
Approximate Analysis of Large Simulation-Based Games

by

Bryce Wiedenbeck

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2015

Doctoral Committee:

Professor Michael P. Wellman, Chair
Professor Satinder Singh Baveja
Professor Tilman Borgers
Assistant Professor Grant Schoenebeck

TABLE OF CONTENTS

List of Figures . iv

List of Tables . vii

Abstract . viii

Chapter

1 Introduction . 1

1.1 The Role-Symmetric Game Representation 2
1.2 Game-Theoretic Analysis Concepts . 4
1.3 Computing Equilibria with Replicator Dynamics 7
1.4 Simulation-Based Game Theory . 9
1.5 Strategy Exploration . 11
1.6 Thesis Overview . 12

2 Credit Networks . 14

2.1 Credit Network Formation Game . 17
2.2 Theoretical Analysis . 20
2.3 Simulation-Based Game Analysis . 25

2.3.1 Simulation Setup . 25
2.3.2 Results . 31

2.4 Conclusions . 35

3 Bootstrap Methods for Statistical Confidence 36

3.1 Background . 37
3.1.1 Bootstrap Statistics . 37
3.1.2 Related Work . 38

3.2 Computing Bootstrap Confidence Intervals for Regret 39
3.3 Calibration Experiments . 43

3.3.1 Experimental Setup . 44
3.3.2 Experimental Results . 45

3.4 Conclusions . 49

4 Deviation-Preserving Reduction . 52

4.1 Background . 53
4.1.1 Hierarchical Reduction . 53
4.1.2 Twins Reduction . 54

ii

4.1.3 Comparison of Hierarchical and Twins Reductions 55
4.2 The Deviation-Preserving Reduction Method 57
4.3 Validation Experiments . 59

4.3.1 Regret of Reduced Game Equilibria 60
4.3.2 Comparison to Full-Game Equilibria 65
4.3.3 Dominated Strategies . 66

4.4 Conclusions . 67

5 Learning Game Models . 69

5.1 Motivation: Limitations of Player Reduction 69
5.2 Related Work . 71
5.3 Learning and Applying Payoff Models 72

5.3.1 Estimating Expected Values . 74
5.3.2 Computing Equilibria . 75

5.4 Validation Experiments . 77
5.4.1 Experimental Setup . 78
5.4.2 Experimental Results . 81

5.5 Conclusions . 86

6 Conclusion . 88

6.1 Summary of Contributions . 88
6.2 Future Directions . 90

Bibliography . 93

iii

LIST OF FIGURES

1.1 Strategy exploration inner loop, as described in steps 1–5 below. 11

2.1 Updating credit to process two simple transactions. 15
2.2 Example of a Setting 1 game with unbounded price of anarchy (Theorem 2.1).

All edges depicted have credit capacity cij = Bi: the issuer’s entire credit
budget. 22

2.3 Example of a Setting 1-B game that has no pure-strategy Nash equilibrium. . . 23
2.4 A star-like credit network similar to one that would arise from the mutual

application of default-based strategies in the global risk model. 29
2.5 Under graded risk, social network neighbors are much more likely than aver-

age to be estimated as among the five least likely defaulters. 30
2.6 Deviation-preserving reduction as applied to the credit network formation game.

Each of six reduced-game players views itself as controlling one of 61 full-
game agents while each opponent controls an equal fraction (12) of the re-
mainder. The payoff to s1 in the reduced-game profile comes from the full-
game profile depicted in (a); s2 from (b); s3 from (c). See Chapter 4 for an
in-depth treatment of DPR. 31

2.7 Equilibria found for the twelve credit network environments. Letters denote
the strategy classes represented in equilibrium, with circled letters indicating
pure-strategy equilibria. 32

2.8 Welfare at empirical social optimum compared to welfare at equilibrium. . . . 33
2.9 Total credit issued at empirical social optimum compared to equilibrium. . . . 34

3.1 Example observation data Θ and the resulting payoff matrix M(Θ) for a sym-
metric 2-player, 2-strategy game. 41

3.2 Exact CDF of the bootstrap regret of 〈1
2
, 1

2
〉 in the game from Figure 3.1. Cor-

responds to the left- and right-most columns of Table 3.1. Approximated by
Algorithm 1. The dashed line shows that the distribution’s 95th percentile is
the same as its maximum. With a non-trivial number of payoff observations
this would not occur. 43

3.3 Bootstrap distributions are well-calibrated for 4-player, 4-strategy uSym games
with z̄ = 100 Gaussian noise. Curves show the fraction of true-game regrets
falling below each bootstrap distribution percentile. 47

3.4 Bootstrap distributions are poorly calibrated when noise swamps payoff infor-
mation. Settings identical to Figure 3.3, except z̄ = 1000. 48

iv

3.5 Bootstrap distributions are poorly calibrated for CredNet games. This may
occur because the CredNet experiments all use the same true game. 49

3.6 Bootstrap-estimated 95% confidence bounds for regret exhibit desirable prop-
erties of confidence intervals: they shrink with more data and grow with more
noise. 50

4.1 Number of full-game profiles required to construct reduced games (log scale),
for R = {0}, and |S0| = 5. 59

4.2 Average full-game regret of reduced-game equilibria in local-effect games.
N = 12, |S| = 6, 2 ≤ n ≤ 8. 62

4.3 Average full-game regret of reduced-game equilibria in credit network games.
N = 12, |S| = 6, 2 ≤ n ≤ 8. 63

4.4 Full-game regret of reduced-game equilibria in congestion games. N = 100,
|S| = 2, 2 ≤ n ≤ 10. 64

4.5 Histograms showing the number of strategies surviving iterated elimination
of dominated strategies in full but not reduced congestion games. N = 12,
|S| = 6, 250 random games. TR ≡ DPR2 outperforms HR, sampling far
fewer profiles. 66

4.6 Histograms showing the number of strategies surviving iterated elimination
of dominated strategies in full but not reduced credit network games. N =
12, |S| = 6, 250 sample games. DPR′4 avoids the aggressive elimination
occurring in TR. 67

5.1 DPR uses only one strategy’s payoff from each simulated profile; payoff data
for all other strategies is ignored. In a symmetric game, a (n−1)(|S|−1)

n|S|−1
fraction

of payoff data is ignored. This fraction is plotted for various plausible reduced-
game sizes. 71

5.2 Model construction. The dependent variable input for Gaussian process re-
gression can be either payoffs or differences from average payoffs. Expected
values—used in social welfare and Nash equilibrium computation—can be es-
timated by sampling, point estimation, or constructing a DPR game. 74

5.3 Experiment design. Action-graph representations of random local-effect games
are generated and payoffs are sampled with Gaussian noise noise. Nash equi-
libria and social welfare are estimated using both learning and DPR, and com-
pared against the full game. 77

5.4 Error of expected-value estimates, holding reduced-game size fixed. DPR
and learning perform similarly on 17-player full games, but the learning meth-
ods do much better on larger games. Estimating expected values by sampling
is only slightly better than using point estimation. 80

5.5 Error of expected-value estimates, holding full-game size fixed. For most
reduced-game sizes, learning outperforms DPR, but the profiles used as input
in the 2-player case are concentrated around symmetric pure strategies, leaving
most of the profile space unlearned. 80

v

5.6 Error of expected-value estimates, holding full-game size fixed. Allocat-
ing the same number of samples to the learning method, but spreading them
over more profiles by sampling as though the DPR game had extra players,
overcomes the problems with the smallest observation set, but is irrelevant for
larger reduction sizes. 81

5.7 Regret of identified equilibria. The payoff difference regression method per-
forms extremely poorly at identifying equilibria with a very small amount of
data, but starting from 3-player reduced game data sets, its equilibria have
significantly lower regret than those from DPR. 82

5.8 Regret of identified equilibria. Spreading the observation set across more
profiles does not improve the quality of equilibria. 83

5.9 Setting 2: Error of expected-value estimates. Regression performs well here
despite using the same data set as DPR. Neither method benefits substantially
for more samples of the same profiles. 85

5.10 Setting 2: Regret of identified equilibria. Regression never outperforms
DPR with n = 3, but in n = 5 reduced games, regression does as well as or
better than DPR. 85

vi

LIST OF TABLES

2.1 The most salient differences between analytical and simulation-based credit
network formation game models. See Game Settings 1 and 2 for further details. 18

2.2 Exploration performed by the iterative SGT process under various environ-
ment settings. Strategies gives the number of strategies added by the outer
loop. Full-game profiles gives the number of 61-agent profiles sampled by the
inner loop. DPR profiles gives the number of 6-player profiles in the reduced-
game model. 28

2.3 Strategies included in the SGT study: predefined for Stage I, and automatically
generated in the outer loop for Stage II. 29

3.1 Possible regret values of a 〈1
2
, 1

2
〉-mixture when the game in Figure 3.1 is re-

sampled. The left-most column gives the probability with which each boot-
strap game can occur, and the right-most column gives the regret value in
that bootstrap game. Intermediate columns show the components from which
ε
(
〈1

2
, 1

2
〉
)

= 1
2

max [u (〈2, 0〉, A) , u (〈0, 2〉, B)]− u
(
〈1

2
, 1

2
〉
)

is calculated. . . . 42
3.2 Calibration and mean regret of 95% confidence bounds for regret of simulation-

based game equilibria across various game classes. Calibration measures the
fraction of the time that true-game regrets fall below the 95th percentile of the
bootstrap distribution. 46

4.1 Average number of strategies by which reduced- and full-game NE support
sets differ. * indicates significant difference between n and n− 1; † indicates
significant difference between DPRn and HRn. 65

4.2 Average L2 distance between full- and reduced-game NE distributions. * in-
dicates significant difference between n and n− 1; † indicates significant dif-
ference between DPRn and HRn. 65

vii

ABSTRACT

Game theory offers powerful tools for reasoning about agent behavior and incentives in
multi-agent systems. Traditional approaches to game-theoretic analysis require enumera-
tion of all possible strategies and outcomes. This often constrains game models to small
numbers of agents and strategies or simple closed-form payoff descriptions. Simulation-
based game theory extends the reach of game-theoretic analysis through the use of agent-
based modeling. In the simulation-based approach, the analyst describes an environment
procedurally and then computes payoffs by simulation of agent interactions in that envi-
ronment.

I use simulation-based game theory to study a model of credit network formation.
Credit networks represent trust relationships in a directed graph and have been proposed
as a mechanism for distributed transactions without a central currency. I explore what
information is important when agents make initial decisions of whom to trust, and what
sorts of networks can result from their decisions. This setting demonstrates both the value
of simulation-based game theory—extending game-theoretic analysis beyond analytically
tractable models—and its limitations—simulations produce prodigious amounts of data,
and the number of simulations grows exponentially in the number of agents and strategies.

I propose several techniques for approximate analysis of simulation-based games with
large numbers of agents and large amounts of simulation data. First, I show how bootstrap-
based statistics can be used to estimate confidence bounds on the results of simulation-
based game analysis. I show that bootstrap confidence intervals for regret of approximate
equilibria are well-calibrated. Next, I describe deviation-preserving reduction, which ap-
proximates an environment with a large number of agents using a game model with a small
number of players, and demonstrate that it outperforms previous player reductions on sev-
eral measures. Finally, I employ machine learning to construct game models from sparse
data sets, and provide evidence that learned game models can produce even better approx-
imate equilibria in large games than deviation-preserving reduction.

viii

CHAPTER 1

Introduction

The task of science is to explain and make predictions about the world. This task is prin-
cipally achieved by constructing models that abstract away most of the real world’s details
while preserving key features of a phenomenon of interest. Such abstractions necessarily
trade off the model’s fidelity with its analytical tractability, forcing scientists into difficult
decisions about what features to prioritize. Advances in computing power through bet-
ter hardware and algorithms can move the frontier of this tradeoff, allowing scientists to
rethink previous modeling decisions.

Social scientists and computer scientists often study interactions among multiple in-
dependent decision makers. In various contexts, the decision-making agents can be peo-
ple, organizations, computer programs, or other entities. Game theory provides a com-
mon mathematical language that aids with abstract reasoning about such systems. Game-
theoretic models work by enumerating all decisions agents can make and all possible out-
comes of their joint decisions. Agents’ preferences over outcomes are expressed as nu-
merical payoffs, and agent behavior is predicted by identifying equilibria, where no agent
prefers to unilaterally change its decision. This method has proven to be a powerful tool
for understanding incentives in multi-agent systems.

Like all mathematical abstractions, game-theoretic models require several simplifying
assumptions. In addition to the requirements for describing a game—that agents’ decisions
be enumerable and result in outcomes with quantifiable payoffs—equilibrium analysis gen-
erally assumes expected-utility-maximizing agent behavior. Much research has explored
the ways in which real-world decision-making differs from game-theoretic rationality, and
incorporating richer decision models presents an exciting avenue for future computational
research. Yet even within the constraints of standard game-theoretic tools, analysts often
face strong fidelity/tractability tradeoffs. Enumerating the full set of outcomes when many
agents have many available options is often impractical, and even in relatively simple en-
vironments, describing payoffs for those outcomes that accurately capture agent incentives
may be challenging.

