Java bottlenecks is shown in Figure 4.5.

The figure shows a search history graph representing the Performance Consultants bottleneck

search. From the root node the Performance Consultant first found that the interpreted execution

was CPU bound (indicated by the darker shaded node labeled “CPUbound”). Next, the Perfor-

mance Consultant tried to refine the search to particular VM-specific overhead that account for

Figure 4.5 Performance Consultant search showing VM-specific bottlenecks in a neural
network Java application. Starting from the root node, the figure shows a bottleneck search that
tested true for CPUbound (as indicated by a dark node), and a refinement of the search to test for the
VM-specific bottleneck (MethodCallOverhead), and a further refinement of VM method call overhead
to specific AP methods. The search also was able to account for portions of the CPU bottleneck in the
Weight and VectorEnumerator classes. The white nodes represent untested hypotheses.

40

part of the CPU time. In this case VM method call overhead account for a significant part of the

CPU time. Finally, the Performance Consultant was able to account for a significant portion of the

method call overhead due to two AP method functions lookupWeight and calculateHidden-

Layer of the ArtificialNeuralNetworkLearner class. The search history graph also shows

that the Performance Consultant was also able to isolate significant portions of the CPU time to

individual AP classes and methods (the VectorEnumerator and Weight classes).

4.2 Transformational Instrumentation Costs

We analyzed instrumentation overhead associated with Paradyn-J’s Transformational Instru-

mentation. Results of our measurements show that the generation and insertion of Java byte-code

instrumentation at run time is comparable to Paradyn’s dynamic instrumentation. However,

application perturbation due to executing Java byte-code instrumentation can be high.

Figure 4.6 shows timing measurements of Paradyn-J’s handling of an instrumentation

request from a user. The measures were taken from Paradyn-J’s implementation for version 1.1.6

of JDK running on an UltraSparc 30 running Solaris 2.6. The figure shows the costs of instru-

menting the metric procedureCalls for a medium-sized method (Device.start). Paradyn-J

will relocate Device.start to the heap with holes, generating and inserting SPARC instrumen-

tation, and inserting a method call byte-code instruction at the entry point of the relocated

method that jumps to do_baseTramp . If this is the first instrumentation request for a method in

the Device class, then the class’ constantpool is also modified with entries which resolve the

method byte-code instruction that calls do_baseTramp . The Device.start method has 100

byte-code instructions, is 142 total bytes, and has 17 method call instructions requiring 36 holes

when it is relocated to the heap (one at the method’s entry and exit, and one before and after each

call instruction). The time to parse the metric-focus pair and to create an intermediate form

(called an AST node) that will be used to generate SPARC instrumentation code, is a cost that is

present in Paradyn’s Dynamic Instrumentation1. The other costs are unique to Transformational

Instrumentation. The timing measures show that Transformational instrumentation adds a rela-

tively small amount of overhead to the costs already present in Paradyn’s Dynamic Instrumenta-

tion.

Figure 4.7 shows timing measurements of Transformational Instrumentation’s perturbation:

the amount of time spent executing instrumentation code in an instrumented AP byte-code

method. The timing measures show the time Paradyn-J spends in instrumentation code for: (1)

the VM to interpret the method call instruction that jumps to the SPARC instrumentation2, and

(2) SPARC instrumentation (including the time spent in the native method do_baseTramp). The

costs were measured for both counter and timer instrumentation. Executing timer instrumenta-

1. 70% of the 67.5 ms, is due to a routine that creates lists of meta-data used to create the AST

node, the other 30% is due to parsing the metric-focus pair, creating the AST node, and allocating

counters and timers in a shared memory segment

41

tion code is more expensive than executing counter code (7.6 µs vs. 2.6 µs), because timer instru-

mentation makes a system call to obtain process time. The results show that the VM’s

interpretation of the method call instruction to do_baseTramp accounts for 58% of the cost of exe-

cuting counter instrumentation code (3.6 µs of 6.2 total µs), and accounts for 32% of the instru-

mentation’s execution time for timer instrumentation (3.6 µs of 11.2 total µs). The interpreted call

instruction from an instrumentation point to the SPARC instrumentation code is an expensive

part of Transformational Instrumentation.

2. The measures include only the execution of Sun’s quick version of the method call instruction;

the first time the call instruction is interpreted the VM replaces regular call instruction with

their quick version and modifies the class’ constantpool entries to point to the target method (this

may trigger class file loading). We do not include these extra costs in our timings.

Measurement Time

Time to relocate Device.start to the heap with holes 9.4 ms

Time to generate and insert instrumentation at one of method’s instrumentation point
(including generating and inserting byte-code call to do_baseTramp, and code in
do_baseTramp to jump to base tramp and mini tramp instrumentation)

1.6 ms

Time to add do_baseTramp entries to the Device class’ constantpool 1.5 ms

Time to parse metric/focus pair and create an intermediate form (an AST node) 67.5 ms

Total time to handle an instrumentation request 84.1 ms

Figure 4.6 Timing measures for a Transformational Instrumentation request. The
instrumentation request is for the metric procedureCalls for a medium sized method function
Device.start. The time to parse the metric/focus pair and create the AST node is a cost that is present
in Paradyn’s dynamic instrumentation. The other costs are unique to Transformational Instrumentation.

Measurement Time

Time for VM to interpret a call to and return from an empty static native method with
one integer parameter (the cost just to call to and return from do_baseTramp(int i))

3.6 µs

Time spent in our instrumentation routine (do_baseTramp(int i)) including SPARC
instrumentation code with one timer read

7.6 µs

Total Time spent executing instrumentation with one timer mini-tramp 11.2 µs

Time for VM to interpret just the call to and return from do_baseTramp(int i) 3.6 µs

Time spent in our instrumentation routine (do_baseTramp(int i)) including SPARC
instrumentation code with one counter read

2.6 µs

Total Time spent executing instrumentation with one counter mini-tramp 6.2 µs

Figure 4.7 Timing measures of Transformational Instrumentation perturbation. The number of
seconds spent in our instrumentation code at each instrumentation point, and a break down of this
time into the time for the VM to interpret the method call instruction that jumps to the SPARC
instrumentation, and the amount of time spent in the SPARC instrumentation (the time spent in the
native method do_baseTramp including base tramp and mini tramp code).

42

Finally, in Figure 4.8 we show performance data collected by Paradyn-J that measure part of

Paradyn-J’s instrumentation perturbation costs. In this example we show the amount of time

spent in our instrumentation routine do_BaseTramp versus the amount of CPU time the instru-

mentation measures for a method (the time spent in do_baseTramp accounts for most of the

overhead of Transformational Instrumentation). These measures provide only a rough idea of

how much our instrumentation perturbs the performance data computed by the instrumentation

because we are using instrumentation to measure the perturbation. As a result, about one half of

the time spent in the instrumentation code will be included in the performance measure. We

picked a small simple method to exacerbate the instrumentation perturbation. In general, the

amount of perturbation varies depending on the frequency of execution of the method’s instruc-

tions that are instrumented; for methods with a few simple byte-code instructions, instrumenta-

tion code execution will dominate the method’s execution time and, as a result, perturb the

performance measures more. One place where this can cause a problem is in the Performance

Consultant’s bottleneck search. Here a large amount of perturbation can result in method func-

tions incorrectly testing true for a particular bottleneck.

4.3 Advantages and Disadvantages of Transformational
Instrumentation

The advantages of Transformational Instrumentation are that unmodified Java AP byte-

Figure 4.8 Performance Data showing part of transformational instrumentation perturbation.
The time histogram show the amount of time spent in most of our instrumentation code (excluding just
the time for the VM to interpret the method call instruction to jump to our instrumentation) to measure
CPU time for method Device.isBusy. This shows that approximately 1/4 of the method’s execution time
is spent executing instrumentation code (1/2 of the 0.04 seconds per second of execution time is
included in the measure of CPU time for Device. isBusy). Device.isBusy has two instrumentation
points for its 3 original byte-code instructions.

43

codes can be instrumented, it does not require a special version of the Java VM to obtain measure-

ments of AP byte-codes, and instrumentation code can be inserted or deleted from AP byte-codes

at any point in the interpreted execution. The disadvantages of Transformational Instrumenta-

tion are that it requires a non-trivial effort to port to new virtual machines, and that it is expen-

sive to execute because of the interpreted method call used to jump to instrumentation code. Only

with changes to the Java instruction set and JDK interfaces for obtaining AP CPU times, can fast

byte-code instrumentation be implemented.

One nice feature of Transformational Instrumentation is that it allows Paradyn-J to wait

until run-time to instrument Java byte-codes, thus requiring no changes to Java .class files or

source code. As a result, Paradyn-J can measure Java Class Library code just like any other Java

application code. Also, because we wait until run-time to instrument the Java VM, we did not

have to build a special version of the VM to obtain AP performance measures. Because instrumen-

tation code can be added or removed from byte-codes at any point in the execution, run-time per-

turbation can be controlled by only inserting instrumentation to collect the performance data that

the tool user requested.

One disadvantage of our instrumentation approach is that porting Paradyn-J to a new VM is

complicated by instrumenting byte-codes and modifying class constantpools after they have been

loaded into VM data structures. Since these data structures differ between VM implementations,

Transformational Instrumentation is non-trivial to port to a new virtual machine (in Chapter 7

we discuss porting issues associated with Paradyn-J in more detail).

The biggest disadvantage of our instrumentation technique is that it is expensive to execute,

and can result in large perturbations of a method’s execution. It is expensive to execute because of

the interpreted method call that jumps to the SPARC instrumentation code.

Ideally, we would like to use all byte-code instrumentation to instrument Java AP byte-codes.

However, the only way to inexpensively instrument Java byte-codes with all byte-code instrumen-

tation is if changes to the Java instruction set are made to add instructions to explicitly create

and restore execution stack frames and method operand stacks, and if JDK provided fast access

for obtaining per AP thread CPU times. With new Java instructions to create a new operand stack

and create and restore an execution stack frame, we would no longer need to add nop holes

around instrumentation points in an AP method; we could safely overwrite method byte-code

instructions with jumps to our instrumentation code and relocate the overwritten byte-code

instructions to the instrumentation code in the heap. Byte-code instructions to create a new oper-

and stack and execution stack frame could be added at the beginning of our instrumentation code,

thus eliminating the need to use an expensive method call instruction to jump to byte-code instru-

mentation. Also, by inserting instructions to restore the method’s execution stack frame before

the relocated method instructions are executed, the method’s relocated instructions can correctly

execute using the method’s operand stack and within its own stack frame. As a result, we would

44

no longer need relocate a method to the heap with nop holes around its instrumentation points.

Thus, performance of executing byte-code instrumentation would be further improved by getting

rid of the goto_w instruction that jumps from the old method to the version of the method with

nop holes.

Not until the Java 2 Platform release has there been a way to obtain thread-level CPU times

(via the JVMPI interface [62]). However, the CPU times are provided by JVMPI only on method

entry and exit. As a result, the amount of time spent in a method by a particular thread can be

correctly computed only when the thread exits the method, which does not fit with our model of

sampling a thread’s timer to obtain performance data during the thread’s execution of the

method. Also, as we discuss in Chapter 7, obtaining CPU measures through JVMPI can be costly

and JVMPI does not provide enough functionality to completely implement our model. With the

current state of JDK, we can trade-off the portability of the JVMPI interface against the general-

ity of our measurement techniques.

4.4 Performance Tuning Study of an Interpreted Java Application

We used performance data from Paradyn-J to determine how to tune the application to make

it run faster. In this study, we are using Paradyn-J for JDK version 1.0.2 running on a UltraS-

parc-Solaris2.6 platform. The application consists of eleven Java classes and approximately 1200

lines of Java code. Figure 4.9 shows the resource hierarchies from the interpreted execution,

including the separate AP and VM code hierarchies (APCode and Code).

We took the view of the Java application developer to show how to use Paradyn-J to improve

the performance of an interpreted application. We first tried to get an idea of the high-level perfor-

mance characteristics. A program’s execution can be characterized by four basic costs, I/O time,

synchronization time, memory access time1, and CPU time. Since the application is single

Figure 4.9 Resource hierarchies from interpreted Java execution.

1. Currently, the production Solaris version of Paradyn does not include metrics for memory profil-

ing, and we did not add memory profiling metrics for Paradyn-J’s implementation. However, for

systems that provide user level access for obtaining memory hierarchy activity, new memory pro-

filing metrics can be easily added to Paradyn and Paradyn-J via Paradyn’s Metric Description

Language [28].

45

threaded, we know there is no synchronization waiting time in its execution. Figure 4.10 is a time

plot visualization showing the fraction of time the application spends on I/O and CPU. The top

curve is the fraction of CPU time per second execution time (about 98%) plotted over the inter-

preted execution. The bottom curve is the fraction of I/O blocking time per second execution time

(about 2% of the total execution time)1.

We next tried to account for the part of the CPU time due to specific VM costs associated with

the Java interpreter’s execution of the Java application. In some of our initial tests of Paradyn-J,

we measured different VM functions; as a result, we discovered that the VM’s handling of method

calls and object creates are expensive activities, so we want to account for part of the CPU time in

terms of these two VM activities. To measure these VM costs, we used two VM-specific metrics:

MethodCall_CS measures the time for the Java VM to handle a method call, and obj_create

measures the time for the Java VM to create a new object. Both are a result of the VM interpret-

ing specific byte-code instructions in the AP (method call and object creation instructions). We

measured these values for the Whole Program focus (no constraints), and we found that a large

portion (35%) of the total CPU time is spent handling method calls and object creates

(Figure 4.11).

Figure 4.11 suggests that we might improve the interpreted execution by reducing the VM

method call and object creation overhead. Since we are tuning the AP and not the VM in this

Figure 4.10 High-level performance characteristics of the interpreted Java program. The
interpreted execution can be dominated by I/O, synchronization or CPU times. In this case the
execution is CPU bound.

1. Exact numerical values were obtained from a tabular display of the same performance data.

46

study, we modified the AP program to remove some method calls and object creates from its execu-

tion.

We first tried to reduce the method call time by in-lining some method functions in the AP. To

allow our tuning efforts to have the largest effect on the program’s execution, we should focus our

tuning efforts on those parts of the AP in which we are spending the most time. Figure 4.12 is a

table visualization showing the AP methods that are accounting for the largest fraction of CPU

time. The first column of the table lists constrained parts of the Java application (individual

methods and classes), and the second column lists a metric (fraction of CPU time) associated with

each method or class. The Sim and Device classes account for the largest fraction of CPU time:

30% and 12% respectively.

Figure 4.13 shows CPU and VM method call times. The time plot visualization shows the frac-

tion of CPU time spent in the Sim class (30%), the fraction of CPU time due to VM method call

overhead (20%), and the interaction between the two: the fraction of VM method call overhead

due to the VM interpreting method call instructions in Sim class byte-codes (5% of the total exe-

cution or about 20% of the Sim class’s execution).

At this point, we know how to tune the AP program (remove some method calls), and where to

perform the tuning (methods in the Sim and Device class). However, we still do not know

which method calls to in-line in Sim and Device method functions. Figure 4.14 helps the us

answer the question of which methods to in-line; it shows the method functions that are called

Figure 4.11 Performance data showing VM overhead associated with the Java application’s
execution. Method call overhead (yellow curve), object creation overhead (red curve), and cpu time
(blue curve).

47

most frequently. If we in-line calls to these methods, then we will remove a large number of

method calls in the program execution and, as a result, we will reduce the largest amount of VM

method call overhead.

Figure 4.12 The fraction of CPU time spent in different AP methods. The first column of the
table lists constrained parts of the Java application, and the second column is the fraction of CPU time
spent in each method. The table is sorted bottom-up (30% of the time we are executing methods in the
Sim class).

Figure 4.13 VM method call overhead associated with the Sim.class. The time plot shows the
fraction of CPU time spent interpreting Sim class byte-codes (top curve), the fraction of CPU time the
VM spends handling method calls (middle curve), and the fraction of CPU time the VM spends
handling method calls due to interpreting method call byte-code instructions in the Sim class (bottom
curve).

48

Figure 4.14 shows us that the nextInterrupt and isBusy methods of the Device class are

being called most frequently. By examining the code we found that the Sim.now method was also

called frequently (this is a method that we cannot currently instrument with Paradyn-J because it

is too small). These three methods are all small, they all return the value of a private data mem-

ber, and they are all called frequently, thus they are good candidates for in-lining. After changing

the AP code to in-line calls to these three methods, we were able to reduce the total number of

method calls by 36% and the total execution time by 12% (second row in Table 4.15).

We next tried to reduce the number of VM object creates by finding the AP methods where

most of the objects are created. Figure 4.16 shows performance data associated with parts of the

Java application program (individual methods and classes). The table shows the AP methods that

are creating the most objects. The metric num_obj_create measures the number of objects cre-

ated per second in each method and class. We can see from this data that most objects are created

in the Job , Device and Sim class methods. Of these, the Job.toString , the Device.stop and

the Device.start methods create the most objects.

Figure 4.14 Performance Data showing which methods are called most frequently.
Device.isBusy and Device.nextInterrupt are called most frequently and account for almost all of the
7,487 calls/second to methods in the Device class.

Optimization
Number of

Method Calls
Number of Object

Creates
Total Execution Time

(in seconds)

Original Version 44,561,130 1,484,430 286.85

Method in-lining 28,382,051 (-36%) 1,484,430 253.75 (-12%)

Fewer Obj. Creates 35,531,280 (-20%) 53,682(-96%) 201.71 (-30%)

Both Changes 19,352,201 (-57%) 53,682 170.61 (-41%)

Figure 4.15 Performance results from different versions of the application.

49

The data in Figure 4.16 tell us from which AP methods object creates should be removed.

However, we still do not know which object creates we should try to remove; we need to know

which kind of objects are created most frequently. Figure 4.17 shows the types of objects that are

being created most frequently in the execution. The table shows the number of calls per second to

constructors of the String , StringBuffer , and Job classes. The performance data in

Figure 4.16 and Figure 4.17 tell us to look for places in the Job.toString , the Device.stop

and the Device.start where String and StringBuffer object creates can be removed.

On examining code in the Device.start and Device.sto p methods, we were able to reduce

the number of StringBuffer and String objects created by removing strings that were created

but never used, and by creating static data members for parts of strings that were recreated mul-

tiple times. By modifying the original Java application program in this way, we are able to reduce

the total execution time by 30% (third row in Figure 4.15). A version of the application modified

by removing both method calls and object creates results in a reduction of total execution time by

41%.

In this example, Paradyn-J provided performance data that is difficult to obtain with other

performance tools (performance data that describe expensive interactions between the Java VM

and the Java application). Paradyn-J presents performance data describing specific VM-AP inter-

actions, such as VM method call overhead associated with the VM interpreting call instructions in

Sim class methods. With this data, we were easily able to determine what changes to make to the

Java application and improve its performance by a factor of 1.5.

We took the view of the AP developer using performance data from Paradyn-J; Paradyn-J’s

performance data helped us to tune the Java AP by modifying the AP to reduce the number of

method calls and object creates in its execution. Performance data from Paradyn-J also is useful

Figure 4.16 Table showing the number of objects created/second in AP classes and
methods. The table is sorted bottom-up. Most objects are created in the Job, Device and Sim class
methods.

50

to the Java VM developer. Performance data that show that interpreting object creation code and

interpreting method call instructions in the AP is expensive, tell the VM developer to focus on

tuning the VM routines responsible for handling method calls and object creates to try to reduce

these costs. Also, performance data from Paradyn-J that associates the time spent in VM method

call and object creation routines with specific AP code, will help an VM developer focus in on cer-

tain types of method calls or object creates that are more expensive than others and, as a result,

possibly modify the VM routines to handle these special cases better.

4.5 Conclusions

In this chapter, we presented Paradyn-J, a prototype performance tool for measuring inter-

preted Java executions. Paradyn-J is an implementation of our model for describing performance

data from interpreted executions. In a performance tuning study of a Java application program,

we demonstrated that the type of performance data that can easily be described by performance

tools based on our model, allows a program developer to answer questions about how to tune the

AP to improve its performance when run on a specific VM. For example, we showed how perfor-

mance data describing specific VM-AP interactions such as VM method call overhead in the Sim

class of the Java application, lead us to determine how to tune the program (by in-lining some

method calls), and where to focus our tuning efforts (in-lining method calls in the Sim and

Device classes of the Java application).

Figure 4.17 Performance data showing which objects are created most frequently. Table
visualization showing number of calls/second to constructors of the String, StringBuffer, and Job
classes. This shows that we are creating a lot of String and StringBuffer objects.

51

Chapter 5

Motivational Example

In an interpreted execution, there are many interactions between the VM and the AP; it is

apparent that performance data from interpreted executions that represent VM costs associated

with an AP’s execution is useful to a program developer. We know that profiling dynamically com-

piled native code is useful (as is profiling any native code); however, for dynamically compiled exe-

cutions it is not as obvious that performance data that describe specific interactions between a

VM and AP code is necessary.

We present results from a performance study comparing a dynamically compiled execution to

an all-interpreted execution of three Java application kernels. The results of this study motivate

the need for a performance tool for dynamically compiled Java executions. We demonstrate that

performance data that describe specific VM costs associated with a method that is compiled at

run-time is critical to understanding the method’s performance.

5.1 Performance Measurement Study

We compare total execution times of dynamically compiled and all-interpreted executions of

three Java applications. We examine three cases where we suspect that the performance of

dynamic compilation and subsequent direct execution of a native form of a method might be the

same as, or worse than, simply interpreting a byte-code version of the method: (1) methods whose

native code interacts frequently with the VM, (2) methods whose execution time is not dominated

by executing method code (e.g., I/O intensive methods), and (3) small methods with simple byte-

code instructions.

The performance of a dynamically compiled Java method can be represented as the sum of the

time to interpret the byte-code form, the time to compile the byte-code to native code, and the time

to execute the native form of the method:

(where is the number of times the method

is executed). We examine three cases where we suspect that the cost of interpreting a method is

a Interp× Compile b NativeEx×+ + a b+ n=

52

less than the cost of dynamically compiling it: where

. We implemented three Java applica-

tion kernels to test these cases. Each kernel consists of a main loop method that makes calls to

methods implementing one of the three cases. We ran each application for varying numbers of

iterations under Sun’s ExactVM, which is part of the Java 2 Platform release of JDK [63], and

compared executions with dynamic compiling disabled to executions that used dynamic compil-

ing. ExactVM uses a count based heuristic to determine when to compile a method; if the method

contains a loop it is compiled immediately, otherwise ExactVM waits to compile a method until it

has been called 15 times. As a result, the main loop method is immediately compiled, and the

methods called by the main loop are interpreted the first 14 times they are called. On the 15th

call, the methods are compiled and directly executed as native code for this and all subsequent

calls. Calls from the native code in the main loop to the byte-code versions of the methods require

interaction with the VM. Calls from the native code in the main loop to native code versions of the

methods involve no VM interactions.

Case 1: Methods with VM interactions: The execution of the native form of the method

can be dominated by interactions with the VM. Some examples include methods that perform

object creation, deletion (resulting in increased garbage collection), or modification (either modify-

ing an object pointer, or modifications that have side effects like memory allocation), and methods

that contain calls to methods in byte-code form. To test this case, we implemented a Java applica-

tion kernel that consists of a main loop that calls two methods. The first method creates two

objects and adds them to a Vector, and the second method removes an object from the Vector. After

each main loop iteration, the Vector’s size increases by one. The Java Class Libraries’ Vector class

stores an array of objects in a contiguous chunk of memory. In our application, there are VM inter-

actions associated with the two objects created in the first method. The increasing size of the vec-

tor will result in periodic interactions with the VM: when an object is added to a full Vector, the

VM will be involved in allocating a new chunk of memory, and in copying the old Vector’s contents

to this new chunk. Object removal will result in increased garbage collection activity in the VM,

as the amount of freed space increases with each main loop iteration. Our hypothesis is that the

dynamic compilation of methods that create, modify, and delete objects will not result in much

improvement over an all-interpreted execution because their execution times are dominated by

interactions with the VM.

Results are shown as Case 1 in Table 5.1. For about the first 3,000 iterations, interpreted exe-

cution performs better than dynamically compiled execution. After this, the costs of runtime com-

pilation are recovered, and dynamic compilation performs better. However, there are no great

improvements in the dynamically compiled performance as the number of iterations increase.

This is due to VM interactions with the native code due to object creates and modifications1. Also,

the decrease in speed-up values between 10,000 and 100,000 iterations is due to an increase in

the amount of VM interaction caused by larger Vector copies and more garbage collection in the

n Interp×() a Interp× Compile b NativeEx×+ +()<

53

100,000 iteration case. Each method’s native execution consists of part direct execution of native

code and part VM interaction; in the formula from Section 5.1, the term can be

written as . In this application, the VMInteraction term

dominates this expression, and as a result, dynamic compilation does not result in much perfor-

mance improvement.

Performance data that represent VM costs of object creation and modification, and can associ-

ate these costs with particular AP methods, can be used by an AP developer to tune the AP. For

example, if performance data verifies that VM object creation costs dominate the execution of the

native and byte-code forms of a method, then the AP developer could try to move to a more static

structure.

Case 2: Methods whose performance is not dominated by interpreting byte-code: A

method’s execution time can be dominated by costs other than executing code (e.g., I/O or synchro-

nization costs). For this case, we implemented a Java application kernel consisting of a main loop

method that calls a method to read a line from an input file, and then calls a method to write the

line to an output file. We use the Java Class Library’s DataOutputStream and DataInput-

Stream classes to read and write to files. Our hypothesis is that dynamic compilation of the read

and write methods will not result in much improvement because their native code execution is

dominated by I/O costs.