1

This thesis contributes to a line of work that brings computational power to bear on
game-theoretic problems through the use of agent-based simulations. Simulation-based

game theory allows the modeler to describe the environment and agents’ actions procedu-
rally and rely on simulation to determine payoffs for each outcome. Sections 1.1 and 1.4 in
the present chapter provide background on simulation-based game theory and lay out ter-
minology and notation employed throughout the thesis. In Chapter 2, I introduce the credit
network formation problem—a multi-agent interaction where model completeness seems
strongly at odds with analytical tractability. This domain highlights some of the relative
strengths of analytical and simulation-based approaches and motivates my methodological
contributions. The remainder of the thesis covers new methods that improve the accuracy
and rigor with which large simulation-based games are analyzed. In Chapter 3, I show how
the large amounts of data in simulation-based games can be leveraged to assess statistical
confidence in model predictions. In Chapters 4 and 5, I describe methods for analyzing
simulation-based games with a very large number of players, first in Chapter 4 by con-
structing small games that approximate larger ones, and then in Chapter 5 through machine
learning.

1.1 The Role-Symmetric Game Representation

I focus on games represented in normal form, which model each agent as selecting a strat-
egy that governs its behavior throughout an interaction. I will often be interested in rep-
resenting symmetries among agents, and therefore define as the basic unit of analysis a
role-symmetric game, where agents are partitioned into roles, such as buyers and sellers in
a market, within which individual agents are indistinguishable. This means that all mem-
bers of the same role face identical incentives and have the same effects on their opponents,
but roles may differ in their available strategies, their payoffs, and their influence on others’
payoffs. Role-symmetric games can represent any level of player symmetry present in a
normal-form game. A fully asymmetric game can be captured by a role-symmetric game
where every role has one agent, while a fully symmetric game is a role-symmetric game
with only one role.

Formally, a role-symmetric game Γ = (R, {Nr}, {Sr}, u) consists of

• a set of roles R,

• the number of players Nr ∈ Z+ for each role r ∈ R,

• disjoint ordered sets of strategies Sr for each role, and

2

• a utility function u.

A profile is an assignment of one strategy to every player. I introduce the following notation
to represent profiles in role-symmetric games. A role profile ~sr =

〈
cs
〉
s∈Sr

is a vector with
a count cs of the number of players choosing each strategy s ∈ Sr, with cs ∈ {0, . . . , Nr}
and

∑
s cs = Nr; the set of role profiles for role r is ~Sr. A profile is then a vector of role

profiles
〈
~sr
〉
r∈R =

〈〈
cs
〉
s∈Sr

〉
r∈R

, and the set of all profiles in the game ~S = ×r∈R ~Sr is the

cartesian product of the role-profile sets. The utility function u : ~S × R× Sr → R maps a
profile, a role, and a strategy to a real-valued payoff. The standard tabular representation of
the utility function is called a payoff matrix, and stores

∏
r∈R|Sr|

(
Nr+|Sr|−2
Nr−1

)
payoff values.

A mixed strategy σ is a probability distribution over Sr that a role-r player uses to
select among their strategies. To distinguish strategies from mixed strategies, I use the
term pure strategy synonymously with the former. A symmetric mixed strategy ~σr is a
mixed strategy that is played by all members of a role. A role-symmetric mixed strategy

~σ =
〈
~σr
〉
r∈R is a vector of symmetric mixed strategies, one for each role; ~Σ is the set of

all such role-symmetric mixed strategies. When clear from context, I refer to a symmetric
mixed strategy or role-symmetric mixed-strategy as a mixture. I use bracket notation to
indicate indexing into vectors, so σ[s] is the probability of strategy s in symmetric mixed
strategy σ, while ~σ[r, s] denotes the probability with which role r plays strategy s in role-
symmetric mixed strategy ~σ. I overload u to accommodate role-symmetric mixed strategies
as follows: u(~σ, r, s) is the expected utility of a player in role r playing pure strategy swhen
all other players select their strategies according to ~σ, and u(~σ, r) is the expected utility to
any of the players in role r following ~σr all when players jointly play ~σ. When computing
equilibria, I make use of a vector representation ~u(~σ) =

〈〈
u(~σ, r, s)

〉
s∈Sr

〉
r∈R

in which
the r, s, component gives the expected utility to a single role-r player choosing strategy
s ∈ Sr when all opponents play ~σ. I discuss the computation of u(~σ, r, s) and ~u(~σ) given
u(~s) in Section 1.3.

Representing profiles as count vectors allows unilateral deviations to be described via
arithmetic operations. Let ŝ denote a unit vector with a 1 in the coordinate for strategy s and
a 0 for all other strategies. The vector ŝ can represent either a role profile or a game profile
depending on context. The profile ~sr − ŝ is then an (Nr − 1)-player role profile where one
player using s has been removed from ~sr. Similarly, ~s − ŝ + t̂ gives a profile that differs
from ~s by the deviation of one player from strategy s to strategy t. Another useful arithmetic
operation on profiles is scaling by a constant the number of players choosing each strategy
in a role profile: k~sr. I use the ◦ operator to denote component-wise multiplication, so〈
kr
〉
r∈R ◦ ~s =

〈
kr~sr

〉
r∈R is a game profile where the number of players in role r ∈ R has

been scaled by a linear factor kr. The notation s ∈ ~s or s ∈ ~sr indicates that strategy s

3

is played by at least one player in the (game or role) profile; that is, cs > 0. Similarly,
for mixtures, s ∈ ~σ or s ∈ ~σr indicates that strategy s has non-zero probability in the
(symmetric or role-symmetric) mixture. I refer to a strategy s as being in the support of
mixture ~σ when s ∈ ~σ.

1.2 Game-Theoretic Analysis Concepts

An important concept employed throughout the thesis is regret, the maximum utility gain a
player could achieve by deviating from a profile. Regret is always defined with respect to a
game and a profile, but can optionally be restricted to a specific role, or a specific strategy;
I overload the ε(·) function to refer to all three variants. The regret of a strategy (played
by role r in profile ~s) is the maximum a player could gain by deviating from s to some
strategy s′, holding all other players’ strategies fixed. The regret for a role (in profile ~s) is
the maximum strategy regret faced by any player in role r.1 The regret of a profile is the
maximum strategy regret faced by any player in any role. Formally,

ε : ~S ×R× Sr → R . . . ε(~s, r, s) = max
s′∈Sr

u(~s− ŝ+ ŝ′, r, s′)− u(~s, r, s) (1.1)

ε : ~S ×R→ R. ε(~s, r) = max
s∈~s

ε(~s, r, s) (1.2)

ε : ~S → R. ε(~s) = max
r∈R

ε(~s, r) (1.3)

When the game is not clear from context, I will specify it as the first argument: ε(Γ, ~s, . . .).
The best response correspondence gives the deviating strategy that produces the maximum
gain. The formal definition of BR(·) parallels ε(·), but substitutes arg max for max:

BR : ~S ×R× Sr → 2Sr . . BR(~s, r, s) = arg max
s′∈Sr

u(~s− ŝ+ ŝ′, r, s′)− u(~s, r, s) (1.4)

BR : ~S ×R→ 2Sr × 2Sr . . . BR(~s, r) = arg max
s∈~s,s′∈Sr

u(~s− ŝ+ ŝ′, r, s′)− u(~s, r, s) (1.5)

Note that regret can never be negative, because if s ∈ BR(~s, r, s) then ε(~s, r, s) = 0, and
if s /∈ BR(~s, r, s) then there must exist s′ such that u(~s − ŝ + ŝ′, r, s′) > u(~s, r, s), and
therefore ε(~s, r, s) > 0.

The definitions of regret and best responses for pure-strategy profiles above can also
be extended to mixtures. The regret of a role in ~σ is the maximum a role-r player could
gain by deviating from their role’s mixture ~σr to some pure strategy, holding others fixed.

1Comparing utilities across roles is not necessarily a meaningful operation, but the definition of profile
regret facilitates statements about all roles, particularly in the definition of ε-Nash equilibrium.

4

The regret of a role-symmetric mixed strategy is the maximum role regret over r ∈ R.
Exploiting the overloading of u to expected utilities of mixtures allows for very similar
definitions for regret:

ε : ~Σ×R→ R . . . ε(~σ, r) = max
s∈Sr

u(~σ, r, s)− u(~σ, r) (1.6)

ε : ~Σ→ R ε(~σ) = max
r∈R

max
s′∈Sr

ε(~σ, r) (1.7)

and best responses:

BR : ~Σ×R→ 2Sr . . . BR(~σ, r) = arg max
s∈Sr

u(~σ, r, s)− u(~σ, r) (1.8)

Note that by linearity of expectation, mixed strategies are best responses if and only if every
strategy in their support is a best response. I have therefore defined BR(~σ, r) to include
only pure strategies, but it is understood that any mixture over best responses is also a best
response.

The primary solution concept I employ is Nash equilibrium, a (pure- or mixed-strategy)
profile from which no player can gain by deviating unilaterally. By definition, a profile ~σ
is a Nash equilibrium if and only if ε(~σ) = 0. While all finite games have at least one
Nash equilibrium, and a finite role-symmetric game has a role-symmetric Nash equilib-
rium, computing exact Nash equilibria may be infeasible. Nash equilibrium mixture prob-
abilities can be real numbers that are not representable within machine precision [Nash,
1951]. I therefore focus on approximate (ε-Nash) equilibria, profiles ~σ where ε(~σ) ≤ ε for
some threshold ε. The problem of computing ε-Nash equilibria is complete for the com-
plexity class PPAD [Daskalakis et al., 2009], generally believed to be NP-intermediate. I
discuss the replicator dynamics algorithm for identifying role-symmetric mixed-strategy
ε-Nash equilibria in Section 1.3.

A pure strategy s is dominated by pure strategy s′ if for all profiles ~s in which s appears,
s′ is a beneficial deviation: u(s′, ~s−s) > u(s, ~s) for all ~s ∈ ~S where s ∈ ~s. Dominated
strategies never appear in Nash equilibria and can generally be removed from the game.
Social welfare SW(·) is defined as the sum of the utilities to all players under a profile or
mixture:

SW : ~S → R . . . SW(~s) =
∑
r∈R

~sr ·
〈
u(~s, r, s)

〉
s∈Sr

(1.9)

SW : ~Σ→ R . . . SW(~σ) =
∑
r∈R

Nru(~σ, r) (1.10)

5

where the sum in Equation 1.9 is over dot products between utility vectors and role profiles.
Social welfare is often used to compare across different equilibria or different environments
how well players do in the aggregate, but may not be a useful measure if utility values for
different roles incomparable or if distribution of utility among agents is important. Price of
anarchy and price of stability compare optimal social welfare to equilibrium social welfare.
A game’s price of anarchy is the ratio of the social welfare of the best profile ~s to that of
the worst Nash equilibrium, while the price of stability uses the best Nash equilibrium.

A potential problem with computing social welfare, price of anarchy and price of sta-
bility lies in comparing utilities across agents. At a fundamental level, utilities describe
agents’ ordinal preferences over outcomes, and any monotone transformation of utilities
describes the same set of ordinal preferences. Mixed strategy equilibrium concepts rely on
the further assumption that agents are expected utility maximizers; such an agents’ incen-
tives are unaffected by affine transformations of the utility function. If arbitrary monotone
or even arbitrary affine transformations were applied to agent utilities, inter-agent utility
comparisons like social welfare would hold no meaning. However, in many environments
modeled by simulation-based game theory, agents share common motivations such as mon-
etary profit, and among expected-profit maximizers, payoff comparisons are more reason-
able. Further, in symmetric game models, all agents face identical incentives and in any
symmetric equilibrium agents will achieve the identical expected utility. Thus the differ-
ence in social welfare between symmetric equilibria indicates exactly how well any agent
fares under those equilibria. In role-symmetric games, comparisons within a role are just
as valid as in symmetric games, but as mentioned in the preceding footnote, one should be
wary of cross-role payoff comparisons without additional justification.

Even when payoff comparisons between agents have meaning, social welfare may be
an inappropriate measure if it hides the distribution of utility among agents. In symmet-
ric equilibria, such distributional concerns are moot, but this is not necessarily the case in
asymmetric games such as Setting 1 in Chapter 2. Yet even in this case the social welfare
can prove valuable. When a game has price of anarchy 1, all equilibria maximize social
welfare, meaning that all equilibria have identical social welfare, and therefore only distri-
butional concerns should be relevant to a planner selecting among equilibria. On the other
hand, unbounded price of anarchy is achieved in Chapter 2 by making a specific agent’s
utility arbitrarily bad, which would also be concerning under notions of efficiency more
sensitive to the distribution of payoffs.

6

1.3 Computing Equilibria with Replicator Dynamics

To support analysis of simulation-based games and to provide a proving ground for my pro-
posed algorithms, I have developed an open-source Python package called GameAnalysis.
This package provides a suite of tools for many types of game-theoretic operations, but em-
ploys data structures designed specifically to support fast computation of role-symmetric
mixed strategy ε-Nash equilibria via replicator dynamics. All equilibria reported in this
thesis outside of Section 2.2 were computed by GameAnalysis.