The results of comparing an interpreted to a dynamically compiled execution on different

sized input files (the number of lines in the input file determines the number of main loop itera-

tions) are shown as Case 2 in Table 5.1. After about 500 iterations, the dynamically compiled exe-

cution performs better than the all-interpreted execution. Speed-ups obtained for an increasing

1. We verified this by measuring an all-interpreted and a dynamically compiled execution for a sim-

ilarly structured application kernel without object creates, modifies or deletes. Speed ups show

dynamic compilation results in better performance as the number of iterations increase (for

100,000 iterations a speedup of 4.9 vs. a speed up of 1.04 for Case 1)

Case 1: object modifications Case 2: I/O intensive Case 3: small methods

iters Dyn Intrp S-up iters Dyn Intrp S-up iterations Dyn Intrp S- up

100,000 114.7 119.5 1.04 100,000 427.1 436.43 1.02 10,000,000 1.76 35.11 19.94

10,000 1.73 2.04 1.18 10,000 40.47 42.70 1.05 1,000,000 0.83 4.16 5.01

1,000 0.71 0.65 0.91 1,000 4.53 4.64 1.02 100,000 0.74 0.98 1.32

100 0.70 0.63 0.90 100 1.06 0.99 0.94 10,000 0.72 0.67 0.93

1,000 0.73 0.63 0.86

Figure 5.1 Execution time (in seconds) of each Java kernel run by ExactVM comparing
interpreted Java (Intrp column) to dynamically compiled Java (Dyn column). The number of
iterations of the kernel’s main loop is listed in the iters column, and speed ups are listed in the S-up
column. Each measurement is the average of 10 runs.

b NativeEx×
b DirectEx VMInteraction+()×

54

number of iterations are not that great; I/O costs dominate the native code’s execution time1. The

decrease in speed-up values between the 10,000 and 100,000 iteration case is due two factors.

First, each read or write system call takes longer on average (about 3.5%) in the 100,000 case,

because indirect blocks are used when accessing the input and output files. Second, there is an

increase in the amount of VM interaction caused by garbage collection of temporary objects cre-

ated in DataOutputStream and DataInputStream methods; for larger files, more tempo-

rary objects are created and, as a result, VM garbage collection activity increases.

Performance data that represent I/O costs associated with a method’s execution could be used

by an AP developer to tune the AP. For example, performance data that indicate a method’s execu-

tion time is dominated by performing several small writes could be used by an AP developer to

reduce the number of writes (possibly by buffering) and, as a result, reduce these I/O costs.

Case 3: Methods with a few simple byte-code instructions: For small methods, the time

spent interpreting method byte-codes is small, so the execution of the native form of the method

may not result in much improvement. To test this case, we wrote a Java application kernel with a

main loop method that calls three small methods; two change the value of a data member and one

returns the value of a data member. Our hypothesis is that dynamic compilation of these three

small methods will not result in much improvement because their interpreted execution is not

that expensive.

The results (Case 3 in Figure 5.1) show that there are a non-trivial number of iterations

(about 25,000) where an all-interpreted execution outperforms a dynamically compiled execution.

However, as the number of iterations increases, the penalty for continuing to interpret is high,

partly because of the high overhead for the VM to interpret method call instructions vs. the cost of

directly executing a native code call instruction2. Performance data that explicitly represent VM

method call overheads, VM costs to interpret byte-codes, and VM costs to execute native code

could be used by an AP developer to identify that interpreted call instructions are expensive.

5.2 Discussion

The result of this study points to specific examples where detailed performance measures

from dynamically compiled executions provides information that is critical to understanding the

execution. For real Java applications consisting of thousands of methods, some with complicated

1. We verified this by measuring an all-interpreted and a dynamically compiled execution for a sim-

ilarly structured application kernel without I/O activity. Speed ups show dynamic compilation

results in better performance as the number of iterations increase (for 100,000 iterations a

speedup of 4.9 vs. a speed up of 1.02 for Case 2)

2. We verified this by measuring an all-interpreted and a dynamically compiled execution of a simi-

larly structured application kernel that makes calls to empty methods (the cost of executing the

method is just the VM overheads to handle method calls and returns). For 10,000,0000 iterations

there was a speed up of 31.8, and for a version with no method call overheads (all code is in the

main loop) a speed up of 11.2.

55

control flow structure, a performance tool that can represent specific VM costs (like method call,

and object creation overheads) and I/O costs associated with byte-code and native code can be

used by an AP developer to more easily determine which AP methods to tune and how to tune

them.

A VM developer can also use this type of performance data to tune the VM. For example, per-

formance data that describes VM object creation overhead associated the byte-code form and

native code form of an AP method, tell the VM developer to focus on tuning the VM routines that

handle object creates. Another way in which a VM developer could use performance data is to

incorporate it into the dynamic compiler’s runtime compiling heuristic. Performance data col-

lected at run-time can be used to trigger a method’s run-time compilation, to exclude a method

from run-time compilation, or to produce better optimized code for a run-time compiled method.

In Chapter 6 we discuss further implications of this study for AP and VM developers.

56

Chapter 6

Describing Performance Data from Applications

with Multiple Execution Forms

We present a representational model for describing performance data from an application pro-

gram with multiple execution forms. Our model addresses two problems: (1) how to represent the

multiple execution forms of AP code objects that are transformed at run-time, and (2) how to map

performance data between different execution forms of an AP code object. Also, we present a

proof-of-concept implementation of our model: modifications to Paradyn-J to add support for mea-

suring dynamically compiled Java programs. In a performance tuning study of a dynamically

compiled Java application, we show how performance data from Paradyn-J can be used to tune an

AP method and improve its performance by 10%.

6.1 Representing the Application’s Multiple Execution Forms

Our model describes performance data associated with AP code objects that change form dur-

ing execution. Our goals are to represent the different forms of a transformed object, represent

the relationship between the different forms of an AP object, map performance data between dif-

ferent views (between different forms) of a transformed object, and represent performance mea-

sures associated with the run-time transformations of AP code objects.

6.1.1 Representing Different Forms of an AP Code Object

AP code can be executed in more than one form. For example, methods from dynamically com-

piled Java applications can have two execution forms: an interpreted byte-code form and a native

code form. We represent each execution form of an AP code object as a resource instance in the

APCode hierarchy. For example, a Java method foo has an initial byte-code form resource

instance. When it is compiled at run-time, a new native code form resource is created for its com-

piled form and added to the APCode hierarchy. In other words, run-time transformations of AP

code objects create new resource instances in the APCode hierarchy.

57

We represent the different types of AP code objects as instances of Class, Method, Module,

and Function class resources; the APCode resource hierarchy can have children of either the

Class (byte-code) type or the Module (native code) type or both. An example from a Java AP is

shown in Figure 6.1. The figure shows resource instances corresponding to a Java class Blah ,

which contains byte-code method functions foo and blah , and a native method g, which is con-

tained in shared object libblah.so . The resources are discovered when the Java VM loads AP

class or shared object files at run-time.

When a byte-code method is compiled at run-time, a new Function resource instance is

added to the APCode hierarchy for the compiled form. For example, in Figure 6.2, method foo is

compiled at run-time to native code. A new Function resource instance foo is created for the

compiled form, and a new Module resource instance Blah_native is created as its parent (the

parent of all of the compiled form methods of the Blah.class).

There is a relationship between some AP byte-code and native form resource instances; some

byte-code resources are compiled into native code. Resource mapping functions are discovered

when AP methods are compiled at run-time and are used to map between byte-code and native-

code forms of resources. We use resource mapping functions to map performance data between the

multiple execution forms of AP code objects, and to generate instrumentation for dynamically

compiled code.

Figure 6.1 Types of resource instances that the APCode hierarchy can contain. For a Java
application the APCode hierarchy can contain resource instances of byte-code and native code
classes.

Figure 6.2 The APCode hierarchy after method foo is compiled at run-time. If foo is compiled
at run-time into native code, we create a new Function resource for its native code form and a new
Module resource corresponding to the Blah class’ run-time compiled forms (Blah_native).

Colslibblah.so

g

ColsBlah.class

foo blah

APCode

Method
Class

Module
Function

APcode
Resource Classes

Colslibblah.so

g

ColsBlah.class

foo blah

APCode

foo

ColsBlah native

58

6.1.2 Resource Mapping Functions

We define resource mapping functions and show how they are used to map performance data

requests made in terms of AP byte-code constraints to instrumentation of the corresponding AP

native code constraints, and to map performance data collected for AP native code back to the

original AP byte-code. Also, we discuss mapping performance data in the presence of complica-

tions caused by optimizing compilers; many-to-one resource mappings can result from method in-

lining either because resource mapping granularities are too coarse, or because parts of the

resulting native code cannot be attributed to individual AP byte-code methods from which the

native code was compiled.

• Definition 6.1: A resource mapping function, f, is a partial function that maps a sub-set of

resource instances (constraints) in one execution form to sub-set of corresponding

resource instances in another execution form: f: 2S→2S, where S is the set of all con-

straints in APCode, and 2S is the set of all sub-sets of S.

Mapping functions are built-up incrementally during the program execution; as an AP code

object is transformed at run-time, new mappings are discovered. In Figure 6.2, method function

foo is run-time compiled to native code. The resulting resource mapping function are:

f: {/APCode/Blah.class/foo } → {/APCode/Blah_native/foo }, and

f: {/APCode/Blah_native/foo } → {/APCode/Blah.class/foo} .

Mapping performance data and instrumentation between execution forms of AP code is easy

for one-to-one and one-to-many transformations. However, it is more complicated for many-to-one

and many-to-many transformations. One-to-one resource mappings result from the compilation of

byte-code method foo to native code function foo_n (Figure 6.3). The resource mapping

f:{/APCode/Blah.class/foo } → {/APCode/Blah_native/foo_n } is used to map data requests

for constraint foo to instrumentation of foo_n , and the resource mapping

f:{/APCode/Blah.class/foo_n } → {/APCode/Blah_native/foo } is used to map performance

data collected for the native form of the method (foo_n) back to be viewed in its byte-code form

(foo).

One-to-many transformations can occur for various types of compiler optimizations including

specialization, and method in-lining. In specialization, the Java VM collects run-time information

(e.g., method parameter values), and uses these to create specialized version(s) of the compiled

method. The example in Figure 6.4 shows a transformation of one byte-code method, blah , into

two specialized versions of the method in native code form (blah_10 , and blah_20). A 1-to-2

resource mapping results from the transformation of blah to {blah_10 , blah_20 }, and two 1-to-1

mappings map each native form to blah . Performance data requests for blah are mapped to

instrumentation of its two native code forms (blah_10 and blah_20), and performance data col-

lected for the two native code forms are mapped back and aggregated (e.g. summed or averaged)

into a single value that is viewed in terms of foo .

59

Method in-lining also can result in 1-to-N mappings. In-lining is a transformation of one

method foo that calls method blah into a native code version of the method (function foo_n)

with the call instruction replaced with in-lined blah code (bottom of Figure 6.4). Depending on

the in-lining transformation, it may be possible to map foo and blah individually to sub-sets of

instructions in foo_n . If the performance tool allows for basic-block or instruction granularity of

instrumentation, and if all of foo_n code can be attributed to either foo or blah , then the result-

ing resource mappings are 1-to-N. The example in Figure 6.4, shows a 1-to-2 mapping from foo to

two blocks of foo_n indicated by address ranges: f:{foo} →{foo_n/addr00:07,

foo_n/addr20:40 } . Requests for performance data for foo are mapped to instrumentation of its

corresponding two blocks of foo_n code. Data collected for foo_n/addr00:07 and

foo_n/addr20:40 are mapped back and aggregated into a single value that is viewed in terms of

foo .

Sometimes native code cannot be cleanly divided into blocks attributable to the individual

byte-code methods from which it is compiled; byte-code from multiple methods can be mingled in

the resulting native code. Two examples are: when instrumentation is available only at a func-

tion-level granularity; and when instrumentation is available at a finer level of granularity, but

the run-time compiler produces optimized blocks of native code that do not clearly come from an

individual method’s byte-code.

In the case of function-level granularity of instrumentation, the tool only supports resource

mappings at the function and method levels. Mingled code results from run-time compilations of

two or more methods into one native code function. For example, if method foo is compiled at run-

time into method foo_n with method blah code in-lined, then foo , and blah both map to func-

tion foo_n : f:{foo,blah} →{foo_n } (top of Figure 6.5).

In the second case, mingled code can result when code from two or more methods are opti-

mized by the run-time compiler in such a way that the resulting native code cannot be attributed

to individual methods. For example, if methods foo and blah are compiled into method foo_n ,

f:{/APCode/Blah.class/foo} → f:{/APCode/Blah_native/foo_n } →
{/APCode/Blah_native/foo_n} { /APCode/Blah.class/foo}

Figure 6.3 Example of a 1-to-1 resource mapping : A 1-to-1 mapping occurs when method foo
is compiled at runtime to a native code version (foo_n). The solid arrows indicate a mapping form the
byte-code resource instance to its native code form, and the dotted arrow indicates a mapping from a
native code resource instance to its byte-code form.

foo() {

}

foo_n() {

}

60

in-lined blah code may be optimized with the surrounding foo code in such a way that it is

impossible to determine which foo_n code comes from blah and which from foo . As a result,

both foo and blah map to these mingled blocks of foo_n code:

f:{foo,blah} →{foo_n/addr20:40} (bottom of Figure 6.5).