Replicator dynamics [Taylor and Jonker, 1978] is standard algorithm for computing
symmetric mixed strategy ε-Nash equilibria that can also be used to compute role-symmetric
equilibria. Replicator dynamics is initialized from an arbitrary role-symmetric mixed strat-
egy ~σ 0, then for each iteration i ≥ 0, the mixture is updated as follows:

~σ i+1 =

〈
(~u(~σ i)r − µr) ◦ ~σ ir
||(~u(~σ i)r − µr) ◦ ~σ ir ||1

〉
r∈R

, (1.11)

where µr is the minimum payoff in the game for role r. The effect of multiplying each
strategy’s probability by its expected value and re-normalizing is that strategies with above-
average expected value get up-weighted while those with below average expected value get
down-weighted. Replicator dynamics iterates until ~σ i = ~σ j for some j < i. If j = i − 1,
the algorithm is said to have converged; otherwise it entered a limit cycle. In practice,
convergence is generally declared if ||~σ i − ~σ j||∞ < δ for some threshold δ, limit cycle
checking is often omitted, and a maximum number of iterations is enforced.

All role-symmetric Nash equilibria ~σ ∗ are fixed points of the replicator dynamics up-
date, because for every role r ∈ R, each strategy s ∈ Sr is either unplayed: ~σ ∗[r, s] = 0, or
has expected utility equal to that of any other strategy in the support: u(~σ ∗, r, s) = u(~σ ∗).
When replicator dynamics converges to a mixture ~σ, that mixture is frequently an ε-Nash
equilibrium. Sufficient conditions for this convergence are known, but in practice, check-
ing the regret ε(~σ) for each converged mixture ~σ is far simpler than verifying sufficient
conditions.

Replicator dynamics is not guaranteed to find all equilibria in a game. Every equilibrium-
finding algorithm is limited by machine precision, and Nash [1951] showed that equilib-
rium probabilities can be irrational numbers, but replicator dynamics faces a further re-
striction. While all Nash equilibria are fixed points of replicator dynamics, they may have
trivial basins of attraction: replicator dynamics cannot converge to such equilibria unless
initialized there. Instead, replicator dynamics may converge to other equilibria, or may
enter a limit cycle. Stable fixed points of replicator dynamics correspond to evolutionarily

7

stable strategies, a refinement of Nash equilibrium that some analysts prefer as a predic-
tor of agent behavior. In practice, replicator dynamics nearly always finds an equilibrium,
and often finds several. As discussed throughout this thesis, beginning in Section 1.4,
simulation-based game theory practitioners are for various reasons forced to content them-
selves with a subset of an environment’s equilibria, regardless of what algorithm is used.
While all experiments that follow employ replicator dynamics to identify equilibria, there
is little reason to believe that my results depend significantly on this choice. First, none of
my methods rely critically on replicator dynamics and could be coupled with other equilib-
rium search algorithms, and second, measures that don’t depend on the equilibrium-finding
algorithm such as regret, strategic dominance, and social welfare corroborate many of my
results.

The critical step in computing equilibria via replicator dynamics is evaluating u(~σ, r, s)

for each role and strategy. This expected utility is a sum of the the payoff to s in all profiles
played with positive probability under ~σ in which s appears, weighted by the profile’s
probability under ~σ:

u(~σ, r, s) =
∑
~s∈~S

P (~s− ŝ | ~σ)u(~s, r, s), (1.12)

The probability of an other-agent profile ~s − ŝ being realized under mixture ~σ can be
expressed as follows:

P (~s− ŝ | ~σ) =

(∏
ρ∈R

(Nρ − I(ρ = r))!∏
s∈Sρ(~s− ŝ)[ρ, s]!

)∏
ρ∈R

∏
s∈Sρ

~σρ[s]
(~s−ŝ)[ρ,s]

 , (1.13)

where s ∈ Sr and I(ρ = r) is an indicator with value 1 when ρ = r and 0 otherwise.
The first term on the right-hand side is a product over multinomial coefficients for each
role and expresses the number of ways the game’s players (less one role-r player) can be
assigned to the strategies of ~s− ŝ. The second term expresses the probability of any one of
these orderings occurring under ~σ. I refer to the first term as the repetitions of the deviation
profile ~s − ŝ, because a similar expression gives the number of times a role-symmetric
profile would be repeated in the full asymmetric payoff matrix for the game.

Note that the expression for the deviation-profile’s repetitions does not depend on
~σ. This means that the repetitions can be pre-computed, and because the repetitions ex-
pression for every deviation from every profile in the support is needed when calculat-
ing the expected utility of any mixture, this pre-computation can yield enormous savings
when running replicator dynamics. The GameAnalysis package applies this insight, along
with clever vectorization of profiles, payoffs, and repetitions to achieve fast computation

8

of expected utilities. The vectorization works via the following arrays with dimensions
|~S| × |R| ×maxr|Sr|:

• self.counts: represents profiles by player counts for each role and strategy

• self.values: represents payoffs u(~s, r, s) for the corresponding profile in self.counts

• self.dev reps: represents repetitions of ~s− ŝ for each strategy s ∈ ~s

This representation allows û(~σ) to be computed in the following two-line Python function
(mix refers to ~σ):

def expectedValues(self, mix):
prob = (mix**self.counts).prod(1,2).reshape(\

self.values.shape[0],1,1)
return (self.values * prob * self.dev reps / mix).sum(0)

This game representation makes the bootstrap methods described in Chapter 3 and the test
suite described in Chapter 5 feasible.

1.4 Simulation-Based Game Theory

Multi-agent interactions of interest may extend over long time periods with repeated in-
teraction between agents and may involve uncertain outcomes, hidden information, and
complex dependencies. In such environments, constructing a normal-form game by enu-
merating all possible strategies and determining payoffs for all possible outcomes can be an
arduous task. Alternative representations such as imperfect-information or extensive form
games and corresponding solution concepts can help to capture certain aspects of these in-
teractions, but still require describing and assigning payoffs to the combinatorial space of
outcomes. When such description is infeasible, the analyst may be forced to simplify the
model, potentially losing key features of the environment.

Simulation-based game theory (SGT)—also known as empirical game-theoretic anal-
ysis2 [Wellman, 2006]—replaces explicit enumeration of outcomes with a procedural de-
scription of the environment and agent strategies. Under this paradigm, the analyst writes
a program, the environment simulator, that captures the salient aspects of the multi-agent
interaction. Agents’ strategies are implemented as functions governing their behavior in

2EGTA can also encompass game models built from data sources other than simulation. The methods
I describe in Chapters 3 and 5 apply to EGTA, while player reduction (Chapter 4) makes sense only in
simulation-based settings where the analyst controls the sampling procedure.

9

the simulated environment, and the agents’ strategic decision is over which function to
employ. The environment simulator takes as input a strategy profile, simulates agents in-
teracting under those strategies, and returns the payoff achieved by each strategy. The
simulator generally involves random elements, so the output of the simulator on input ~s
corresponds to a noisy observation of ~u(~s). Simulation-based game theory replaces the
modeling problem of directly specifying the game with one of specifying environment and
strategy simulators; in many cases, this procedural description can be simpler or easier to
calibrate and verify.

The set of simulated agents, their roles, their strategies, and the simulator program im-
plicitly define a role-symmetric game, but explicitly constructing that game is not feasible
in general. Let the true game be the game model constructed from perfect estimation of the
true mean of the sampling distribution for every payoff. In practice, it may be feasible to
simulate only a subset of the profiles, because the number of profiles in a role-symmetric
game |~S| =

∏
r∈R

(
Nr+|Sr|−1

Nr

)
grows exponentially in the number of roles, as well as the

smaller of players and strategies. Further, it may be feasible to gather only a small number
of noisy samples for each profile, especially in cases where simulations can take hours to
run [Baarslag et al., 2013; Jordan et al., 2007]. If Θ is the set of observations gathered
by simulation, a modeling function M(Θ) is used to convert simulation data into a game
model; Jordan and Wellman [2009] consider the model-selection problem in detail. In the
simplest case Θ contains k samples of every profile and M(Θ) outputs a payoff matrix
with the sample average value for each payoff. In this case, Vorobeychik [2010] proved
that equilibria in M(Θ) converge to equilibria of the true game as k →∞. More generally,
M could estimate payoffs using variance reduction or machine learning, and could poten-
tially output games with fewer players or strategies than the true game, or could use only a
subset of the profiles.

Analyzing large simulation-based games thus faces obstacles due to growth in the num-
bers of players, strategies, and observations. This thesis addresses two of these obstacles:
players and observations. In Section 1.5, I discuss existing techniques for efficiently ex-
ploring the strategy space of simulation-based games. Chapter 3 addresses the question of
how many observations are required by introducing methods based on bootstrapping that
allow for statistical confidence in analysis of simulation-based games. Chapters 4 and 5
deal with large numbers of players through, respectively, a new form of player reduction
and machine learning techniques.

10

any
confirmed?

simulate
subgame
profiles

identify
ε-Nash

equilibria

simulate
deviating
profiles

initial
strategies

outer
loop

inner loop

compute
regrets

Y

N extend
subgames

Figure 1.1: Strategy exploration inner loop, as described in steps 1–5 below.

1.5 Strategy Exploration

Because the number of profiles in a role-symmetric game grows exponentially in the num-
ber of strategies, it is important to avoid simulating all profiles in a game with a large num-
ber of strategies. This is often achieved by an iterative exploration process that searches
for small-support equilibria. Lipton et al. [2003] showed that in two-player games, ε-
equilibria with support size logarithmic in |Sr| always exist. More generally, searching for
small-support equilibria is common practice even in games where the full payoff matrix
can be enumerated; Porter et al. [2008] demonstrated that many classes of games have
equilibria involving only a small number of strategies, and proposed exploiting this fact for
for finding equilibria.

Wellman et al. [2013] described a strategy exploration process consisting of two nested
procedures: an inner loop to find equilibria in a game Γ with a fixed strategy set, and an
outer loop to enlarge the game by expanding the set of strategies. Let a subgame Γ′ of game
Γ be the restriction of Γ to a subset of the strategies for each role: Γ′ = (R, {Nr}, {S ′r}, u),
where S ′r ⊆ Sr, and the utility function is identical, but restricted to profiles in the subgame.
The inner loop starts by performing an initial set of simulations, covering all profiles in a
small subgame Γ0. It then iterates the following steps, illustrated in Figure 1.1.

1. Identify the maximal complete subgames, {Γ1, . . . }. A subgame is complete if sim-
ulations have been performed for every profile, and a complete subgame is maximal

if no subgame with a superset of its strategies would be complete.

11

2. For each maximal complete subgame Γi, identify role-symmetric mixed-strategy ε-
Nash equilibria using replicator dynamics. Let ~σij denote the jth equilibrium found
for subgame Γi. These subgame equilibria are candidate equilibria for the full game
Γ.

3. For each ~σij , each role, and each strategy s ∈ Sr \ Sir, simulate all profiles where one
player uses s, and all other players use strategies in the support of ~σij . This allows
exact evaluation of ε(~σij) in the full game. For a given regret threshold ε, if ε(~σij) < ε,
the candidate ~σij is confirmed, otherwise, it is refuted.

4. For each refuted candidate ~σ ij and each role ρ, extend the subgame with the best
response to candidate ~σ ij . That is simulate the subgame (R, {Nr}, {S ′r}, u), where
S ′r = Sir if r 6= ρ, and S ′ρ = Siρ ∪ BR(~σij, ρ), unless it is subsumed by an existing
complete subgame. If any new profiles are simulated, repeat from Step 1.

5. If there exists at least one confirmed candidate ~σ ij , return. Otherwise, choose a max-
imal subgame Γi, extend it with some strategy s ∈ Sr \ Sir, and repeat from Step 1.

On termination, all equilibrium candidates are confirmed or refuted, and all maximal sub-
game best-responses are themselves in a completed subgame. As long as the operation of
identifying subgame equilibria is complete, the procedure is guaranteed to identify at least
one role-symmetric mixed-strategy ε-Nash equilibrium of Γ.

The outer loop takes as input a game and a confirmed equilibrium from the inner loop,
and attempts to find a new strategy that refutes that equilibrium. Various approaches have
been employed for generating new strategies; the credit network study in Chapter 2 takes
advantage of the parametric structure of the strategy functions and performs local search.
In other applications, reinforcement learning [Schvartzman and Wellman, 2009], and hand-
tuning of strategies have been employed.

1.6 Thesis Overview

The remainder of this thesis covers problems to which I have applied simulation-based
game theory and methods I have developed for SGT. Chapter 2 introduces a credit net-
work formation game, discusses the limits of traditional game-theoretic approaches in this
domain, and describes my simulation-based game model and its results. This work was per-
formed in collaboration with Pranav Dandekar and Ashish Goel [Dandekar et al., 2015].
Chapter 3 addresses getting the most out of sampling data in simulation-based games

12

through bootstrap methods for computing confidence intervals on game-theoretic analy-
ses, and is based on joint work with Ben-Alexander Cassell [Wiedenbeck et al., 2014].
Chapters 4 and 5 both address the problem of analyzing interaction among large numbers
of agents without constructing exponentially-large games. Chapter 4 covers deviation-
preserving reduction [Wiedenbeck and Wellman, 2012], a method for approximating large
games by constructing reduced games with a much smaller number of players. Chapter 5
reformulates the problem in terms of machine learning and uses Gaussian process regres-
sion to construct more flexible and more accurate game models; many of the results in this
chapter are unpublished, but an abstract of the work appeared recently [Wiedenbeck and
Wellman, 2015].

13

CHAPTER 2

Credit Networks

A credit network is a model of trust among agents that engage in transactions not denom-
inated by a central currency. In this model, trust manifests as an agent’s willingness to
perform favors for another without immediate compensation. The interpretation of a favor
is quite broad: it can be any activity, for example completing a task or delivering a prod-
uct, that is costly for the provider and beneficial for the recipient. At a basic level, agents
without a common currency can transact by barter: exchanging favors to immediate mutual
benefit. If agents are willing to accept IOUs for future favors in lieu of direct compensa-
tion, many more transactions become possible. Accepting IOUs benefits agents by creating
liquidity, but also poses risks: that they will perform far more favors than they receive, or
that they will get stuck holding IOUs from another agent who refuses to honor them. To
mitigate these risks, agents must select carefully whom to trust and how many IOUs to
accept from them.

A credit network records these relationships in a weighted directed graph G where
nodes represent agents and trust is quantified as credit balances on the edges between them.
Agents specify initial credit limits, where if agent j is willing to accept 3 units of IOUs
from agent i and 4 from agent k, the edge (j, i) has weight 3 in the initial credit network,
while edge (j, k) has weight 4. This circumstance is represented in Figure 2.1a; subsequent
transactions result in updates to the credit network. The (j, k) edge allows agent k to request
a favor worth up to 4 units; Figure 2.1b shows the result of a transaction where k receives
a favor worth 3 from j. A transaction at price p reduces the recipient’s available credit by
p units, but also results in the provider holding an IOU for p units. Because this IOU can
be redeemed for favors, it can be treated exactly like a credit balance, so the transaction
also increases the credit on the reverse edge by p units. Representing IOUs as credit edges
means that the total credit available between two nodes is unchanged by a transaction; only
the balance of credit shifts.

Embedding trust relationships in a credit network also reveals the potential for remote
transactions. In the credit network depicted in Figure 2.1b, agent i has no direct credit from

14

i j k

3 4

(a) Initial credit network. Agent j trusts both i
and k, but for different amounts.

i j k

3

3

1

(b) Agent k receives a favor worth 3 from agent j.
Agent j now holds IOUs equivalent to 3 units of
credit from agent k.

i j k

2

1 2

2

(c) Agent i receives a favor worth 1 from agent k,
by swapping IOUs with trusted intermediary j.

Figure 2.1: Updating credit to process two simple transactions.

agent k, but they can still transact via the trusted intermediary j. Figure 2.1c shows the
result of a transaction where i requests a favor worth 1 from k. The payment proceeds by i
issuing an IOU to j worth 1 unit, and j returning 1 unit of k’s outstanding IOU. Observe that
the total credit available to the intermediary is unchanged—agent j has merely exchanged
an IOU from i for one from k—and agents only hold IOUs from those to whom they
issued initial credit. These properties hold for any transaction in a credit network. In a
larger network, transactions could be routed along multi-hop paths, or even along multiple
paths. In general, a transaction at price p is feasible if the maximum flow of credit from the
provider to the recipient is at least p, and payment routing is identical to routing residual
flows in a single-commodity flow network.

Some researchers have used credit networks to describe existing environments where
agents engage in transactions that are not denominated in a common currency. Others have
proposed implementing credit networks in various settings as a mechanism to facilitate dis-
tributed transactions on the basis of local trust relationships. The credit network model was
invented independently by (at least) four distinct groups, motivated by somewhat different
issues and applications, but arriving at the same essential elements.

15

• DeFigueiredo and Barr [2005] proposed using credit networks to ensure bounded loss
from coalitions of malicious users in a reputation system for eBay-style auctions.

• Ghosh et al. [2007] aimed to support distributed payment and multi-user credit check-
ing for multi-item auctions conducted without a central currency.

• Mislove et al. [2008] sought to deter spam by imposing a small cost on senders, and
tracked willingness to accept messages using a credit network.

• Karlan et al. [2009] wanted to construct an economic model of trust-based social
interactions such as job recommendations or informal borrowing.

The common underlying structure of these models was first noticed by Dandekar et al.

[2011a], who introduced the unifying term “credit network” and its formal definition. Us-
ing this model, they investigated liquidity under various graph structures, finding that many
decentralized credit networks support transactions nearly as well as a centralized currency.
By introducing suitable definitions of transaction, credit networks apply to a wide variety
of settings. For example, the inventors enumerated above interpret transactions respectively
as obtaining references guaranteeing good behavior [DeFigueiredo and Barr, 2005], paying
for auction winnings [Ghosh et al., 2007], communicating messages [Mislove et al., 2008],
and providing social favors [Karlan et al., 2009]. Subsequent authors proposed using this
framework to support networked asynchronous bilateral trading [Liu et al., 2010], and bar-
tering of tutorial services [Limpens and Gillet, 2011]. Viswanath et al. [2012] argue that
all reputation schemes designed for Sybil tolerance have essentially been versions of the
credit network idea.

This work follows Dandekar et al. [2011a] in studying general properties of the credit
network model. Most prior work assumes the existence of a credit network, sidestepping
the question of how the network originated. If credit networks are to be implemented
in reputation systems or other mechanisms, it will be crucial to understand whether and
how agents issue credit. I explore several questions relating to the credit-issuing decisions
of strategic agents participating in a credit network. Will they extend any credit at all?
What information is important to the agents in making their credit-issuing decisions? What
structure will the credit network graph have?

To answer these questions, I study a credit network formation game in which agents
decide their initial credit allocations strategically taking into consideration their knowledge
about likely transactions and risks. This approach follows a long line of investigation into
strategic network formation that seeks to understand the emergent behavior and properties
of a network when self-interested agents establish connections to one another based on

16

their local information [Jackson and Wolinsky, 1996; Bala and Goyal, 2000; Fabrikant et

al., 2003; Corbo et al., 2006; Anshelevich and Hoefer, 2012]. In Section 2.1, I describe
the general form of the credit network formation game. In Section 2.2 I discuss theoretical
analysis of a some basic instantiations of the general game model, and in Section 2.3 I use
simulation-based game theory to analyze richer variants.

2.1 Credit Network Formation Game

I study the formation of credit networks through a one-shot game where agents choose
initial credit allocations. Extending credit to other agents increases liquidity in the network,
enabling more profitable transactions to go through. However, it also entails risk, since a
counterparty might default on their outstanding obligations. My co-authors and I explored
many variations on the processes generating defaults and transactions, how transactions
produce utility, how agents are allowed to extend credit, and what information agents have.
There are two basic game settings that each have several variations.

The two game settings described below arise from two distinct approaches to simpli-
fying the game model. By studying a one-shot network formation game I have already
abstracted away agents entering and exiting the network dynamically or updating their
credit allocations, all of which would probably occur in a real system. However, several
factors still complicate game-theoretic analysis of this problem. First, credit networks can
involve a large number of agents, and each agent’s strategy space is combinatorial and
multi-dimensional. Strategies are mappings from all the information an agent has about the
environment to all possible credit assignments to the other agents. Second, the expected
value to an agent of a credit assignment is defined in terms of the outcome of a stochastic
transaction sequence, intermixed with adjustments of credit balances that have important
but indirect effects on the probabilities of downstream transactions.

The first approach, taken in Section 2.2, is to impose simplifying assumptions that re-
strict the set of strategies and the types of transactions. Analysis of the restricted game must
then be accompanied by evidence that results could generalize to the unrestricted setting.
The second approach, detailed in Section 2.3, employs simulation-based game theory. SGT
can help to characterize much richer environments, but provides only empirical evidence,
not mathematical proofs, in support of its conclusions. In both of these settings, agents
choose strategies for issuing initial credit to form a credit network. Agents then participate
in a sequence of random transactions over the credit network. The settings differ in how
they model the value of transactions and the risk posed by potential defaulters. In what
follows, I first describe the components shared by both settings, followed by the details

17

Analytical Model Simulation Model

time infinite horizon fixed finite horizon

agents asymmetric ex-ante symmetric

credit fixed budget, neighbors only heuristic strategies

transactions symmetric asymmetric

risk can give credit only to friends random defaults affect utility

utility
transaction success probability net value from transactions
as both provider and receiver minus cost from defaults

Table 2.1: The most salient differences between analytical and simulation-based credit
network formation game models. See Game Settings 1 and 2 for further details.

specific to each model.
The two settings have in common the set of agents [N] = {1, . . . , N}, whose strategies

produce an initial credit allocation for each other agent. These allocations jointly specify
the set of edges E in the initial credit network Ginit = ([N], E). Agent utilities depend on
a sequence of random transactions governed by a transaction distribution Λ = {λij | i, j ∈
[N] ∧ i 6= j}, where

∑
i,j

λij = 1. G0 is derived from Ginit differently across models, but at

each time step t > 0, the following events repeat:

• A recipient, provider pair (rt, pt) is chosen according to a transaction distribution Λ.

• rt attempts to send pt a payment through the previous time step’s credit network
Gt−1.

• If the payment is feasible, then:

– utilities for rt and pt are updated, and

– the credit network Gt is updated to reflect the payment.

• Otherwise, utilities are unchanged and Gt = Gt−1.

In both models, there is also an underlying (unweighted, undirected) social network graph
H , but its role differs across models. Important aspects in which the models differ are
summarized in Table 2.1.

18

Game Setting 1 (Analytical model used in Section 2.2)
Parameters:

• H: the social network graph (unweighted, undirected).

• Xij: transaction size distributions for each pair of agents.

• Λ: transaction rates. For each pair of agents, λij = λji.

• Bi: each agent’s credit budget.

A strategy for agent i assigns a credit limit cij to each neighbor j ∈ N (H, i), subject to
the constraint that

∑
j cij ≤ Bi. At each time step, the transaction size is an indepen-

dent draw from the size distribution Xij for the (i, j) pair drawn from Λ. Transactions
begin from the initial credit network G0 = Ginit, and continue indefinitely. Utility is
the steady-state success probability of all transactions in which an agent participates.

ui = lim
τ→∞

τ∑
t=0

I tr(i) + I tp(i)

τ

where I tr(i) and I tp(i) are indicator functions that have value 1 if agent i participated in
a successful transaction as respectively the recipient or the provider at time t.

The model employed in Section 2.2 is outlined in Game Setting 1. Many aspects of this
model have been chosen for the sake of analytical tractability, and a few of the simplifying
assumptions merit further comment. First, agents face no explicit risk of loss from defaults,
but rather are constrained to issue credit only to neighbors in the social network. Second,
providing a favor is not costly: agents benefit equally from all transactions in which they
participate. The result is that no costs factor into the utility model, so agents reason only
about benefits from transactions. However, under these restrictions strong statements can
be made about all games matching this setting. Settings 1-A and 1-B are special cases of
this model.

Section 2.3 approaches the credit network formation game using simulation-based game
theory. Procedural description of the environment allows for a much richer model of the
costs and benefits from transactions, as well as the cost from agents defaulting. This comes
at the cost of a severe restriction in the strategy space: agents are treated as symmetric and
allowed to choose only among a set of heuristic strategies for issuing credit. The basic
model is outlined in Game Setting 2; several variants on this model are detailed in Sec-
tion 2.3.

19

Game Setting 2 (Simulation-based model used in Section 2.3)
Parameters include a time horizon T , a risk information model, and distributions over
the following:

• H: the social network graph.

• xij: value to agent i of receiving a favor from j.

• Λ: transaction rates.

• δi: each agent’s probability of defaulting.

A strategy consists of a heuristic by which other agents are ranked, a number of agents
k to be given credit, and an amount of credit c to give each. Strategies are chosen
ex-ante, but the heuristics can incorporate realizations of random parameters or noisy
estimates thereof. At time step t = 0, each agent i defaults with probability δi, and for
each agent j ∈ D among the defaulters, other agents lose cij . Agents in D are removed
from Ginit to produce G0, after which T rounds of transactions occur. Each transaction
benefits the the recipient by xij and costs the provider 1. Utility is the sum of costs and
benefits from transactions less the cost from defaults:

ui =
T∑
t=0

(
I tr(i)xipt − I tp(i)

)
−
∑
j∈D

cij,

where I tr(i) and I tp(i) are defined as in Game Setting 1.