Method specialization:
f:{ blah } → { blah_10, blah_20 } f:{ blah_10 } → { blah }

f:{ blah_20 } → { blah }

Method in-lining:
f:{foo} →{foo_n/addr00:07,foo_n/addr20:40} f:{foo_n/addr00:07 } →{foo}

f:{blah} →{foo_n/addr08:19} f:{foo_n/addr08:19} →{blah}

f:{foo_n/addr20:40 } →{foo}

Figure 6.4 1-to-N mappings resulting from method in-lining and specialization: The top figure
is an example of specialization: two specialized versions of method blah are created for specific
values of blah’s parameter j (method blah maps to {blah_10 and blah_20 }). In the bottom figure,
method foo with a call to method blah , and method blah are compiled to foo_n with blah code in-
lined. In this example, address ranges of foo_n can be attributed to foo and blah : foo maps to two
separate address ranges in foo_n (addr00:07 and addr20:40).

blah (int j) {

}

call g()

if (j < 20) {

blah_10() {

} }

blah_20() {

}

call g()

foo() {

}

call blah_b()

blah() {

}

foo_n() {

in-lined
blah code

}

08

19

20

40

00

07

61

Mapping performance data and performance data queries is difficult for mingled code; when

mingled code is instrumented, the resulting performance data has to be assigned to the byte-code

methods from which the mingled code was produced. There are two alternatives for mapping per-

formance data collected mingled native code, either: (1) split the data value between the individ-

ual byte-code methods, or (2) create a composite resource node that represents the set of

contributing byte-code methods and map the data value back to this composite node.

Course granularity of resource mapping function:
f:{foo, blah} →{foo_n} f:{foo_n } →{foo, blah}

Mingled code that cannot be attributed to only foo or only blah:
f:{foo, blah} →{foo_n/addr20:40} f:{foo_n/addr20:40 } →{foo, blah}

f:{blah} →{foo_n/addr08:19} f:{foo_n/addr08:19} →{blah}

f:{foo} →{foo_n/addr00:07} f:{foo_n/addr20:40 } →{foo}

Figure 6.5 N-to-1 mappings resulting from method in-lining with course granularity or mingled
code: The top figure show a 2-to-1 mapping that results from systems that support a course
granularity of resource mapping functions (method-level granularity). In this case the set {foo , blah }
maps to {foo_n }. The bottom figure shows a 2-to-1 mapping that results from mingled code; lines 20
to 40 of foo_n cannot be attributed to foo or blah separately, so the set {foo , blah } maps to
{foo_n/addr20:40 }.

foo() {

}

call blah_b()

blah() {

}

foo_n() {

in-lined
blah()

}

code

foo() {

}

call blah_b()

blah() {

}

08

19

20

40

00

07

}

foo_n() {

foo code

blah code

foo & blah
code

62

In the data splitting case, we must determine how to partition the data values collected for

the mingled code between the individual byte-code methods from which the native code was com-

piled. There is no reliable way to determine precisely how to split the cost. Even if we could deter-

mine which individual instructions of a mingled block come from which methods, data splitting is

still not possible because of the complex execution patterns of modern processors. We might guess

based on the methods’ relative execution times prior to compilation, or based on the relative code

sizes of the methods, but there is no reliable way to split the data.

Another alternative is to map the data back to a composite node representing the set of meth-

ods from which the mingled code was compiled. For example, performance data collected for the

mingled function foo_n is mapped back to the composite node {foo , blah }. In this case, it is easy

to determine how to map performance data values for foo_n code back to byte-code views. How-

ever, this solution causes problems for data queries in terms of AP byte-code; a user cannot easily

ask for performance data in terms of method foo , because now part of foo ’s execution is associ-

ated with the synthesized constraint {foo , blah }; the user is left with the task of determining

how much of the data associated with the synthesized node {foo , blah } comes from method foo .

Finally, run-time compilations that combine specialization with method in-lining can result in

many-to-many resource mappings. Performance data queries and performance data are mapped

between native and byte-code forms of AP code using techniques that combine the mingled code

and specialization techniques.

Figure 6.6 summarizes how resource mapping functions are used to map performance data

queries and performance data between AP code forms for each possible type of resource mapping

function.

6.2 Representing Performance Data

We describe our representation of performance data associated with AP code objects with mul-

tiple execution forms. We represent form-dependent performance data that are measured for only

one execution form of and AP constraint, and we represent form-independent performance data

that are measured for all execution forms of an AP constraint and viewed in terms of the initial

form of the constraint.

6.2.1 Representing Form-Dependent Performance Data

Form-dependent performance data is data associated with only one execution form of an AP

constraint. We represent form-dependent data as a metric-focus pair containing AP constraints.

The following are examples of form-dependent performance data:

• objectCreateTime, </APCode/Blah.class/foo>: the amount of object creation overhead in
the VM due to objects created in method foo ’s interpreted execution.

• objectCreateTime, </APCode/Blah_native/foo>: the amount of object creation overhead
in the VM due to objects created in function foo ’s direct execution.

63

• objectCreateTime, </APCode/libblah.so/g>: the amount of object creation overhead in the
VM due to objects created in native method g.

6.2.2 Representing Form-Independent Performance Data

To represent performance data that is independent of the current execution form of an AP

code object, we define a form-independent flag, *, that can be associated with metric-focus selec-

tions. The flag can be applied to a metric, a focus, or both. It indicates that performance data

should be collected for any execution form of the AP byte-code constraints to which it is applied,

but viewed in terms of the metric-focus selection.

Mapping Example
 Mappings performance
data queries from byte-code
to native code

Mapping performance data
from native to byte-code

1-to-1
Byte-code methodfoo is
compiled to native code func-
tion foo_n.

 Requests in terms offoo
map to instrumentation of
foo_n.

Performance data collected
for foo_n is mapped back to
foo.

1-to-M

Specialization:
Methodblah is compiled to
two specialized native func-
tionsblah_10 and
blah_20 (1-to-2 mapping).

Request in terms ofblah
map to instrumentation of
blah_20 & blah_10.

Performance data collected
for blah_20 andblah_10
is mapped back toblah and
aggregated (e.g. summed)
into a single value.

N-to-1

In-lining:
Byte-code methodfoo is
compiled tofoo_n with
blah in-lined
(2-to-1 mapping).

Request in terms offoo
results in instrumentation of
parts offoo_n :

(1) instrument parts of foo_n
attributed to only foo
and
(2) instrument parts of
foo_n attributed to both
blah andfoo if data split-
ting is used

Requests in terms ofblah
are handled in a similar way.

Data collected forfoo_n :

(1) Measures for thefoo
parts are mapped back tofoo
and aggregated into a single
value.

(2) Measures for the
{ foo, blah } parts are
either:

(a) mapped back to set
{ foo_n, blah_n },
or
(b) split betweenfoo and
blah and aggregated with
part (1) data.

N-to-M

Specialization + In-lining:
byte-code methodfoo and
blah are compiled into two
specialized native code ver-
sions (foo1_n , foo2_n)
with blah code in-lined
(2-to-2 mapping).

Request in terms offoo is
handled in similar way as the
in-lining case, but applied to
bothfoo1_n andfoo2_n.

Performance data collected
for foo1_n andfoo2_n are
mapped back tofoo and
blah in a way similar to the
in-lining case, and aggre-
gated into single values.

Figure 6.6 Using resource mapping functions to map performance data. Examples show how
performance data queries and performance data values are mapped between AP byte-code to native
code. We show examples for each possible mapping function type.

64

• Definition 6.2: Aform-independent flag, *,associated with a metric,M, a focus,F, or a
metric-focus pair, (M,F), specifies that data should be collected for all execution forms
of AP constraints in the metric, or in the focus, or in both. Given a metric-focus pair,
(M,F), and a resource mapping function,f, for each constraint,C, in (M,F) produce
(M,F)* by replacingC with (C ORf(C)).

For example, if a Method instance foo is compiled at run-time to Function instance foo_n ,

then a request for (CPUtime, </APCode/foo.c/foo>*) produces (CPUtime,

</APCode/foo.c/foo OR /APCode/foo_native/foo_n>) . The result is measurement of

CPUtime for both foo and foo_n .

When an AP constraint defined in the metric-focus pair (M, F)* is compiled at run-time, the

resulting resource mapping functions are used to map instrumentation to the new execution form

of the AP constraint. Performance data collected for the new form of the constraint is mapped

back to be view in terms of the original form of M and F, according to the mapping rules in

Figure 6.6. The following are examples of form-independent performance data using the two

examples from Figure 6.4:

• (CPU, </APCode/foo.class/blah>*) : CPU time when all execution forms of method blah
are active:

[APCode.constrain(foo.class/blah) OR
f(APCode.constrain(foo.class/blah)]

processTime/sec

= [APCode.constrain(foo.class/blah) OR
APCode.constrain(foo_native/blah_20) OR
APCode.constrain(foo_native/blah_10)]

processTime/sec

• (CPU, </APCode/foo.class/foo>*) : CPU time when all execution forms of method foo are
active:

[APCode.constrain(foo.class/foo OR
f(APCode.constrain(foo.class/foo)]

processTime/sec

= [APCode.constrain(foo.class/foo) OR
APCode.constrain(foo_native/foo_n/addr00:07) OR
APCode.constrain(foo_native/foo_n/addr20:40]

processTime/sec

Metrics also can contain APCode constraints. For example, initTime is a metric that mea-

sures the amount of time spent in a Java math library initialization routine: initTime =

[/APCode/Math.class/initialize]wallTime/sec . The form-independent flag applied to

initTime will result in data collection for the metric initTime even when the math library is

compiled to native form. The following are examples of performance data using initTime com-

bined with the form-independent flag:

• (initTime*, /APCode/foo.class/foo): time spent in any execution form of Math library
method initialize , when called from only the byte-code form of method foo :

65

[APCode.constrain_caller(foo.class/foo)]
AND
[APCode.constrain(Math.class/initialize) OR
f(APCode.constrain(Math.class/initialize)]

wallTime/sec

• (initTime, /APCode/foo.class/foo)*: time spent in any execution form of Math library
method initialize when called from any execution form of method foo :

[APCode.constrain_caller(foo.class/foo) OR
f(APCode.constrain_caller(foo.class/foo)]

AND
[APCode.constrain(Math.class/initialize) OR
f(APCode.constrain(Math.class/initialize)]

wallTime/sec

Both of these examples apply the form-independent flag to the metric. In general, the form-

independent flag should be applied to any metric that contains APCodeconstraints; since the met-

ric is encoding the APCode constraint it makes the most sense to hide the run-time transforma-

tion of the APCode constraint from the user.

In Figure 6.7, we show an example of form-dependent and form-independent performance

data collected from Paradyn-J. Our current implementation of Paradyn-J supports only one-to-one

resource mapping functions. In this example we show a form-dependent and a form-independent

view of performance data associated with a Java method function that is compiled at run-time to

native code.

6.2.3 Representing Transformational Costs

To represent performance measures of run-time compilation costs, we can define metric func-

tions that measure these costs. When combined with foci containing APcode constraints, these

metrics measure transformational costs for individual AP code objects. Figure 6.8 shows an exam-

ple of performance data collected from Paradyn-J that measure run-time compilation overhead.

The time plot shows the performance metric compile_time measured for several Java AP

method functions; compile_time is a measure of the amount of wall time the VM spends in its

run-time compiler code.

6.3 Changes to Paradyn-J to Support Measuring Dynamically
Compiled Java Executions

In this section, we present changes to Paradyn-J’s implementation to support measuring

dynamically compiled Java executions. Ideally, we would have ported Paradyn-J to a real Java

dynamic compiler, unfortunately, no source code was available for any of the existing Java

dynamic compilers. Instead, we simulated dynamic compilation, and modified Paradyn-J to mea-

sure our simulated dynamically compiled executions. We first present our simulation and then

the details of Paradyn-J’s implementation for measuring the simulated dynamically compiled exe-

cutions.

66

6.3.1 Simulating Dynamic Compilation

The goals of our implementation of simulated dynamic compilation, is to use the resulting

simulation to demonstrate our model for describing performance data from dynamically compiled

executions. To do this, we need to simulate the three main run-time activities in a dynamically

compiled execution: (1) interpretation of method byte-code; (2) run-time compilation of some

methods; and (3) direct execution of the native form of transformed methods.

We simulate dynamic compilation by modifying a Java application and running it with a Java

Figure 6.7 Performance data associated with a transformed AP code object. Both time-plot
displays show performance data measuring the number of objects created by a Java application
method calculateHiddenLayer() . The top plot shows two form-dependent measures associated
with the byte-code (yellow curve) and native code form (red curve) of the method. The bottom display
shows the same performance data represented by one form-independent measure (note: Paradyn-J’s
current notation for form-independent measures differ from our model, however, the measure in the
bottom curve is equivalent to (M,F)* using our model’s notation).

67

interpreter (JDK 1.1.6 running on Solaris 2.6). The VM handles all class loading, exception han-

dling, garbage collection, and object creation. A “dynamically compiled” Java method is replaced

with a wrapper method that initially calls a byte-code version of the method that is interpreted by

JDK’s interpreter. After we reach a threshold (based on number of calls) the wrapper method calls

a routine that simulates the method’s run-time compilation. The “compiling” routine takes an

estimated compiling time as a parameter, and waits for the specified time. For all subsequent calls

to the method, the wrapper function calls a native version of the method. The native version is

written in C with minimal use of the JNI interface [61]. It is compiled into a shared object that the

VM loads at run-time. We approximate each method’s compile time by timing ExactVM’s run-time

compilation of the method. Figure 6.9 shows an example of how we simulate run-time compilation

of a Java method.