2.2 Theoretical Analysis

Game Setting 1 provides the basis for the theoretical analysis. My co-authors first analyzed
Setting 1-A, which imposes the further restriction that agents interact only over direct edges
with their neighbors. This permits them to characterize the steady-state success probability
of transactions between any pair of agents in terms of the total credit issued between them.

My co-authors show that any credit network formation game meeting the conditions
of Game Setting 1-A is a potential game [Monderer and Shapley, 1996]. This implies
that pure-strategy Nash equilibria always exist and that best-response dynamics always
converge to one. They also show that if every transaction size distribution Xij is non-
increasing and has support over [0,∞), then every Nash equilibrium maximizes social
welfare, so the game has price of anarchy 1. Moreover, if every Xij is strictly decreasing,
they can show that all Nash equilibria are mutually cycle-reachable: one credit network
can be transformed into another by routing a payment from an agent to itself along a loop
in the graph. This implies (by way of a proof due to Dandekar et al. [2011a]) that all Nash

20

equilibria support identical sequences of feasible transactions.

Setting 1-A (local transactions)
Game Setting 1, with the additional restriction that all transactions are local with respect
to the social network.

• Transactions occur only between neighbors: λij > 0⇒ (i, j) ∈ H .

• Payments can be routed only over length-1 paths.

These results, while strong, are unsatisfying in that allowing only local transactions
severely restricts the benefit from participating in a credit network. The primary motivation
behind the credit network model is that it facilitates long-distance transactions despite the
locality of trust relationships. I therefore sought to determine whether these results would
extend to the more general setting with long-distance transactions. My first theorem shows
that the price-of-anarchy result depends on transaction locality: in Game Setting 1, the
social welfare of an equilibrium network can be an arbitrarily small fraction of the social
optimum.

Theorem 2.1
The price of anarchy in credit network formation games described by Game Setting 1 is

unbounded.

Proof (by construction). Consider a game with four agents: [N] = {1, 2, 3, 4}. The social
network H is a line graph over nodes in [N] with edges E = {(1, 2), (2, 3), (3, 4)}. For
each node i ∈ [N], Bi = 1. The non-zero transaction rates are given by: λ12 = λ21 =

λ34 = λ43 = λ1 > 0 and λ14 = λ41 = λ2 � λ1. All other transaction rates in Λ are zero.
Agents 1 and 4 each have only one neighbor, to whom it is a dominant strategy to issue

all their credit. Agents 2 and 3 each have positive transaction probabilities with only one
other agent, and in both cases that agent is a neighbor, giving them a dominant strategy of
issuing all credit to that neighbor. Since all agents have dominant strategies, the equilibrium
network G shown in Figure 2.2a has c12 = B1, c21 = B2, c34 = B3, and c43 = B4.
However, this network prevents transactions between agents 1 and 4, which occur with
high probability λ2. The network G∗ shown in Figure 2.2b permits these transactions.

Let pij(G) be the steady-state probability that a transaction between agents i and j

succeeds in G, conditional on agents i and j being selected to transact. The social welfare

21

1 2 3 4

(a) The unique equilibrium network G

1 2 3 4

(b) One of two optimal networks G∗

Figure 2.2: Example of a Setting 1 game with unbounded price of anarchy (Theorem 2.1).
All edges depicted have credit capacity cij = Bi: the issuer’s entire credit budget.

of each network can be expressed as a function of these probabilities:

SW(G∗) = λ1

(
p12(G∗) + p21(G∗)p34(G∗) + p43(G∗)

)
+ λ2

(
p14(G∗) + p41(G∗)

)
SW(G) = λ1

(
p12(G) + p21(G) + p34(G) + p43(G)

)
As long as X14 places non-zero probability on some transaction size x ≤ min(B1 +

B2, B3, B4), there exists a non-zero lower bound 0 < p̄ on the conditional success probabil-
ities between agents 1 and 4 in G∗: p̄ ≤ p14(G∗), and p̄ ≤ p41(G∗). On the other hand, with
finite budgets and positive transaction sizes, there must be an upper bound p̃ < 1 on the
conditional success probabilities for all pairs that transact in G: p̃ ≥ p12(G), p̃ ≥ p21(G),
p̃ ≥ p34(G), and p̃ ≥ p43(G). These bounds yield an upper bound for SW(G) and a lower
bound for SW(G∗) in terms of λ1 and λ2:

SW(G) ≤ 4λ1p̃

SW(G∗) ≥ 2λ2p̄

Scaling λ1 and λ2 can then make the social welfare from transactions among pairs 1/2 and
3/4 an arbitrarily small fraction of the social welfare from 1/4 transactions. In the limit as
λ1 → 0, the ratio SW(G∗)/SW(G) =∞.

Setting 1-B (unit transactions)
Game Setting 1 with the additional restrictions that all transactions are size-1 and all
agents have 1-unit budgets.

• Xij is a degenerate distribution with support {1}.

• Bi = 1

My second theorem calls into question the generalizability of the other major result
from Game Setting 1-A. With local transactions, a pure-strategy Nash equilibrium always

22

1 2 3 4 5 6

(a) Credit edges fixed by dominant strategies. Agents 1 and 6 have only one neighbor, while agents
3 and 5 have non-zero transaction probability with only one other agent.

1 2 3 4 5 6
a

b

c

d

(b) The transaction rates in Theorem 2.2 cause a best-response cycle where agent 2 switches between
edges a and b while agent 4 switches between edges c and d.

Figure 2.3: Example of a Setting 1-B game that has no pure-strategy Nash equilibrium.

exists. In Theorem 2.2, I give an example of a credit network formation game with no pure-
strategy equilibria. This theorem uses a slightly different restriction to Game Setting 1
outlined in Setting 1-B. Here, all transactions transfer one unit of credit, and all agents
have credit budgets of one unit. This counterexample is somewhat weaker than that of
Theorem 2.1 in the sense that it relies strongly on the discreteness of Setting 1-B.

Theorem 2.2
There exist credit network formation games described by Game Setting 1-B that have no

pure-strategy Nash equilibria.

Proof (by construction). Consider a game with six agents: [N] = {1, 2, 3, 4, 5, 6}. The
social network H is a line graph over nodes in [N] with edges E = {(1, 2), (2, 3), (3, 4),
(4, 5), (5, 6)}. The non-zero transaction rates are given by: λ12 = λ21 = λ34 = λ43 =

λ56 = λ65 = 0.001, λ14 = λ41 = λ26 = λ62 = 0.2435, λ46 = λ64 = 0.01. All other entries
in the transaction rate matrix Λ are zero.

The edges depicted in Figure 2.3a are the strictly dominant strategies for agents 1, 3,
5, and 6. Agents 5 and 6 have only one neighbor, with whom they transact, and to whom
they issue their full budgets. Agents 3 and 5 each have exactly one other agent with whom
they transact, both of whom are neighbors and therefore receive the entire credit budget.
On the other hand, agents 2 and 4 do not have dominant strategies. In Figure 2.3b, agent
2 selects between edges a and b, while agent 4 selects between edges c and d. Because Λ

is symmetric and transactions have unit size, steady-state transaction success probabilities
are easy to calculate:

u(
〈
a, c
〉
, 2) = 2p12λ12 = 2 · 2

3
· .0001 = 1.3̄× 10−4

23

u(
〈
a, c
〉
, 4) = 2p34λ34 = 2 · 2

3
· .0001 = 1.3̄× 10−4

u(
〈
a, d
〉
, 2) = 2p12λ12 = 2 · 2

3
· .0001 = 1.3̄× 10−4

u(
〈
a, d
〉
, 4) = 2p34λ34 + 2p46λ46 = 2 · 1

2
· .0001 + 2 ·

(
1

2
· 2

3

)
· .001 = 7.6̄× 10−4

u(
〈
b, c
〉
, 2) = 2p12λ12 = 2 · 1

2
· .0001 = 1× 10−4

u(
〈
b, c
〉
, 4) = 2p14λ14 + 2p34λ34 = 2 ·

((
1

2

)2

· 2

3

)
· .2345 + 2 · 2

3
· .0001 = 7.83× 10−2

u(
〈
b, d
〉
, 2) = 2p12λ12 + 2p26λ26

= 2 · 1

2
· .0001 + 2 ·

((
1

2

)2

·
(

2

3

)2
)
· .2345 = 5.221̄× 10−2

u(
〈
b, d
〉
, 4) = 2p14λ14 + 2p34λ34 + 2p46λ46

= 2 ·
((

1

2

)3
)
· .2345 + 2 · 1

2
· .0001 + 2 ·

(
1

2
∗ 2

3

)
· .001 = 5.93916̄× 10−2

Thus, agents 2 and 4 play the following 2 × 2 game, which has a best-response cycle and
no pure-strategy Nash equilibrium.

c d

a 1.3̄× 10−4, 1.3̄× 10−4 1.3̄× 10−4, 7.6̄× 10−4

b 1× 10−4, 7.83× 10−2 5.221̄× 10−2, 5.93916̄× 10−2

Together, Theorems 2.1 and 2.2 call into question the generalizability of results proved
in Setting 1-A. This motivates the use of simulation-based game theory to better understand
more realistic models of credit network formation. Inspired by the presence of star-like
equilibrium networks in some of the SGT settings described in Section 2.3, my co-authors
went on to investigate another analytical model that explicitly included default probabili-
ties. In that setting, they faced some of the same difficulties stating general results about all
equilibria, but showed that star-like networks can be socially optimal and can result from a
form of sequential arrival greedy dynamics.

24

2.3 Simulation-Based Game Analysis

More relaxed scenarios, such as those with asymmetric transactions, unconstrained bud-
gets, multiple credit issuance, explicit risk of defaults, or incomplete information have thus
far proven elusive for analytic treatments. I therefore employ simulation-based game the-
ory to explore environments that relax the conditions for which theorems can be proved.
Simulation handily deals with the complex stochastic and dynamic factors bearing on the
evaluation of credit-issuing strategies; its key advantage lies in estimating utilities for com-
plex transaction models by tracking the state of the credit network through a sequence of
random transactions. However, SGT requires complete enumeration of the strategy set
and explicit instantiation of environment parameters such as the number of agents or the
social network structure. Despite these inherent limitations, a systematic exploration of
reasonable parameter ranges and well-motivated heuristics can provide useful and general
insights.

2.3.1 Simulation Setup

Game Setting 2 above forms the basis for my simulated environment. In contrast to Game
Setting 1, the simulations treat agents as ex-ante symmetric decision makers who choose
a credit-issuing strategy before knowing the realization of random parameters of the sim-
ulator. However, the strategies can depend on those realizations. For example, agents can
commit to giving credit to the agent with the lowest default probability before they know
who that agent will be. In combination with the restriction of the strategy space to the
heuristics described below, this helps to prevent agents from over-fitting their strategies to
the peculiarities of the environment as was possible in Theorem 2.2. Because the payoffs
to each profile are determined by repeated simulations, and environment parameters are
drawn independently for each run, strategies must be robust to the distribution of environ-
ment parameters and opponent strategies. Further, the generality of the available heuristics
precludes precise best responses to specific parameter values or opponent credit alloca-
tions. For example, agents giving credit to the least-likely defaulter do not have the option
to withhold credit if they have the lowest default probability themselves.

I analyze twelve environments, differing on risk model, default prevalence, and trans-
action surplus. Each simulation run evaluates a profile of heuristic strategies for issuing
credit. All agents apply their assigned strategies to issue credit based on their available
information, forming an initial credit network. The simulation processes probabilistic de-
faults and a stochastic sequence of transactions to generate sample payoffs for the strategy
profile. Strategies are selected from a suite of heuristics, which implement a variety of

25

criteria for issuing credit, parametrized by how many agents to issue credit and how much.
The choice of profiles to simulate was driven by the inner loop (identifying equilibria) and
outer loop (generating strategies) described in Chapter 1. This produced simulation-based
game models for each of the twelve environments.

The Setting 2 box below provides details for some of the environment parameters. I
use a population of 61 agents, and each run of the scenario comprises 10,000 transaction
request events. The transaction rate λij for each pair of agents i 6= j is drawn from a Pareto
distribution with shape parameter α = 2 and then normalized. All transaction requests
from i the recipient to j the provider are for a single unit. The value to i of a receiving
a favor from j is drawn uniformly, xij ∼ U [1, x̄], with x̄ set to either 1.2 (low value) or
2 (high value). The provider incurs a constant cost of 1 from each successful transaction,
but can potentially benefit from the accrued credit in subsequent transactions as a recipient.
The recipient’s payment covers the provider’s cost by transferring one unit of credit, so the
average surplus per transaction is either 0.1 or 0.5.

Default probabilities δi for each agent are drawn from a Beta distribution: β(1, 9) (av-
erage default probability 1

10
) in the low default setting, β(1, 2) (average 1

3
) in the medium

default setting, and β(1, 1) (average 1
2
) in the high default setting. I consider two mod-

els of information about default probabilities: global risk and graded risk. In the global
risk environment every agent’s default probability is common knowledge, whereas in the
graded risk environment each agent gets sample data from the default distribution of others.
The number of samples ∂ij is determined by the social network distance between i and j:
∂ij = 100 if i and j are neighbors, ∂ij = 10 if they are linked through one other node,
∂ij = 1 if they have a shortest-path of length three, and ∂ij = 0 otherwise. The social
network itself is an Erdös-Rényi random graph where each possible edge is present with
probability p = .05, giving each agent an average degree of 3.