Our simulation implements the three different execution phases of a run-time compiled

method: (1) interpretation, (2) run-time compilation of some methods, and (3) direct execution of

the run-time compiled methods. However, our simulation adds extra overhead that would not be

present in a real dynamically compiled execution; each wrapper method adds an extra layer of

indirection for calls to byte-code and JNI native code versions of the method, and adds more inter-

preted execution since it is in byte-code form. Also, our native code versions of “compiled” methods

use the JNI interface. Real dynamically compiled code does not need to use JNI because the VM

controls how the native code is compiled, thus it can ensure that the native code conforms to

Java’s safety requirements.

Figure 6.8 Performance Data measuring transformation times of seven methods from a Java
neural network application program. The metric compile_time measures the amount of time the
Java VM spends compiling each method to native code form at run-time.

68

6.3.2 Modifications to Paradyn-J

We modified our implementation of Paradyn-J for measuring all-interpreted Java executions,

to add support for measuring simulated dynamically compiled executions. We strove to modify

Paradyn-J in a way that would be similar to how the tool would be implemented for measuring a

real dynamically compiled Java execution.

Paradyn-J instruments the VM’s run-time compiling routines to discover the native form of a

compiled method, to discover mappings between byte-code and native code forms of a method, and

to measure costs associated with the run-time compilation of a method (this is how Paradyn-J

would obtain the same information from a real dynamically compiled execution). At runtime, the

VM calls dlopen () to load the shared objects that contain the JNI native versions of the AP meth-

ods and that contain our “compiling” routine. Paradyn-J instruments the VM to catch dlopen

events. When Paradyn-J detects that the VM has loaded our “compiling” routine, Paradyn-J

instruments it. The instrumentation in the compiling routine notifies Paradyn-J when a method

is “dynamically compiled”. Also, instrumentation at the routine’s entry point starts a timer to

measure the dynamic compiling time, and instrumentation at its exit point stops the timer mea-

suring the compiling time.

Figure 6.9 Simulation of dynamic compiling method foo. We replace the original method foo
with a wrapper method (foo). For the first 14 executions, the wrapper method calls an interpreted
version (foo_interp), which contains foo ’s original byte-code. On the 15th execution, the wrapper
calls compile that simulates run-time compilation, and all subsequent executions call a JNI native
code version of the method (foo_native).

foo () { // wrapper function

if (foo_count < 15)
call foo_interp();

else if (foo_count == 15)

call compile(foo,200);
call foo_native();

else
call foo_native();

}

foo_interp() {

}

original foo() byte-codes

compile (String name, int time) {

wait for “time” micro seconds

}

foo_native() {

JNI native version of foo

}

JNI native code in

instrumentation library

Java byte-code in foo’s .class file
JNI native code in our

 (libbasetramp.so)

shared object (libfoo.so)

69

The resource mapping functions are discovered by instrumenting our compiling routine. Cur-

rently we support only one-to-one run-time transformations; our compiling routine takes a

parameter naming the byte-code method to be compiled, and returns the native code transforma-

tions of the method. By instrumenting the entry and exit points of the compiling routine we are

able to discover resource mapping functions at run-time. Resource mapping functions are stored

with individual resources so that instrumentation requests for byte-code form resources can be

mapped to native form resources for data collection, and so that performance data collected in the

native code form of a method can be mapped back to be viewed in terms of the byte-code form of

the method. Figure 6.7 shows an example of performance data collected from Paradyn-J that uses

resource mapping functions to map instrumentation and data between AP constraints contained

in a form-independent metric-focus pair.

6.4 Performance Tuning Study of a Dynamically Compiled
Java Application

We used Paradyn-J to provide detailed performance data from two Java applications, a neural

network application consisting of 15,800 lines of Java source code and 23 class files, and a CPU

simulator application consisting of 1,200 lines of code and 11 class files. Using performance data

from Paradyn-J, we tuned a method in the neural network application improving the method’s

interpreted byte-code execution by 11% and its native code execution by 10%, and improving over-

all performance of the application by 10% when run under ExactVM. We profile the CPU simula-

tor application to further show how we can obtain key performance data from a dynamically

compiled execution.

For the neural network program, we picked good candidate methods to “dynamically compile”

by using Paradyn-J to measure an all-interpreted execution of the application; we picked the

seven application methods that accounted for most of the execution time. We wrote JNI native

versions and wrapper functions for each of these methods. We first demonstrate that Paradyn-J

can associate performance data with AP methods in their byte-code and native code forms, and

with the runtime compilation of AP methods. Figure 6.10 shows a performance visualization from

Paradyn-J. The visualization is a time plot showing the fraction of CPUtime per second for the

byte-code (in blue) and native (in red) forms of the updateWeights AP method, showing that

updateWeights benefits from dynamic compilation. Figure 6.11 is a table visualization that

shows performance measures of total CPUTime (middle column), and total number of calls (right

column) associated with the byte-code (top row) and native (middle row) forms of update-

Weights , and compiling time (left column) associated with the method’s wrapper function (0.174

seconds). The visualization shows data taken part way through the application’s execution. At the

point when this was taken, the procedure calls measure shows that the byte-code version is called

15 times for a total of 0.478 seconds before it is “dynamically compiled”, and the native code ver-

sion has executed 54 times for a total of 0.584 seconds. The implication of this data is that at this

point in the execution, updateWeights has already benefited from being compiled at runtime; if

70

the method was not “dynamically compiled”, and instead was interpreted for each of the 69 calls,

then the total execution time would be 2.2 seconds (69 calls × 0.031 seconds/call). The total execu-

tion time for the method’s “dynamically compiled” execution is 1.2 seconds (0.478 seconds of inter-

preted execution + 0.174 seconds of compilation + 0.584 seconds of native execution).

We next demonstrate how performance data from Paradyn-J can explicitly represent VM costs

associated with byte-code and native code forms of a method. We measured the number of object

creates in each of our “dynamically compiled” methods. In Figure 6.12, the visualization shows a

method (calculateHiddenLayer) that accounts for most of the object creates. The visualization

Figure 6.10 Performance data for the updateWeights method from the dynamically compiled
neural network Java application. The time plot visualization shows the fraction of CPUtime/second
for the native (red) and byte-code (blue) form of the method.

Figure 6.11 Performance data for the updateWeights method from the dynamically compiled
neural network Java application. The table shows the performance measures total CPUTime
(second column) and number of calls (third column), for both the byte-code (top row), and native
(middle row) forms, and compile time (first column) associated w/the wrapper (bottom row).

71

shows data taken part way through the application’s execution. In its byte-code form (top row),

the method is called 15 times, creates 158 objects, and accumulates 3.96 seconds of CPU time.

After it is called 15 times, it is compiled at runtime, and its native code form (bottom row) is called

50 times, creates 600 objects, and accumulates 20.8 seconds of CPU time1. Its native form execu-

tion is more expensive (at 416 ms per execution) than its interpreted execution (at 264 ms per exe-

cution). These performance data tell the Java AP developer that in both its byte-code and native

code form, calculateHiddenLayer creates a lot of objects. At least part of the reason why it

runs so slowly has to do with the VM overhead associated with these object creates. One way to

improve the method’s performance is to try to reduce the number of objects created in its execu-

tion. We examined the method’s Java source code, and discovered that a temporary object was

being created in a while loop. This temporary object had the same value each time it was created

and used inside the loop. We modified the method to hoist the temporary object creation outside

the loop. The table in Figure 6.13 shows total CPUtime and object creates of the modified version

of calculateHiddenLayer (the data was taken partway through the application’s execution). As

a result of this change, we were able to reduce the number of object creates by 85% in the byte-

code version (23 vs. 158 creates), and 75% in the native code version (150 vs. 600 creates). The

CPU time spent interpreting the method’s byte-code form improved by 11% (3.53 vs. 3.96 sec-

onds), and the CPUtime executing the method’s native code form improved by 10% (18.7 vs. 20.8

seconds).

Next, we wanted to see how well our tuning based on a simulated dynamically compiled exe-

cution translates to a real dynamically compiled execution. We performed the same tuning

changes to the original version of the Java application (without our modifications to simulate

dynamic compilation), and measured its execution time when run under ExactVM. The overall

1. Each time the method is called, the number of object creates can vary due to changes in the appli-

cation’s data structures.

Figure 6.12 Performance data for method calculateHiddenLayer . The total CPU time (first
column), total number of object creates (second column), and total number of calls (third column) to
the byte-code (top row) and native code (bottom row) forms of the method.

72

execution time improved by 10% when run by ExactVM with dynamic compiling, and by 6% when

run by ExactVM with dynamic compiling disabled (Table 6.14). These results imply that

ExactVM’s interactions with AP native and byte-codes due to handling object creates account for a

larger percent of the application’s execution time (compared to our “dynamic compiler”). ExactVM

has improvements over JDK 1.1.6 to reduce garbage collection, method call and object access

times, and it does not have any of the JNI interactions with the VM that our native forms of meth-

ods have with the VM. Therefore, it is reasonable to conclude that object creates account for a

larger percentage of the VM overhead in ExactVM executions. As a result, our tuned application

achieves a higher percentage of total execution time improvement when run under ExactVM than

when run by our simulated dynamic compiler.

In this study, we limited our options for performance tuning to the seven methods for which

we simulated dynamic compilation. However, there are close to 1,000 methods in the application’s

execution. If this was a real dynamically compiled execution, then all of the 1,000 methods would

be available for performance tuning. Performance data from our tool that can measure VM over-

head associated with the byte-code and native code form of a method, help a program developer

focus in on those methods to tune, and gives an indication of how to tune the method to improve

its performance.

Our performance data can help a programmer identify why their application does not benefit

Figure 6.13 Performance data for method calculateHiddenLayer after removing some
object creates. This table shows that the total CPUtime for both the native and byte-code forms of the
method is reduced as a result of reducing the number of object creates.

Original Tuned Change

Dynamic Comp. 21.09 18.97 10%

All-Interpreted 190.83 179.90 6%

Figure 6.14 Total execution times under ExactVM for the original and the tuned versions of
the neural network program. We improve the performance by 10% with dynamic compiling, and by
6% with dynamic compiling disabled (all-interpreted).

73

from run-time compilation. For example, in Chapter 5 we demonstrated cases where if we had

performance data describing specific VM costs and I/O costs associated with a method’s inter-

preted byte-code and directly executed native code, then we could more easily determine how to

tune the method to improve its performance.

In our second study, using the CPU simulator application, we show additional examples of

how Paradyn-J can provide the type of detailed performance measures that we discovered would

be useful in Chapter 5; we picked methods to “dynamically compile” based on the three cases we

examined in Chapter 5. For the first case (native code with a lot of VM interaction), we picked a

method that created several String objects. For the second case (methods whose execution is not

dominated by interpreting byte-code), we picked a method that performed a lot of I/O. For the

third case (small byte-code methods), we picked a method consisting of three byte-code instruc-

tions that simply returned the value of a data member. In Table 6.15, we show performance data

from Paradyn-J’s measurement of each of the three methods.

For case 1, VM object creation overhead account for more than half of the method’s execution

time (1.57 out of 2.35 seconds); this tells the AP developer that one way to make this method run

faster is to try to reduce this VM overhead by removing some object creates from the method’s

execution.

In the second case, a method that performs a lot of I/O, our tool can represent performance

data showing the amount of CPU seconds and I/O seconds in the interpreted byte-code and

directly executed native code form of the method (a total of 5.65 seconds of I/O time and negligible

CPU time in the native code form, and a total of 0.37 seconds of I/O time and 0.044 seconds of

CPU time in the byte-code form)1. The performance data tell an AP developer to focus on reducing

Case 1: object creates Case 2: I/O intensive Case 3: small functions

Measurement Byte-
code

Measure-
ment

Native Byte-
code

Measure-
ment

Native Byte-
code

Total CPU sec-
onds

2.3515 s Total I/O
seconds

5.6493 s 0.36658 s CPU seconds 4.9 µs 6.7µs

Object Creation
Overhead sec-
onds

1.5730 s Total CPU
seconds

0.0050 s 0.04403 s MethodCall
Time

2.5µs

Figure 6.15 Performance data from the CPU Simulation AP. Performance measurements of
methods in the AP that have performance characteristics similar to the three test cases from
Chapter 5.

1. The I/O time for the native code is much larger than that of the byte-code because the native code

of the method is called more frequently than the 15 calls to the interpreted byte-code form of the

method. We are representing these numbers as total rather than per call numbers because each

call to the method writes a different number of bytes; they are not directly comparable on a per

call basis.

74

the I/O costs since they account for the largest fraction of the method’s execution time (almost

100% of the native code’s execution, and 90% of the interpreted byte-code’s execution is due to I/O

costs).

In the third case, small method functions with a few simple byte-code instructions, our perfor-

mance data represent CPU times for both the byte-code and native code form of the method. The

data provide us with some explanation of why this method benefits from being dynamically com-

piled; the fraction of CPU time for the native code version of the method is slightly better than for

the byte-code version (4.9 µs to 6.7 µs per call), however, the added method call overhead for inter-

preting the byte-code call instruction (an additional 2.5 µs for every 6.7 µs of interpreting byte-

code) makes interpreted execution almost twice as expensive as native execution. If this had been

an all-interpreted execution, then the performance data for the interpreted byte-code form of the

method indicates that interpreting method call instructions is an expensive VM activity. There-

fore, one way to make this method run faster on an interpreter VM is to reduce the number of

method calls in the execution. The performance data from these three methods describe the

detailed behaviors needed by AP developers to tune their dynamically compiled applications.

6.5 Our Performance Data and VM Developers

The same type of performance data used by an AP developer can also be used by a VM devel-

oper to tune the VM. For example, by characterizing byte-code sequences that do not benefit much

from dynamic compilation (like methods with calls to I/O routines and simple control flow

graphs), the VM could identify AP methods with similar byte-code sequences and exclude them

from consideration for run-time compilation. Similarly, performance data showing that certain

types of methods may be good candidates for compiling, can be used by the VM to recognize these

methods, and compile them right away (ExactVM does something like this for the case of methods

containing loops). The data can also point to ways that the compiler can be tuned to produce bet-

ter native code. For example, performance measures indicating that VM method call overhead is

expensive can be used to tune the compiler to aggressively in-line methods (the high cost of inter-

preting method call instructions is the reason why HotSpot is designed to aggressively in-line

methods).The VM also could use performance information about specific interactions between the

VM and the native code (e.g., object creation overhead) to try to reduce some of these expensive

VM interactions or to tune the VM routines that are responsible for these interactions (e.g., the

VM routines involved in object creation).

Detailed performance data, collected at runtime, could be used to drive the VM’s runtime com-

piling heuristics. For example, the VM could measure I/O and CPU time for a method the first

time it is interpreted. If the method is dominated by I/O time, then exclude it as a candidate for

compiling (and stop profiling it). There have been several efforts to incorporate detailed runtime

information into compilers to produce better optimized versions of code and/or to drive runtime

compiling heuristics [74, 29, 14, 3] (these are all for languages other than Java).

75

6.6 Conclusions

In this chapter we presented a representational model for describing performance data from

AP’s with multiple execution forms. Our model is a guide for what to build in a performance tool

for measuring programs with multiple execution forms. We presented a proof-of-concept imple-

mentation of our model: modifications to Paradyn-J to add support for measuring a simulation of

dynamically compiled Java programs. In a performance tuning study of a Java application pro-

gram, we demonstrated how the type of performance data that can easily be described by perfor-

mance tools based on our model, allows a program developer to answer questions of how to tune

the AP to improve its performance. For example, we showed how performance data describing a

specific VM costs (object creation overhead) associated with the interpreted byte-code and the

directly executed native code of a transformed AP method function, lead us to determine how to

tune the AP (by removing some object creates), and where to focus our tuning efforts (remove

object creates in AP method calculateHiddenLayer). As a result, we were able to improve the

method’s performance by 10%. We also described how performance data from Paradyn-J can

answer questions about the virtual machine’s execution, and we discussed how a dynamic com-

piler VM could incorporate performance data into its run-time compiling heuristics.

76

Chapter 7

Lessons Learned from Paradyn-J’s Implementation

We learned many lessons from implementing Paradyn-J. In particular, some of our design

choices were difficult to implement and our byte-code instrumentation is expensive. In this chap-

ter, we discuss our implementation, and characterize ways in which a performance tool based on

our model must be implemented to provide performance data that describe specific VM-AP costs

in terms of the multiple execution forms of AP code. We also discuss alternative ways to imple-

ment a tool based on our model that avoid some of the costs of Paradyn-J’s instrumentation tech-

nology, or that make Paradyn-J easier to port to other virtual machines. In particular, we discuss

Sun’s new profiling tool interface JVMPI. Our work points to places where JVMPI needs to be

expanded to provide the type of performance data that we have demonstrated is critical to under-

standing the performance of Java executions; currently JVMPI provides no way to obtain explicit

VM performance information, nor does it provide a way to obtain information about arbitrary

interactions between VM and AP program resources.

7.1 Issues Related to the Current Implementation of Paradyn-J

Paradyn-J was complicated to implement, in part because it uses detailed knowledge of the

internals of the Java VM. As a result, porting Paradyn-J to a new VM requires a non-trivial effort.

Also, our decision to instrument unmodified Java application .class files resulted in an instrumen-

tation technology that is difficult to port to new VM’s and that can greatly perturb an AP’s execu-

tion. Ideally, we would like Paradyn-J to be easily ported to new VMs, and we would like an

instrumentation technology that results in a minimal amount of perturbation. However, some of

these complications are unavoidable side effects of implementing a tool based on our model.

One difficulty with Paradyn-J’s implementation is that it requires knowledge of the internals

of the VM, and as a result, requires a non-trivial effort to port to different VMs. Paradyn-J needs

knowledge of the VM: (1) to know which VM code to instrument to measure certain VM activities,

(2) to discover when the VM loads Java AP .class files so that it can create AP code resources, (3)

77

to discover resource mapping functions and native code forms of AP code that is compiled at run-

time, and (4) to determine when it is safe to insert instrumentation into Java AP byte-codes at

run-time.

Paradyn-J parses the Java VM executable file and shared object files to create VM code

resources. However, Paradyn-J also needs to know details about particular VM functions to create

VM-specific metrics and to identify certain VM run-time events. To create VM-specific methods

that measure VM overhead like garbage collection time, object creation time, and method call

time, we had to examine the VM interpreter code to discover how the VM interprets method call

and object creation AP byte-codes, and how garbage collection is implemented in the VM. After

examining VM source code we were able to find the VM routines responsible for handling these

run-time events, and then to create VM-specific metric functions that measure their performance.

Java executions are extremely dynamic. AP classes can be loaded and unloaded and AP meth-

ods can be translated from byte-code to native code at any point in the execution. To implement

Paradyn-J, we had to find the parts of the VM code responsible for loading AP .class files. Para-

dyn-J needs to instrument VM class loading routines to identify when a Java .class file has been

loaded, and needs to instrument the run-time compilation routine to identify when a Java method

function is dynamically compiled at run-time. These routines differ between VM implementa-

tions, so porting Paradyn-J to a new VM requires identifying which VM routines to instrument

and how to instrument them to obtain AP resource and mapping information.

Instrumentation code in the VM class file loading routines notifies Paradyn-J of the location of

the internal data structures in the VM; these data structures identify the new AP code resources

for the loaded class. Because Paradyn-J parses AP byte-codes after they have been loaded by the

VM, we had to examine VM source code to find the data structures used by the VM to store AP

class file information. Paradyn-J was designed to parse the VM’s internal data structures to find

the name, size and location of the methods, and to find the class’s constantpool. Paradyn-J creates

new resources for the class and the methods using information that it obtains from VM data

structures, parses each method’s byte-code instructions to find instrumentation points, and parses

the class’ constantpool so that it can be modified with information to resolve the method call byte-

code instruction used by our byte-code instrumentation.

Paradyn-J instruments the simulated run-time compiling routine to obtain resource mapping

functions and to find and parse the resulting native code form of the compiled methods. If Para-

dyn-J was ported to a real dynamic compiler, then we would have to examine its run-time compil-

ing routine to determine how to re-write Paradyn-J to obtain mapping information and to locate

the native code form of compiled methods.

Finally, we need to know the internals of the Java VM to obtain the AP’s execution state at

run-time. The execution state of the AP must be examined to determine if it is safe to insert Java

byte-code instrumentation into the process. For a tool that inserts instrumentation code into Java

78

method byte-codes at any point in the execution, it is not always safe to insert instrumentation;

for example, if the VM is interpreting AP instructions within the instrumentation point, then

Paradyn-J cannot safely overwrite the method’s instructions with a jump to instrumentation code.

To implement a run-time check for safety, Paradyn-J examines data structures used by the VM to

keep track of the AP’s execution state to determine when it is safe to insert instrumentation code.

To handle delaying unsafe instrumentation, Paradyn-J inserts special instrumentation code into

a method further down in the execution stack. The data structures for storing execution state dif-

fer from VM to VM, thus making this part of Paradyn-J less portable to new VMs.

If we had ported Paradyn-J to a real dynamic compiler VM, then we would have to deal with

one more VM-specific problem: how to handle instrumented byte-codes that are about to be trans-

formed by a dynamic compiler. One option is to let the VM compile the byte-code instrumentation

along with the byte-code instructions of the AP method. However, this solution is not ideal

because there is no guarantee that the VM will produce transformed instrumentation code that is

measuring the same thing as the byte-code instrumentation (the compiler could re-order instru-

mentation code and method code instructions, or could optimize away some instrumentation

code). A better option is to remove byte-code instrumentation from the method just prior to compi-

lation, let the VM compile the method, and then generate equivalent native code instrumentation

and insert it into the native form of the method, requiring that Paradyn-J interact with the VM

immediately before and after compilation of a method to un-instrument Java method byte-codes

before run-time compilation, and to re-instrument the method’s native code form after run-time

compilation.

Paradyn-J is a complete implementation of a performance tool based on our model for describ-

ing performance data from interpreted, JIT compiled, and dynamically compiled program execu-

tions. All parts of the VM and the AP are made visible by the tool, and as a result, most VM-AP

interactions can be represented. A nice feature of Paradyn-J is its ability to instrument unmodi-

fied VM binaries and unmodified AP .class files; this means that Paradyn-J can measure VM and

AP code without requiring that special instrumented versions of the programs be built by re-com-

piling with an instrumentation library or by modifying the program source code. Also, because

Paradyn-J does not need application source to instrument either the VM or the AP, it can instru-

ment system libraries and Java Class Libraries just like any other code in the application. How-

ever, Paradyn-J’s Transformational Instrumentation is expensive (as discussed in Chapter 4), and

Paradyn-J’s implementation is VM dependent; porting Paradyn-J to a new VM requires a detailed

understanding of the internal structure of the VM program.

7.2 Alternative Ways to Implement a Tool Based on Our Model

We discuss some alternative ways in which a tool based on our model could be implemented.

We focus on issues associated with perturbation caused by instrumentation code, ease of porting

the tool to a new VM, and how complete a model can be built using the proposed alternative

79

approach. In general there is a trade-off between how much of the model can be implemented and

instrumentation perturbation or portability of the tool.

7.2.1 Requirements for Implementing Our Model

Because our model describes arbitrary, general VM-AP interactions from interpreted, JIT and

dynamically compiled executions, and because it represents transformational mapping functions

between different forms of AP code objects that are compiled at run-time, the internals of the VM

have to be accessible.

The Java VM implements several abstractions that a performance tool needs to see. For exam-

ple, Java threads and synchronization primitives are AP resources that a performance tool needs

to identify. A tool also needs to identify when run-time events involving these resources are occur-

ring in the execution. One way in which this can be achieved is if the VM exports some type of

debugging interface that the performance tool can use to obtain this information at run-time. This

is similar to how an operating system implements a debugging interface (e.g., System V UNIX’s /

proc file system [2]) and provides system calls that can be used to obtain information about its

abstractions (e.g., process time). The VM could implement a similar interface to export informa-

tion about its abstractions (such as threads, synchronization, and memory management).

If the VM does not explicitly export it abstractions through such an interface, then the tool

has to make parts of the VM visible to correctly measure performance data associated with the

VM’s abstractions. Paradyn-J had to be implemented in this way because version 1.1.6 of JDK’s

VM does not export a debugging interface. Performance tools for measuring applications that use

user level thread libraries [72] have to solve a similar problem of making thread creation, termi-

nation, and context switching visible to the tool, so that the tool can correctly measure timing

information associated with a thread’s execution.

A complete implementation of a tool based on our model is not possible without either the VM

exporting its abstractions via an interface or the performance tool obtaining this information by

being explicitly ported to different versions of a VM.

7.2.2 Implement as a Special Version of VM

One way in which a tool based on our model can be built is as a special version of the VM that

exports performance information about itself and about the AP it executes. The VM can be built so

that it correctly measures timing values for AP code in the presence of thread context switches

and run-time compilation of AP code. It could also easily measure specific VM costs associated

with its execution of the AP. An implementation that is a special version of the VM has the poten-

tial to limit the amount of instrumentation perturbation because no AP byte-codes need to be

instrumented. Instead, VM code is re-written to export and measure its execution of the AP. How-

ever, there are portability issues associated with this approach. A tool implemented in this way

80

would be more difficult to port to a new VM than Paradyn-J because all the special modifications

to the VM need to be ported to the new VM.

7.2.3 Using the JVMPI Interface

Another way in which a tool based on our model can be implemented is by using a debugging

interface exported by the VM. This option is newly available with the Java 2 Platform release of

JDK that includes a profiling interface JVMPI [62] (in Chapter 2, we discussed JVMPI’s imple-

mentation). The benefit of this approach is that the tool is completely portable–the tool can run on

any VM that implements this interface. However, there are some problems with the current

implementation of JVMPI that result in only parts of our model being implementable using

JVMPI.