I explored environments with high, medium, or low default, and high or low value, for
each of global and graded risk. The twelve environments are listed in Table 2.2, along with
the number of profiles and strategies I ended up simulating, in both the full and reduced
games. Three-letter environment names are coded by risk model (C[omplete information]
for global risk, I[ncomplete] for graded risk), default probability (L[ow]/M[edium]/H[igh]),
and recipient value (L[ow]/H[igh]). These numbers of profiles and strategies are broken
down by two stages (I and II) of search, as described below.

A heuristic strategy is defined by three parameters: (i) a criterion for ranking the other
agents, (ii) the number k of agents to issue credit (the best k according to the ranking
criterion), and (iii) the number of units c of credit to issue to each of these chosen agents.
The criteria included in heuristics along with the (k, c) values considered in this study are

26

Setting 2 (parameter values)
This setting elaborates Game Setting 2 in Section 2.1, by enumerating the simulation
parameters used. The following parameters could in principle be varied in the credit
network simulator, but were fixed across all of my experiments:

• N = 61

• T = 10 000

• H = G(n = 61, p = .05): an Erdös-Rényi random graph with average degree 3.

• λij are drawn from Pareto(α = 2), then normalized so that ||Λ||1 = 1.

The following parameters were varied across experiments:

• xij ∼ U [1, x̄], where x̄ ∈ {1.2, 2}.

• δi ∼ β(1, b), where b ∈ {1, 2, 9}.

• The risk information model is either global or graded.

enumerated below, defined from the perspective of agent i’s evaluation of credit prospect
j:

• Default probability: lowest known default probability (δj) for global risk, or lowest
estimated default probability based on samples ∂ij for graded risk.

• Request rate: highest probability that i will request a favor from j (λij).

• Provision rate: highest probability that j will request a favor from i (λji).

• Request value: highest expected value of requested favors per time step (λijxij).

• Net profit: highest difference between the expected value to i of favors i requests
from j and those j requests from i (λijxij − λji).

• Index: lowest node number (arbitrary global labeling).

• Random: uniform choice.

In addition, I included the no-credit strategy, Zero, which issues no credit to anyone. Re-
quest rate, Request value, and Net profit are all variations on the idea that agents should
give credit to the agents they want to transact with. Extending credit does not immediately
make transactions with such agents feasible, but any payment routed through that edge will

27

name	
 Risk	

model	

Default	

prob	

buyer	

surplus	

Full-­‐game	

profiles	
 (I/II)	

DPR	
 profiles	

(I/II)	

Strategies	

(I/II)	

CLL	
 Global	
 low	
 low	
 4619	
 11695	
 1497	
 3946	
 17	
 32	

CLH	
 Global	
 low	
 high	
 2179	
 9861	
 765	
 3359	
 17	
 32	

CML	
 Global	
 med	
 low	
 3557	
 9425	
 1036	
 3213	
 8	
 32	

CMH	
 Global	
 med	
 high	
 8619	
 20192	
 2622	
 6474	
 15	
 32	

CHL	
 Global	
 high	
 low	
 3134	
 5901	
 1045	
 2090	
 17	
 32	

CHH	
 Global	
 high	
 high	
 3202	
 6155	
 1101	
 2196	
 17	
 32	

ILL	
 Graded	
 low	
 low	
 991	
 9322	
 394	
 3148	
 17	
 32	

ILH	
 Graded	
 low	
 high	
 5377	
 28721	
 1824	
 8786	
 17	
 32	

IML	
 Graded	
 med	
 low	
 1766	
 8927	
 565	
 3109	
 8	
 32	

IMH	
 Graded	
 med	
 high	
 24612	
 39728	
 6818	
 11356	
 18	
 32	

IHL	
 Graded	
 high	
 low	
 656	
 5080	
 261	
 1881	
 17	
 32	

IHH	
 Graded	
 high	
 high	
 430	
 10529	
 201	
 3516	
 17	
 32	

Table 2.2: Exploration performed by the iterative SGT process under various environment
settings. Strategies gives the number of strategies added by the outer loop. Full-game
profiles gives the number of 61-agent profiles sampled by the inner loop. DPR profiles
gives the number of 6-player profiles in the reduced-game model.

reverse it, enabling profitable transactions. Provision rate takes the opposite approach,
extending credit to the agent most likely to reverse the edge, in the hope of routing transac-
tions through that agent later. The Random strategy is present mostly as a sanity check: its
appearance in an equilibrium would cast doubt on the validity of the corresponding setting.

Observe that the Default strategies behave qualitatively differently in the global and
graded risk environments. Under global risk, all agents have the same information about
default probabilities. Therefore, when multiple agents issue credit to the least-likely de-
faulters, they are all creating edges to the same target agents. This leads to a centralized or
star-like credit network, as illustrated in Figure 2.4. Such coordination on credit targets has
potential advantages. If everyone including i offers credit to j, then once i provides a favor
(to j directly to or another agent routing payment through j), i enjoys credit paths to essen-
tially everyone in the network. This coordination does not result, in contrast, from mutual
application of Default in the graded risk model. Under graded risk, agents have different
information based on their positions in the social network. The counterparts judged to have
lowest default probably are invariably those with whom the agent has had most positive
experience. Since there is little experience of any kind with social strangers, these are un-
likely to be judged most trustworthy (this happens only if one is unlucky enough to have

28

then issues 5 units of credit to those among the remaining agents with whom the creditor is
most likely to transact (Pr(bt = u, st = v | e(t) = c) > 0.0004, or at least four transactions
expected).

• High EV and Low Default The EV⇥LD strategy eliminates the same high-default-risk agents
from consideration, but then uses the method as High EV to select which of the remaining
agents to issue 5 units of credit. This strategy sets its threshold lower than High EV, at
E[Uu,v] > 0.

The third experiment involved just four strategies: Zero, Random, Low Default, and EV⇤LD:

• High EV or Low Default The EV⇤LD strategy offers 5 units of credit to agents with
especially low default probability (Pr(dt = u | e(t) = d) < 0.002, or at most 4% cumulative
default probability over 10,000 rounds) and also to agents with especially high expected net
transaction value (E[Uu,v] > 4).

Note that all agents which issue credit do so in amounts of exactly 5 units, and that the various
threshold parameters of those strategies (excluding Random) were calibrated so that on average each
agent would issue credit to 5–7 others. I intend to loosen these restrictions in future experiments.

2.3 Results
In the first five-strategy experiment, replicator dynamics converged (from any initial mixture) to a
pure strategy Nash equilibrium in which all players chose Low Default. When all players adopt this
strategy, all agents extend credit to the same small group of highly trustworthy agents (usually 5–7
of them). The resulting network, pictured in Figure 2, bears some resemblance to the centralized
currency credit network described by Dandekar et al. [2011], in that agents give a large amount of
credit to the central subgraph, and transactions can occur only using the currency of one of those
central agents. This equilibrium is somewhat surprising in that many potential transactions could be
lost, because initially agents are unable to transact with most other nodes, and it is only once they
have gained credit from one of the central nodes that they can make any purchases.

Figure 2: Stylized equilibrium network: all agents follow the Low Default strategy.

6

Figure 2.4: A star-like credit network similar to one that would arise from the mutual
application of default-based strategies in the global risk model.

only very untrustworthy friends). As shown in Figure 2.5b, under graded risk over 65% of
the top five estimated least likely defaulters are neighbors in the social network. Finally,
note that the Index strategies do coordinate on a star-like network, in either the global or
graded risk model. Comparing Default and Index strategies allows separation of the pure
benefits of coordination from the benefits of avoiding defaulters.

Due to the combinatorial growth of a game’s profile space, operating on the 61-agent
game directly is infeasible. I therefore employed a 6-player deviation-preserving reduction
game (Chapter 4) in the following analyses. Figure 2.6 illustrates the application of DPR
to construct a 6-player reduced game from a 61-agent full game. The analysis proceeded in
two stages. Stage I considered a fixed set of 17 strategies, and ran the inner loop on eight of
the twelve environments: those with high or low (not medium) default probabilities. The
17 predefined strategies were selected based on exploration in a preliminary study, and are
enumerated in Table 2.3.

Criterion Predefined (k, c) Automatically Generated (k, c)
Default (1, 1), (2, 2), (3, 2), (5, 2) (3, 1), (4, 1), (5, 1), (6, 1), (8, 1), (9, 1)
Request rate (1, 1), (1, 2), (2, 2) (2, 1), (4, 1), (8, 1), (10, 1)
Provision rate (2, 2) (6, 1)
Request value (2, 2), (5, 2) (2, 1), (3, 1)
Net profit (2, 2), (6, 2), (8, 1) (3, 2), (5, 1)
Index (1, 1), (2, 2)
Random (2, 2)
Zero (0, 0)

Table 2.3: Strategies included in the SGT study: predefined for Stage I, and automatically
generated in the outer loop for Stage II.

29

1 2 3 4 5 ≥ 6

social network distance

.0

.1

.2

.3

.4

.5

fr
ac

ti
on

of
ag

en
t

pa
ir

s

(a) Distance inH between all pairs of agents.
mean ≈ 2.7.

1 2 3 4 5 ≥ 6

social network distance

.0

.1

.2

.3

.4

.5

.6

.7

fr
ac

ti
on

cr
ed

it
ed

ge
s

High δ

Low δ

(b) Distance in H to agents selected by the
Default heuristic with k = 5. mean ≈ 1.6.

Figure 2.5: Under graded risk, social network neighbors are much more likely than average
to be estimated as among the five least likely defaulters.

For the four medium default environments, I started with a smaller set of eight prede-
fined strategies (the first listed for each criterion), and employed the automated strategy
generation procedure (the outer loop) to extend the set. On each iteration, the outer loop
searched for refutations of an equilibrium ~σ confirmed for the existing strategy set, employ-
ing local search from a particular existing strategy. The search algorithm simply hill-climbs
from the existing strategy, holding its credit criterion fixed but incrementing or decrement-
ing its k and c parameters by 1. The search halted upon reaching a local maximum in
payoff, assuming all other nodes in the network play according to ~σ. If that local maximum
exceeds the equilibrium payoff, the new strategy is added to the set and another round of
the inner loop is initiated. If instead the strategy categories (in this case, defined by credit
criterion) are tried without finding a beneficial deviation, the entire process concludes.

As indicated in Table 2.2, the CML and IML environments found no new strategies,
whereas the CMH environment added seven strategies to the original eight, and IMH added
ten. Together, there were 15 automatically generated strategies not included among the
17 predefined Stage I strategies. These are listed in the final column of Table 2.3. For
Stage II, I constructed the combined set of 32 strategies, and ran the SGT inner loop for
each environment with this set.

With 17 strategies, there are 1.4 × 1016 distinct strategy profiles for the full 61-player
game, and 74,613 for the six-player DPR game. These numbers grow to 3.0 × 1024 (61-
player) and 2,324,784 (six-player DPR) for the Stage II set of 32 strategies. As indicated
in Table 2.2, the SGT process evaluated only a very small fraction of these profiles at
each stage. Nevertheless it was able to identify equilibria in each environment. Altogether

30

Figure 2.6: Deviation-preserving reduction as applied to the credit network formation
game. Each of six reduced-game players views itself as controlling one of 61 full-game
agents while each opponent controls an equal fraction (12) of the remainder. The payoff
to s1 in the reduced-game profile comes from the full-game profile depicted in (a); s2 from
(b); s3 from (c). See Chapter 4 for an in-depth treatment of DPR.

165,536 full-game profiles were evaluated across the twelve credit network environments,
from which payoffs for 53,074 DPR profiles were estimated. Each full-game profile eval-
uated was simulated at least 1,000 and usually upwards of 2,000 times. The simulations
were performed on the University of Michigan Advanced Research Computing cluster,
using an experiment management facility designed expressly for simulation-based game
studies [Cassell and Wellman, 2013].

2.3.2 Results

The process described in Section 2.3.1 successfully derived equilibria for each of the twelve
credit network games. Specifically, between one and six symmetric mixed-strategy Nash
equilibria were identified in the six-player DPR games corresponding to each environment.
All candidate subgame equilibria were either confirmed or refuted by the process, and the
subgames covering best responses to all candidates were completed.

The strategies based on Provision rate, Index, and Random heuristics are not sup-
ported in any equilibria. To characterize the equilibria qualitatively, I partition the remain-
ing strategies as follows. Class D represents Default, Z represents Zero, and T groups
together strategies based on criteria related to transaction probability and value: Request
rate, Request value, and Net profit. The symmetric mixed-strategy Nash equilibria iden-
tified are summarized in Figure 2.7. In the figure, there is one cell for each environment,
displaying class labels for strategies supported in some equilibrium. A class letter circled
means that a strategy in that class was confirmed as a pure strategy Nash equilibrium. In-
terestingly, whereas many of the equilibria found were mixed, and several environments
had equilibria in multiple classes, in no case did a single equilibrium mix across the class
partitions defined above.