The JVMPI interface provides functions that a tool can use to query about the state of an AP’s

execution, and it provides a VM event callback mechanism to notify the tool of certain run-time

events. The interface has some nice functionality in terms of obtaining thread level and method

level CPU time values. Also, JVMPI provides notification of run-time events such as object cre-

ates, garbage collection, monitor entry and exit, class file loading, and JIT compiled method load-

ing. Using JVMPI, method, thread, and object resources can be discovered at run-time, count data

can be collected for object creates, method calls, and thread creates, and time data can be obtained

at the exit points of methods, garbage collection activities and monitor synchronization events.

However, JVMPI hides most of the VM from the profiler agent and, as a result, specific VM costs

cannot be measured for an AP’s execution.

The biggest shortcoming of JVMPI is that it does not export the necessary events to obtain

performance measures associated with specific VM activities (such as method call and object cre-

ation overhead). Also, JVMPI provides only coarse grained event notification; a profiler agent can

be notified of all method entry events or of none. Another shortcoming is that there are no

dynamic compiler events. As a result, transformation times and resource mapping functions can-

not be obtained through this interface. Finally, this interface is of little use to a VM developer

because very little of the VM is exported via JVMPI.

The JVMPI interface has the potential to be useful for implementing parts of our model useful

to an AP developer. Our work can act as a guide to the JVMPI developer on how to expand the

JVMPI interface to provide some types of data that we found are critical to understanding the

performance of Java executions.

7.2.4 Changes to JVMPI for a more Complete Implementation

Currently JVMPI is limited by two factors: (1) much of the Java VM is not made visible by

this interface, and (2) JVMPI allows for only coarse-grained profiling decisions. To implement our

model completely, all of the VM must be made visible by JVMPI so that any VM-AP interaction

81

can be measured. If at least part of the VM was exposed, JVMPI could make available some mea-

sures of VM activities. For example, not only should we be able to measure the time spent in

method function foo , but we also should be able to obtain measures for how much of that time

was due to the VM handling method calls, object creates, thread context switches, class file load-

ing, or byte-code verification. With the current interface, we can be notified that an object creation

or class file loading event has occurred in the execution, but not how much time these events took,

nor how much of an AP method’s execution time is due to these events. Also, JVMPI should pro-

vide functions for examining all of the virtual architecture implemented by the VM. For example,

functions to examine values on a method’s argument stack or operand stack, and to access the vir-

tual registers, should be provided by JVMPI. With this type of access, a performance tool can

examine the run-time state of the AP at any point in its execution, can obtain operand stack val-

ues from methods on the execution stack, or can change the VM’s register values to jump to spe-

cial instrumentation code.

Run-time perturbation is also a problem with JVMPI. All JVMPI calls and callbacks use the

JNI interface. JNI is expensive, in part, because of the safety restrictions specified by the Java

language [21]. For example, it takes many JNI calls to access a Java object, to access an object’s

field, or to call a method function. JVMPI allows for only coarse-grained profiling decisions. For

example, either the profiler agent can be notified of every method entry event in the execution or

of none. As a result, there will often be more run-time perturbation by the profiler agent than is

necessary to collect the performance data that the tool user wants. One way to reduce some of

these costs is to allow for a finer granularity of event notification. For example, if the profiling tool

can specify that it is interested only in method entry and exit events for method foo , or for thread

tid_1 executing method foo , then this would reduce the amount of event notification in the exe-

cution, which in turn would reduce the amount of profiler agent code executed. Another way to

reduce some of the costs is to allow the profiler agent code to be written in Java. If the Java VM is

a dynamic compiler, then it can produce native code that does not have to go through the JNI

interface and, as a result, the profiler agent code will be more efficient.

Because JVMPI provides a fixed set of interface functions for obtaining information about an

AP’s execution, our model of describing performance data for arbitrary, general VM-AP interac-

tions cannot be completely implemented using JVMPI. However, with changes to JVMPI, particu-

larly to make more of the VM visible to the profiling agent, some of the measures that we found

useful in our performance tuning studies could be obtainable through this interface.

7.3 Conclusions

We discussed some of Paradyn-J’s implementational lessons, and problems associated with

the portability of Paradyn-J. Although Paradyn-J is more portable than some other ways of imple-

menting a tool based on our model, porting Paradyn-J to a new VM requires detailed knowledge of

the workings of the VM and the underlying OS/architecture. We discussed some alternative meth-

82

ods of implementing a tool based on our model, and examined trade-offs in portability and com-

pleteness of the implementation and portability and perturbation costs. To be truly portable, our

tool would have to be built using only a Java API like the new JVMPI interface. However, the cur-

rent implementation of JVMPI severely limits how much of the VM we can see, and thus how

much of our model can be implemented.

83

Chapter 8

Conclusion

8.1 Thesis Summary

As Java is increasingly being used for large, long running, complex applications, there is a

greater need for performance measurement tools for interpreted, JIT compiled and dynamically

compiled program executions. In this dissertation we presented a solution to the difficulties asso-

ciated with performance measurement of these types of executions, namely that there is an the

interdependence between the virtual machine and the application’s execution, and that applica-

tions can have multiple executions forms. Our solution is a representational model for describing

performance data from interpreted, JIT compiled and dynamically compiled program executions

that explicitly represents both the VM and the AP program, that describes performance data

associated with any VM-AP interaction in the execution, that describes performance data associ-

ated with the different execution forms of AP code, that represents the relationships between dif-

ferent forms of AP code, and that describes performance data in terms of both the VM-developer’s

and the AP developer’s view of the execution. We presented a performance tool, Paradyn-J, that is

an implementation of our model for measuring interpreted and dynamically compiled Java execu-

tions. Finally, we demonstrated the usefulness of our model by using performance data from Para-

dyn-J to improve the performance of an all-interpreted Java application and a dynamically

compiled Java application.

This dissertation presented new methods for describing performance data from interpreted,

JIT compiled, and dynamically compiled executions. Our representational model allows for a con-

crete description of behaviors in interpreted, JIT and dynamically compiled executions, and it is a

reference point for what is needed to implement a performance tool for measuring these types of

executions. An implementation of our model can answer performance questions about specific

interactions between the VM and the AP; for example, we can describe VM costs such as object

creation overhead associated with an AP’s interpreted byte-code and directly executed native code

form. Our model represents performance data in a language that both an application program

84

developer and a virtual machine developer can understand; we presented VM-specific metrics

that encode information about the VM in a language that matches the AP developer’s view of the

execution. Also, the model describes performance data in terms of different execution forms of an

application program object; using resource mapping functions we find and measure the native

code form of AP code that is compiled at run-time. Finally, our model describes run-time transfor-

mational costs associated with dynamically compiled AP code, and correlates performance data

collected for one form of an AP object with other forms of the same object; using the form-indepen-

dent flag, performance data can be collected for any execution form of AP code constraints.

We discussed the implementation of Paradyn-J, a prototype performance tool for measuring

interpreted and dynamically compiled Java executions that is based on our model. In two perfor-

mance tuning studies using Paradyn-J, we demonstrated how performance data that is described

in terms of our model provides information that is critical to understanding the performance of

interpreted and dynamically compiled executions. In the all-interpreted performance tuning

study, performance data from Paradyn-J identified expensive Java VM activities (method call and

object creation overheads), and associated these overheads with constrained parts of the Java

application. With these data, we were easily able to determine how to tune the Java application to

improve its performance by more than a factor of three. In the performance tuning study of a

dynamically compiled Java neural network application, we showed that Paradyn-J provides per-

formance measures of VM object creation overhead associated with the byte-code and native code

forms of the dynamically compiled methods. These data allowed us easily to determine how to

tune one of the dynamically compiled methods to improve its performance by 10%.

Finally, we discussed some issues associated with Paradyn-J’s implementation. In particular,

we discussed the necessary features for implementing a tool based our model. Results of our work

point to places were JDK’s new profiling interface, JVMPI, should be expanded to provide the type

of performance data that we found to be useful in our performance tuning studies.

8.2 Future Directions

There are two main directions for future work: (1) extensions to Paradyn-J for a more com-

plete implementation of our model and for measuring parallel and distributed Java executions,

and (2) performance measurement studies from the VM-developer’s view, in particular, examining

how performance data can be used to tune a dynamic compiler VM.

The current version of Paradyn-J only exports a Code view of the AP. One place for extending

Paradyn-J is to add support for AP thread and synchronization resource hierarchies. Much of the

AP thread support can be leveraged off of work being done to support thread level profiling in

Paradyn [72]. With support for thread and synchronization hierarchies, Paradyn-J can provide

performance data in terms of individual AP threads.

Support for multi-threaded Java would be a good first step towards supporting the measure-

85

ment of parallel and distributed Java applications; we would already be able to measure multi-

threaded Java applications run on SMPs. However, there are also several parallel message-pass-

ing implementations for Java based on PVM or MPI [67, 19, 11], there are meta-computing envi-

ronments that use Java [4, 8, 20], and there is Sun’s Remote Methods Interface [64] for

client/server Java applications. To port Paradyn-J to one or more of these systems, we need to add

support to Paradyn-J to discover the participating processes in these applications, and to extract

synchronization information from the classes and/or libraries that implement the communication

between the AP’s processes. As a result, we could apply our performance measurement techniques

to more complicated Java executions including parallel and distributed applications that are run

across the Web. In these types of environments there are some interesting questions related to

what type of performance data is useful to a program developer, and related to how to measure

and collect performance data for applications consisting of potentially thousands of processes dis-

tributed across nodes on the Web.

We would also like to port Paradyn-J to a real dynamic compiler. Currently this is not possible

because we need VM source code to port Paradyn-J, and no Java dynamic compiler source code is

available to us. However, Sun plans to make its HotSpot source code available for research use,

which would allow us to test our resource mapping functions and multiple execution form repre-

sentations in the presence of a real optimizing run-time compiler.

Another area for future investigation is to examine in more detail the VM-developer’s view of

the execution. In particular, examining the use of performance data to tune a dynamic compiler’s

run-time compiling heuristic. For example, performance data associated with the VM’s execution

of particular application byte-codes may yield a definable set of AP code characteristics that either

do or do not perform well from run-time compilation. If these characteristics can be incorporated

into the run-time compiler’s heuristics, then potentially better decisions can be made about which

methods to compile, and when to compile them at run-time.

Finally, there are some interesting questions of how performance data collected at run-time

could be used to drive the dynamic compiler’s run-time compiling heuristics and be used to pro-

duce better optimized native code. If performance data collection becomes part of the normal exe-

cution of a dynamic compiler, then profiling costs must be recovered by the execution time saved

due to using the data to make better compiling decisions. An analysis of collecting and using dif-

ferent types of performance data in the run-time compiler may yield important results in the area

of run-time compiler optimizations and heuristics for triggering run-time compilation.

86

References

[1] Vikram S. Adve, Jhy-Chun Wang, John Mellor-Crummey, Daniel A. Reed, Mark Anderson, and

Ken Kennedy. An Integrated Compilation and Performance Analysis Environment for Data

Parallel Programs. In Proceedings of the Supercomputing’95 Conference, San Diego, Califor-

nia, December 1995.

[2] AT&T. System V Interface Definition, Third Edition. Addison-Wesley, 1989.

[3] J. Auslander, M. Philipose, C. Chambers, S.J. Eggers, and B.N. Bershad. Fast, Effective

Dynamic Compilation. In Proceedings of ACM SIGPLAN’96 Conference on Programming

Language Design and Implementation, pages 149–159, Philadelphia, Pennsylvania, May

1996.

[4] Arash Baratloo, Mehmet Karaul, Zvi Kedem, and Peter Wyckoff. Charlotte: Metacomputing on

the Web. In Proceedings of the Ninth International Conference on Parallel and Distributed

Computing (PDCS), September 1996.

[5] Robert Bedichek. Some Efficient Architecture Simulation Techniques. In Proceedings of the

Winter ’90 USENIX Conference, pages 53–63, Washington, D. C., January 1990.

[6] Bob Boothe. Fast Accurate Simulation of Large Shared Memory Multiprocessors (revised ver-

sion). Technical Report UCB/CSD-93-752, Computer Science Division, University of Califor-

nia, Berkeley, June 1993.

[7] Gary Brooks, Gilbert J. Hansen, and Steve Simmons. A New Approach to Debugging Opti-

mized Code. In Proceedings of the ACM SIGPLAN’92 Conference on Programming Language

Design and Implementation, pages 1–11, San Francisco, California, June 1992.

[8] Sean P. Brydon, Paul Kmiec, Michael O. Nearly, Sami Rollins, and Peter Cappello. Javelin++

Scalability Issues in Global Computing. In Proceedings of the ACM 1999 Java Grande Con-

ference, pages 171–180, San Francisco, California, June 1999.

[9] Michael G. Burke, Jong-Deok Choi, Stephen Fink, David Grove, Michael Hind, Vivek Sarkar,

Mauricio J. Serrano, V. C. Sreedhar, Harini Srinivasan, and John Whaley. The Jalapeno

Dynamic Optimizing Compiler for Java. In Proceedings of the ACM 1999 Java Grande Con-

ference, pages 129–141, San Francisco, California, June 1999.