Figure 2.7 shows a no-credit equilibrium (Z) in eight of the twelve environments: all

31

avg.	
 default	
 probability	

av
g.
	
 b
uy
er
	
 su

rp
lu
s	

1/3	
 1/2	

0.1	

0.5	

graded	
 risk	
 model	

(incomplete	
 info)	

Z	

Z	

T	

Z	

T	

avg.	
 default	
 probability	

av
g.
	
 b
uy
er
	
 su

rp
lu
s	

1/3	
 1/2	

0.1	

0.5	

global	
 risk	
 model	

(complete	
 info)	

Z	
 D	

Z	
 D	

Z	
 D	

D	

1/10	

Z	
 D	

T	

D	

T	

1/10	

T	

Z	

T	

Figure 2.7: Equilibria found for the twelve credit network environments. Letters denote
the strategy classes represented in equilibrium, with circled letters indicating pure-strategy
equilibria.

but those with low or medium default and high recipient value. The two least favorable
environments—graded risk with high or medium default and low value—have only this
equilibrium, whereas all the others have some equilibrium where credit is provided. All of
the global risk environments have an equilibrium where everybody plays Default, but this
strategy does not appear in equilibrium for any graded risk environments. Indeed, there
is a one-to-one correspondence between the equilibria for the two risk classes, except that
the graded risk environments omit these Default equilibria, and when recipient value is
high, these are replaced by transaction-based equilibria. The weakened information about
defaults plus the lack of coordinating power render this a poor credit-issuing criterion in
graded risk environments.

For completeness, I list all confirmed equilibria. Strategies are specified by their heuris-
tic, number of opponents given credit k, and amount of credit given to each c, in the format
Heuristic(k, c). Groups in brackets with probabilities represent mixed-strategy equilibria,
and ungrouped strategies indicate pure-strategy equilibria.

CLL Default(1,1); Default(3,1); Default(4,1); Zero; [Request rate(2,1), 0.899; Re-
quest value(3,1), 0.101]; [Request value(2,1), 0.806; Request value(3,1), 0.194]

CLH Default(3,2); Net profit(5,1); [Default(6,1), 0.951; Default(8,1), 0.049]; [Default(5,1),

32

Figure 2.8: Welfare at empirical social optimum compared to welfare at equilibrium.

0.744; Default(8,1), 0.256]

CML Default(1,1); Default(3,1); Zero

CMH Default(2,2); [Default(2,2), 0.014; Default(6,1), 0.986]; [Default(3,2), 0.880; De-
fault(4,1), 0.120]; [Default(5,1), 0.821; Default(6,1), 0.179]

CHL Default(1,1); Default(3,1); Zero

CHH Default(2,2); Zero; [Default(3,2), 0.081; Default(4,1), 0.919]

ILL Zero; [Request value(2,1), 0.637; Request value(3,1), 0.363]

ILH [Request rate(4,1), 0.229; Net profit(5,1), 0.771]

IML Zero

IMH [Request rate(4,1),0.172; Net profit(5,1),0.785; Request value(3,1),0.042]

IHL Zero

IHH Request rate(4,1); Zero

Whereas the set of equilibria evolved as the simulation-based game was refined from Stage I
to Stage II, the qualitative categories of strategy profiles represented in equilibrium (as
depicted in Figure 2.7, ignoring the circle designations) remained constant.

I next turn to the question: How well do the credit networks generated in equilibrium
perform? Figure 2.8 compares the welfare (sum of agent utility) of equilibrium outcomes
to that of an estimated social optimum. This estimate is actually a lower bound, equal to the
greatest social welfare seen in any full-game profile simulated. Equilibrium welfare varies
across equilibria, hence I present the best and worst of those identified, corresponding

33

Figure 2.9: Total credit issued at empirical social optimum compared to equilibrium.

roughly to price of stability and price of anarchy respectively. These values are approxima-
tions because both player reduction and strategy exploration result in unexplored profiles
that could have higher social welfare. In addition, because not all equilibria may be found,
ones with either better or worse social welfare may exist with the exception that social
welfare cannot go below that of a Zero equilibrium. In eight of twelve environments, the
worst is the Zero equilibrium, which supports no transactions and thus yields zero welfare.
Overall, when there is a substantial amount of welfare possible (i.e., the most favorable
environments), equilibrium network formation does a good job of obtaining most of it. For
less favorable environments, a network—if it forms at all—tends to produce little utility.

It is also possible to also observe directly the amount of credit issued in equilibrium net-
works, as compared to the social optimum—which is not necessarily the credit-maximizing
network. As seen in Figure 2.9, the comparison mirrors that for welfare, but with lower ra-
tios of equilibrium to social optimum across the board. This is due to the diminishing
returns to credit, once the network has ample credit capacity. In other words, a substantial
fraction of available social welfare can be achieved without issuing this same fraction of
the credit that a social planner would.

All of these results are of course relative to the particular strategy space included in the
simulation-based game analysis. The choice was driven by an effort to span a diverse space,
and to include strategies successful in preliminary studies or otherwise representing plau-
sible prospects for refuting initial equilibrium candidates. The fact that adding strategies
in Stage II based on automated exploration of parametric variations on the original strate-
gies did not change the qualitative character of equilibria lends support to the robustness of
these results.

34

2.4 Conclusions

In the simplest model of credit network formation, my co-authors proved strong results
about existence equilibria and price of anarchy. Unfortunately, my counterexamples sug-
gest that these results do not generalize to models that more closely match plausible ap-
plications of credit networks. Simulation-based game theory provided useful insight into
a more interesting setting, characterizing the conditions needed for non-empty equilibrium
networks, giving a sense of the heuristics that can plausibly be used for issuing credit, and
demonstrating that equilibrium credit networks can often achieve most of feasible gains
from trade. A particularly striking result is the importance of information about default
risk: when agents shared good information about who is trustworthy, a central currency
equilibrium was always feasible, but without such knowledge, a central currency never
arose.

Analyzing rich strategic environments like the credit network formation game via pencil-
and-paper or simulation-based game theory requires careful modeling decisions, trading off
tractability with fidelity. The credit network domain demonstrates the potential for the two
approaches to complement and build off of one another. Further, both approaches face con-
cerns of generalizability that motivate my work to improve methods for simulation-based
game theory, through statistical methods, player reduction, and machine learning.

35

CHAPTER 3

Bootstrap Methods for Statistical Confidence

By nature, the agent-based simulations on which SGT is founded produce noisy observa-
tions, requiring that many samples be gathered to accurately estimate agent payoffs. The
credit network formation study presented in Chapter 2 is typical in that every profile se-
lected for simulation was observed thousands of times. Simulation-based game analysis
is therefore fundamentally statistical: as samples are added, payoff estimates may change,
altering the game model and conclusions drawn from it. Ideally, practitioners would re-
port statistical confidence intervals for their analysis results. For example, approximate
Nash equilibria would be accompanied by a bound ε where the profile is estimated to be an
ε-Nash equilibrium with 95% probability.

Unfortunately, statistical methods for simulation-based game theory are underdevel-
oped, and the few tools that exist are rarely applied. As a consequence, published results
rarely reflect the underlying uncertainty of simulation-based game models. The general
dearth of statistical analysis in simulation-based game theory is somewhat understandable
in light of the difficulty of evaluating complex game-solution hypotheses in a traditional
statistical framework. Simulation is necessary precisely because little is known about pay-
off distributions a priori, rendering parametric approaches that rely on such knowledge
inapplicable. Moreover, the regret of a mixed-strategy equilibrium candidate is a compli-
cated statistic that requires calculating the maximum gain over possible deviations, each of
which sums over a large number of these unknown, possibly correlated distributions.

In the absence of good statistical tools, many analysts have gathered an extremely large
number of samples before performing analysis (as I do in Chapter 2; see also Wah and
Wellman [2015] and Wellman et al. [2008]). In such cases, it likely that integrating better
statistical methods could have saved substantial sampling effort or allowed that effort to be
spent more effectively exploring additional strategies or alternative environment settings.
In other cases, where individual simulations are much more costly, gathering thousands
of samples of every profile is infeasible. Researchers including Jordan et al. [2007] and
Veness et al. [2011] have employed variance reduction techniques to get the most out of

36

limited data, but without confidence measures, such studies run the risk of gathering insuf-
ficient samples to draw empirically valid conclusions. In either case, methods to quantify
statistical confidence are important for ensuring that published results reflect fundamental
properties of the games studied and that simulation-based game analysis can be taken as
serious scientific evidence for propositions of interest.

Because the most common analysis performed on simulation-based games is comput-
ing approximate Nash equilibria, ensuring that reported simulation-based game equilibria
reflect equilibria of the true game is paramount. Vorobeychik [2010] proved that in the
infinite-sample limit, simulation-based game and true-game equilibria are identical. How-
ever, after any finite number of samples, noise present in simulation data may cause spu-
rious equilibria to appear in the simulation-based game that have high true-game regret.
Thus, when reporting an ε-Nash equilibrium of a simulation-based game, analysts would
benefit from the ability to report a 95% or other confidence bound for ε in the true game.
Regret (Equation 1.7) is computed as a maximum over utility differences, and those ex-
pected utilities are linear combinations of a large number of payoffs, each of which is
estimated by sampling from an unknown distribution. In addition, payoff observations may
not be drawn independently due to simultaneous sampling of all payoffs for a profile or by
use of common random numbers across profiles. The non-linearity of the regret statistic,
and the unknown, possibly correlated underlying payoff distributions pose significant chal-
lenges to analytic approaches to confidence interval construction. My approach is based
on bootstrapping—reviewed in Section 3.1—which leverages the the full observation set
to characterize distributions over game-theoretic conclusions. The key idea is to simulta-
neously resample all payoffs in a simulation-based game to construct a bootstrap game,
compute regret (or another statistic) in the bootstrap game, and repeat to create a bootstrap
distribution.

3.1 Background

3.1.1 Bootstrap Statistics

The bootstrap is a computational method for estimating distributional information about
a statistic computed on sample data [Davison and Hinkley, 1997]. Evaluating statistical
hypotheses and computing confidence intervals often relies on knowledge of a statistic’s
sampling distribution, the distribution of values the statistic takes when computed on sets
of k samples samples drawn from the population. For certain population distributions (e.g.

Gaussian) and certain statistics (e.g. sample mean) a closed form for the sampling distri-

37

bution is available, but for unknown distributions and complicated statistics, classical tests
that require such a closed form may be inapplicable. The bootstrap, in contrast, does not
rest on explicit assumptions about the shape of the distribution. Instead, it uses resampling
to estimate the sampling distribution empirically.

The bootstrap treats a sample set as representative of the population from which it
was drawn for the purpose of computing distributional statistics. The sample set can then
be treated as a population and resampled. If the original sample has size k, then each
resample is a set of size k drawn with replacement from that sample. Under the assumption
that the sample set is representative of the original population, each resample emulates
drawing k samples from the population. The statistic is computed on each resample set,
and collectively these values constitute a bootstrap distribution, which approximates an
empirical sampling distribution for the statistic, but without the work of drawing many new
sample sets. The bootstrap distribution can then be used in place of a sampling distribution
for constructing confidence intervals or performing other tests.

3.1.2 Related Work

Two lines of related research bear mentioning: the use of bootstrapping in other simulation-
based studies, and other proposed statistical methods for simulation-based game theory.
In the agent-based modeling community, bootstrap statistics have seen limited use, one
exampling being the suggestion by Axtell et al. [1996] that a bootstrap approach may be
necessary for determining if two agent-based models are equivalent, due to the complicated
nature of such a hypothesis. By contrast, discrete-event systems modeling has seen greater
adoption of the bootstrap to analyze the output of simulation [Friedman and Friedman,
1995]. More broadly, Cohen [1995] advocates the adoption of bootstrapping in artificial
intelligence experiments.

Two non-bootstrapping methods for estimating true game regret from payoff sample
data have been proposed in the literature. Reeves [2005] suggested estimating the proba-
bility that a profile is an exact Nash equilibrium by sampling game matrices from the space
of possible matrices induced by assuming every payoff is independent and distributed nor-
mally with mean and variance equal to its sample mean and sample variance respectively.
The approach could be straightforwardly extended to give confidence intervals for mix-
tures. This method would be similar to the bootstrap-based methods I describe in Sec-
tion 3.2 in that it constructs an empirical distribution of regret values, but differs in two
important aspects. First, Reeves’s empirical distribution does not emulate a sampling dis-
tribution for k-sample regret, but rather for 1-sample regret. My experiments confirm that

38

regret estimates for candidate equilibria shrink as the number of samples grows, indicating
that single-sample regret is likely to significantly overestimate true regret. Second, Reeves
assumes Gaussian noise rather than taking advantage of the sample data.