[10] Bryan M. Cantrill and Thomas W. Doeppner Jr. ThreadMon: A Tool for Monitoring Multi-

threaded Program Performance. http://www.cs.brown.edu/research/thmon/thmon.html.

[11] Bryan Carpenter, Geoffrey Fox, Sung Hoon Ko, and Sang Lim. Object Serialization for Mar-

shalling Data in an Interface to MPI. In Proceedings of the ACM 1999 Java Grande Confer-

ence, pages 66–71, San Francisco, California, June 1999.

[12] Bryan Carpenter, Guansong Zhang, Geoffrey Fox, Xiaoming Li, Xinying Li, and Yuhong Wen.

Towards a Java Environment for SPMD Programming. In Proceedings of the 4th Interna-

tional Europar Conference, pages 659–668, Southampton, UK, September 1998.

[13] Bob Cmelik and David Keppel. Shade: A Fast Instruction-Set Simulator for Execution Profil-

ing. Proceedings of the 1994 ACM SIGMETRICS Conference on the Measurement and Model-

ing of Computer Systems, Nashville, Tennessee, pages 128–137, May 1994.

87

[14] Compaq Computer Corporation. Compaq DIGITAL FX!32. White paper: http://www.digi-

tal.com/amt/fx32/fx-white.html.

[15] Brian F. Cooper, Han B. Lee, and Benjamin G. Zorn. ProfBuilder: A Package for Rapidly

Building Java Execution Profilers. Technical report, University of Colorado, April 1998.

[16] Timothy Cramer, Richard Friedman, Terrence Miller, David Seberger, Robert Wilson, and

Mario Wolczko. Compiling Java Just In Time. IEEE MICRO, Vol. 17 No. 3, pages 36–43,

May/June 1997.

[17] Helen Davis, Stephen R. Goldschmidt, and John Hennessy. Multiprocessor Simulation and

Tracing using Tango. In Proceedings of the International Conference on Parallel Processing,

pages 99–107, August 1991.

[18] L. Peter Deutsch and Alan Shiffman. Efficient Implementation of the Smalltalk-80 System.

In Proceedings of the 11th ACM Symposium on Principles of Programming Languages

(POPL), pages 297–302, Salt Lake City, Utah, January 1984.

[19] Adam J. Ferrari. JPVM: Network Parallel Computing in Java. ACM 1998 Workshop on Java

for High-Performance Network Computing, Poster Session, Palo Alto, California, February

1998.

[20] Ian Foster and Steven Tuecke. Enabling Technologies for Web-Based Ubiquitous Supercom-

puting. In Proceedings of the 5th IEEE Symposium on High Performance Distributed Com-

puting, pages 112–119, Syracuse, New York, August 1996.

[21] J. Steven Fritzinger and Marianne Mueller. Java Security. Sun Microsystems Inc. White

Paper, 1996.

[22] Susan L. Graham, Peter B. Kessler, and Marshall K. McKusick. gprof: a Call Graph Execu-

tion Profiler. In Proceedings of the ACM SIGPLAN Symposium on Compiler Construction,

June 1982.

[23] David Griswold. The Java HotSpot Virtual Machine Architecture. Sun Microsystems White-

paper, March 1998.

[24] Reed Hastings and Bob Joyce. Purify: Fast Detection of Memory Leeks and Access Errors. In

Proceedings of the Winter’92 USENIX Technical Conference, pages 125–136, San Francisco,

California, January 1992.

[25] Michael T. Heath and Jennifer A. Etheridge. Visualizing the performance of parallel pro-

grams. IEEE Software, 4(3):29–39, September 1991.

[26] John L. Hennessy. Symbolic Debugging of Optimized Code. ACM Transactions on Program-

ming Languages and Systems (TOPLAS), 4(3):323–344, July 1982.

[27] Jeffrey K. Hollingsworth, Barton P. Miller, and Jon Cargille. Dynamic Program Instrumenta-

tion for Scalable Performance Tools. In Proceedings of the Scalable High-performance Com-

puting Conference (SHPCC), Knoxville, Tennessee, May 1994.

[28] Jeffrey K. Hollingsworth, Barton P. Miller, Marcelo J. R. Goncalves, Oscar Naim, Zhichen Xu,

and Ling Zheng. MDL: A Language and Compiler for Dynamic Program Instrumentation. In

Proceedings of the International Conference on Parallel Architectures and Compilation Tech-

niques, San Francisco, California, November 1997.

[29] Urs Holzle and David Ungar. A Third-Generation Self Implementation: Reconciling Respon-

siveness with Performance. In Proceedings of the 9th Annual ACM SIGPLAN Conference on

Object-Oriented Programming Systems, Languages, and Applications (OOPSLA), pages 229–

243, Portland, OR, October 1994.

88

[30] IBM Corporation. Jinsight. http://www.alphaWorks.ibm.com/formula/jinsight, April 1998.

[31] Intel Corporation. VTune. http://www.intel.com/vtune/analyzer/, March 1998.

[32] Intuitive Systems Inc. OptimizeIt. Sunnyvale, California. http://www.optimizeit.com/, March

1999.

[33] R. Bruce Irvin and Barton P. Miller. Mechanisms for Mapping High-Level Parallel Perfor-

mance Data. In Proceedings of the ICPP Workshop on Challenges for Parallel Processing,

Chicago, Illinois, August 1996.

[34] Guy Lewis Steele Jr. and Gerald Jay Sussman. The revised report on Scheme, a dialect of

Lisp. MIT Artificial Intelligence Memo 452, January 1978.

[35] Mark Kantrowitz. Portable Utilities for Common Lisp, User Guide and Implementation

Notes. Technical Report CMU-CS-91-143, Carnegie Mellon University, May 1991.

[36] John G. Kemeny and Thomas E. Kurtz. Basic Programming. John Wiley & Sons, Inc. Pub-

lisher, 1967.

[37] KL Group. JProbe. Toronto, Ontario Canada. http://www.klg.com/jprobe/.

[38] Robert A. Kowalski. Predicate Logic as Programming Language. IFIP Congress, pages 569–

574, 1974.

[39] Geoffrey H. Kuenning. Precise Interactive Measurement of Operating Systems Kernels, Soft-

ware. Software Practice and Experience. D. E. Comer and A. J. Wellings editors. Wiley pub-

lisher., 25(1):1–21, January 1995.

[40] James R. Larus and Eric Schnarr. EEL: Machine-Independent Executable Editing. In Pro-

ceedings of the SIGPLAN Conference on Programming Language Design and Implementa-

tion (PLDI), pages 291–300, June 1995.

[41] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. The Java Series.

Addison Wesley, 1996.

[42] Lucent Technologies, Inc. Inferno Release 2.0 Reference Manual. http://www.lucent-

inferno.com/Pages/Developers/Documentation/Ref_Man20/index.html, 1997.

[43] A. Malony, B. Mohr, P. Beckman, D. Gannon, S. Yang, and F. Bodin. Performance Analysis of

pC++: A Portable Data-Parallel Programming System for Scalable Parallel Computers. In

Proceedings of the 8th International Parallel Processing Symposium (IPPS), pages 75–85,

Cancun, Mexico, April 1994.

[44] Carmine Mangione. Performance test show Java as fast as C++. JavaWorld http://www.jav-

aworld.com/, February 1998.

[45] Margaret Martonosi, Anoop Gupta, and Thomas E. Anderson. MemSpy: Analyzing Memory

System Bottlenecks in Programs. In Proceedings of the 1992 ACM SIGMETRICS and Perfor-

mance ‘92 International Conference on Measurement and Modeling of Computer Systems,

pages 1–12, June 1992.

[46] John McCarthy. Recursive Functions of Symbolic Expressions and Their Computation by

Machine, Part I. Communications of the ACM, April 1960.

[47] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,

R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall. The Para-

dyn Parallel Performance Measurement Tools. IEEE Computer 28, 11, November 1995.

[48] John K. Ousterhout. Tcl: An Embeddable Command Language. In Proceedings of the Win-

ter’90 USENIX Conference, pages 133–146, Washington, D. C., January 1990.

89

[49] Vijay S. Pai, Parthasarathy Ranganathan, and Sarita V. Adve. RSIM: An Execution-Driven

Simulator for ILP-Based Shared-Memory Multiprocessors and Uniprocessors. In 3rd Work-

shop on Computer Architecture Education, February 1997.

[50] Srinivansan Parthasarathy, Michal Cierniak, and Wei Li. NetProf: Network-based High-level

Profiling of Java Bytecode. Technical Report 622, University of Rochester, May 1996.

[51] Sharon E. Perl, William E. Weihl, and Brian Noble. Continuous Monitoring and Performance

Specification. Compaq Systems Research Center (SRC) Research Report, June 26 1998.

[52] Todd A. Proebsting. Optimizing an ANSI C Interpreter with Superoperators. In Proceedings

of the 22nd ACM Symposium on Principles of Programming Languages (POPL), pages 322–

332, San Francisco, California, January 1995.

[53] Rational Software Corporation. Visual Quantify. Cupertino, California.

[54] Rational Software Corporation. Quantify User’s Guide. Cupertino, California, 1993.

[55] Daniel A. Reed, Ruth A. Aydt, Roger J. Noe, Phillip C. Roth, Keith A. Shields, Bradley W.

Schwartz, and Luis F. Tavera. Scalable Performance Analysis: The Pablo Performance Anal-

ysis Environment. In Proceedings of the Scalable Parallel Libraries Conference, pages 104–

113. IEEE Computer Society, 1993.

[56] Steven K. Reinhardt, Mark D. Hill, James R. Larus, Alvin R. Lebeck, James C. Lewis, and

David A. Wood. The Wisconsin Wind Tunnel: Virtual Prototyping of Parallel Computers. In

Proceedings of the 1993 ACM SIGMETRICS Conference, pages 48–60, Santa Clara, Califor-

nia, June 1993.

[57] Mendel Rosenblum, Stephen A. Herrod, Emmett Witchel, and Anoop Gupta. Complete Com-

puter Simulation: The SimOS Approach. IEEE Parallel and Distributed Technology, 1995.

[58] Mark Roulo. Accelerate your Java apps! JavaWorld http://www.javaworld.com/, September

1998.

[59] Walter J. Savitch. PASCAL An Introduction to the Art and Science of Programming. The Ben-

jamin/Cummings Publishing Co., Inc., 1984.

[60] Sun Microsystems Inc. Java built-in profiling system. On-line Java Tools Reference Page,

http://www.javasoft.com/products/JDK/tools.

[61] Sun Microsystems Inc. Java Native Interface (JNI). http://java.sun.com/products/jdk/1.2/docs/

guide/jni/index.html.

[62] Sun Microsystems Inc. Java Virtual Machine Profiler Interface (JVMPI). http://java.sun.com/

products/jdk/1.2/docs/guide/jvmpi/jvmpi.html.

[63] Sun Microsystems Inc. The Java 2 Platform (1.2 release of the JDK). http://java.sun.com/jdk/,

1999.

[64] Sun Microsystems Inc. Java Remote Method Invocation-Distributed Computing for Java.

White Paper, May 1999.

[65] Ariel Tamches and Barton P. Miller. Fine-Grained Dynamic Instrumentation of Commodity

Operating System Kernels. In Proceedings of the Third Symposium on Operating Systems

Design and Implementation Conference (OSDI), New Orleans, February 1999.

[66] Thinking Machines Corporation, Cambridge Massachusetts. CM Fortran Reference Manual.

January 1991.

[67] David Thurman. jpvm. http://www.isye.gatech.edu/chmsr/jPVM/.

90

[68] Guido van Rossum. Python Reference Manual. Corporation for National Research Initiatives

(CNRI), Reston, VA., 1999.

[69] Larry Wall, Tom Christiansen, and Randal L. Schwartz. Programming Perl, Second Edition.

O’Reilly & Associates, Inc., 1996.

[70] Winifred Williams, Timothy Hoel, and Douglas Pase. The MPP Apprentice Performance Tool.

Programming Environments for Massively Parallel Distributed Systems. Karsten M. Decker

and Rene M. Rehmann, editors. Birkhauser Verlag, Publisher, 1994.

[71] Zhichen Xu, James R. Larus, and Barton P. Miller. Shared-Memory Performance Profiling. In

Proceedings of the 6th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming (PPOPP), Las Vegas, Nevada, June 1996.

[72] Zhichen Xu, Barton P. Miller, and Oscar Naim. Dynamic Instrumentation of Threaded Appli-

cations. In Proceedings of the Seventh ACM SIGPLAN Symposium on Principles and Prac-

tice of Parallel Programming, pages 49–59, Atlanta, Georgia, May 1999.

[73] J. C. Yan. Performance Tuning with AIMS – An Automated Instrumentation and Monitoring

System for Multicomputers. In Proceedings of the 27th Hawaii International Conference on

System Sciences, pages 625–633, Wailea, Hawaii, January 1994.

[74] Xiaolan Zhang, Zheng Wang, Nicholas Gloy, J. Bradley Chen, and Michael D. Smith. System

Support for Automatic Profiling and Optimization. In Proceedings of the 16th ACM Sympo-

sium on Operating System Principles, Saint-Malo, France, October 1997.