Vorobeychik [2010] presented a Bayesian framework for bounding the posterior proba-
bility that a profile or mixture is an ε-Nash equilibrium of the true game from payoff sample
data. He provides two versions of this bound: a tight bound that assumes payoff observa-
tions are independent draws with Gaussian noise, and a weaker distribution-free bound.
The first method may provide a useful guide for sampling decisions, but may not accu-
rately quantify statistical confidence when its assumptions are violated by non-Gaussian or
correlated payoff distributions. The distribution-free bound can help to establish scientific
facts, but may require vastly more samples than would be called for by the first bound or
other better-tailored stopping rules. Whether either of these bounds is useful in practice is
an open question.

Both existing methods for simulation-based game statistics assume that payoff noise is
normally distributed and that each payoff’s noise is independent. Importantly, no empirical
evaluations have been attempted for either of the above approaches, leaving open questions
about their applicability to actual simulation-based games, and neither has been employed
in recent simulation-based game studies. To help forestall similar questions and increase
the likelihood of adoption for my methods, I provide extensive experimental validation.

3.2 Computing Bootstrap Confidence Intervals for Regret

My primary goal is to approximate a sampling distribution for the true-game regret of equi-
libria computed in simulation-based games, from which I can estimate regret confidence
bounds. The regret of a role-symmetric mixture1 ~σ depends on the payoffs to every profile
that can be realized with positive probability under ~σ; in the worst case—a mixture with
full support—regret depends on every payoff value in the game. The key idea in adapting
the bootstrap to compute confidence intervals for regret is to simultaneously resample all
of these distributions. Using a resample set from each distribution, I construct a bootstrap
game and compute regret in that game, contributing one observation to the bootstrap distri-
bution for regret. This procedure is described in greater detail below, and specified formally
in Algorithm 1.

Consider a simulation-based game Γ = M(Θ), where Θ is the data set collected via

1 I describe my methods in terms of role-symmetric mixed strategies, but they are equally applicable
to pure-strategy profiles or non-role-symmetric mixtures. My experiments evaluate the methods for pure-
strategy and symmetric mixed-strategy Nash equilibria in symmetric games.

39

Algorithm 1 bootstrapRegret(Θ,M, ~σ, b)

Require: Θ, the simulation data
Require: M, the modeling function
Require: ~σ, the profile to evaluate
Require: b, the number of bootstrap games to construct
d = {}
for 0 ≤ i < b do

Θ̃ = {}
for each θ ∈ Θ do

Θ̃ = Θ̃ ∪ {resample(θ)}
end for
Γ̃ = M(Θ̃)

d = d ∪ {ε(Γ̃, ~σ)}
end for
return d // bootstrap distribution

simulation and M is the modeling function used to instantiate a game from simulation
data. Θ can be broken down into observation sets θ, each of which represents a collection
of samples from a single (potentially multivariate) distribution. Most often, θ represents the
simulation results for a single profile, but it may instead have samples for multiple profiles
that were simulated jointly, or for individual payoff values if each strategy’s payoff was
determined independently. In the example shown in Figure 3.1a, Θ =

{
θ〈2,0〉, θ〈1,1〉, θ〈0,2〉

}
,

with observation sets corresponding to profiles:

θ〈2,0〉 = {0, 1}
θ〈1,1〉 = ({0, 0, 0}, {0, 0, 0})
θ〈0,2〉 = {0, 0, 1}

The profile 〈0, 2〉, where both agents play B as three payoff observations: two zeros and a
one. The profile 〈1, 1〉 has observations listed for A first, followed by observations for B,
but with no variation in payoff observations there is only one reasonable value for ~u(〈1, 1〉),
namely (0, 0). The modeling function averages observations for each payoff, resulting in
the payoff matrix in Figure 3.1b.

My method performs resampling at the level of the observation sets, drawing |θ| values
with replacement from θ to form θ̃. Jointly, these resampled observation sets constitute
Θ̃ = {θ̃}θ∈Θ, a resampling of Θ. The modeling function is then applied to create a bootstrap
game: Γ̃ = M(Θ̃). Table 3.1 shows the possible values that u (〈2, 0〉, A) and u (〈0, 2〉, B)

can take in the bootstrap game, the probability with which each bootstrap game occurs, and

40

u(
〈
2, 0

〉
, A) ∈ {0, 1}

u(
〈
1, 1

〉
, A) ∈ {0, 0, 0}

u(
〈
1, 1

〉
, B) ∈ {0, 0, 0}

u(
〈
0, 2

〉
, B) ∈ {0, 0, 1}

(a) Payoff observations.

A B

A 1
2 , 1

2 0 , 0

B 0 , 0 1
3 , 1

3

(b) Sample-average payoff matrix.

Figure 3.1: Example observation data Θ and the resulting payoff matrix M(Θ) for a sym-
metric 2-player, 2-strategy game.

the corresponding regret of the mixture
〈

1
2
, 1

2

〉
. There are three ways was to select θ̃〈2,0〉,

and four ways to select θ̃〈0,2〉, yielding 12 unique bootstrap games. In such a simple game
all bootstrap games can be enumerated and their probabilities computed, allowing exact
specification of the bootstrap CDF of ε

(
M(Θ̃),

〈
1
2
, 1

2

〉)
shown in Figure 3.2. In games

with more profiles and non-trivial observation sets, this distribution cannot be constructed
exactly, but each bootstrap game is a sample from it. I therefore construct a large number
of bootstrap games, and in each, I compute the regret of ~σ. These values constitute a
bootstrap distribution for regret, which can be used to construct confidence intervals: the
95th percentile estimates a one-sided 95% confidence interval for true-game regret.

Several different levels of granularity are possible for θ, corresponding to different lev-
els of correlation induced by sampling and/or game model construction. In the standard
case, each run of the simulator returns an observation for the payoff to every strategy
in a profile, and M constructs a game model by simply averaging observations of each
payoff value. Each observation set therefore contains payoff data for a single profile. If
deviation-preserving reduction (Chapter 4) is employed, each payoff value in the reduced
game comes from a distinct full-game profile, so observation sets would normally contain
data for a single payoff value. If different simulation runs use common random numbers to
reduce variance, this induces a correlation across profiles, and the observation sets would
preserve this correlation; in the extreme, the simulation data could consist of a single obser-
vation set: Θ = {θ}. By preserving correlations present in the simulation data, my method
can avoid imposing the independence assumptions required by prior techniques.

In some cases, it may be worth inducing additional correlation in the bootstrap resam-
ples that is not justified by the game’s sampling process. If a large fraction of the game’s
payoffs has the same number of observations, bootstrap game can be constructed much
more efficiently by resampling that set of payoffs with common indexing, that is by in-

41

prob u (〈2, 0〉, A) u (〈0, 2〉, B) max
2

u
(
〈1

2
, 1

2
〉
)

ε
(
〈1

2
, 1

2
〉
)

8
108

0 0 0 0 0
12
108

0 1
3

2
12

2
24

2
24

6
108

0 2
3

4
12

4
24

4
24

1
108

0 1 6
12

6
24

6
24

16
108

1
2

0 3
12

3
24

3
24

24
108

1
2

1
3

3
12

5
24

1
24

12
108

1
2

2
3

4
12

7
24

1
24

2
108

1
2

1 6
12

9
24

3
24

8
108

1 0 6
12

6
24

6
24

12
108

1 1
3

6
12

8
24

4
24

6
108

1 2
3

6
12

10
24

2
24

1
108

1 1 6
12

12
24

0

Table 3.1: Possible regret values of a 〈1
2
, 1

2
〉-mixture when the game in Figure 3.1

is resampled. The left-most column gives the probability with which each boot-
strap game can occur, and the right-most column gives the regret value in that boot-
strap game. Intermediate columns show the components from which ε

(
〈1

2
, 1

2
〉
)

=
1
2

max [u (〈2, 0〉, A) , u (〈0, 2〉, B)]− u
(
〈1

2
, 1

2
〉
)

is calculated.

cluding the same number of copies of the ith element of each observation set θ ∈ Θ for
i ∈ {1 . . . k}. In the GameAnalysis package, this is implemented by drawing a vector of
resample counts for each observation index and multiplying all payoff observation sets by
it in a single vectorized operation. Because many bootstrap games must be constructed, re-
sampling under the approximation that Θ consists of one or a small number of observation
sets can relieve a major bottleneck in estimating confidence intervals. If confidence interval
calculation is used in the inner loop, running the faster version at intermediate steps may be
worthwhile. In initial experiments, I found little difference when inducing extraneous cor-
relation in this way, and the results presented in Section 3.3 therefore use common-index
resampling even though the artificial noise was generated independently for each payoff.

A one-sided confidence bound for regret is appropriate for determining whether a re-
ported equilibrium of the simulation-based game is likely to be an equilibrium of the true
game, but for some purposes, two-sided confidence intervals are more appropriate. In
particular, determining whether to conduct additional simulations requires distinguishing
whether a profile is probably an equilibrium, probably not an equilibrium, or whether ad-
ditional data is required. In this case, my co-authors used the 2.5th and 97.5th percentiles of

42

0.0 0.2 0.4 0.6 0.8 1.0
cumulative probability

0.00

0.05

0.10

0.15

0.20

0.25

re
gr

et

regret CDF
95th percentile

Figure 3.2: Exact CDF of the bootstrap regret of 〈1
2
, 1

2
〉 in the game from Figure 3.1. Cor-

responds to the left- and right-most columns of Table 3.1. Approximated by Algorithm 1.
The dashed line shows that the distribution’s 95th percentile is the same as its maximum.
With a non-trivial number of payoff observations this would not occur.

the bootstrap distribution d to give a 2-sided 95% confidence interval. Algorithm 1 could
also be modified to compute confidence intervals for a statistic other than regret, such as
social welfare, by replacing ε(Γ̃, ~σ) with f(Γ̃, ·) for statistic f .

An important restriction of my method is that confidence intervals are valid only with
respect to the modeling function M. The “true game” in this sense is M(Θ∞), where
Θ∞ = {θ∞}θ∈Θ is the hypothetical result of taking an infinite number of samples of each
observation set. If M performs a player reduction (Chapter 4) or employs regression to
estimate payoffs (Chapter 5), the bootstrap confidence intervals do not provide additional
information about the full game. This means that bootstrap confidence intervals for regret
computed in the reduced credit network formation game (Chapter 2) would be valid only for
the 6-player DPR game; regret in the 61-agent full game is unknown, because the bootstrap
has no information about the huge fraction of the profiles that remains unobserved.

3.3 Calibration Experiments

For the bootstrap regret confidence intervals to be useful, I need to show that they are well-
calibrated. I hypothesize that bootstrap distribution of regret accurately approximates a

43

sampling distribution for regret. This is a sufficient condition for the 95th percentile of the
sample-game bootstrap distribution of the regret of a candidate equilibrium to provide a
valid 95% confidence bound for the true-game regret of that candidate. This hypothesis
yields several testable predictions that I evaluate empirically.

The first prediction is that confidence bounds should be well-calibrated, namely the
true-game regret of an equilibrium candidate should fall below the 95th percentile of the
bootstrap distribution 95% of the time. In fact, if the bootstrap distribution closely ap-
proximates a sampling distribution for regret, then all quantiles should be well-calibrated;
if other quantiles were off, this would cast suspicion on the generalizability of results for
95% confidence intervals. In addition, confidence bounds should grow tighter as data is
acquired, so the 95th percentile of the bootstrap distribution should shrink as the number
of payoff observations grows. I also expect confidence bounds to be wider when data are
more noisy, so the 95th percentile should grow as the variance of payoff samples grows.

3.3.1 Experimental Setup

I test the predictions of my hypothesis by artificially generating symmetric true games and
drawing samples from known noise distributions centered around each true game payoff. I
then compute pure-strategy Nash equilibria and symmetric mixed-strategy Nash equilibria
in the resulting noisy games,2 and use the bootstrap method to estimate a regret distribution
for each of these equilibrium candidates. These bootstrap estimates are compared against
the true-game regrets of the equilibrium candidates. Across a large number of randomly
generated true games, the hypothesis predicts that k% of true-game regret values will fall
below the kth percentile of the noisy game’s bootstrap regret distribution.

My experiments employ two classes of synthetic games: uniform symmetric games
(uSym) and congestion games (Cgst) [Rosenthal, 1973], as well as one class of simulated
game: credit network games (CredNet). To generate a true game from the uSym class, I
draw a value from the distribution U [0, 100] for each unique payoff in a symmetric game
with n ∈ {2, 4, 6} players and |S| ∈ {2, 4, 6} strategies. The results on uSym games shown
in Section 3.3.2 are from games with 4 players and 4 strategies; results for other combi-
nations of players and strategies are similar. To generate a true game from the Cgst class,
I use 5 players and 3 strategies; each strategy s has a base value vb(s) ∼ U [0, 3], a linear
congestion cost vl(s) ∼ U [0, 1], and a quadratic congestion cost vq(s) ∼ [0, 1]. Parameters
of the quadratic cost functions are drawn randomly to generate congestion game instances.
The Cgst payoff to a player choosing strategy s is a function of the total number n(s) of

2In all of these experiments, mixed-strategy equilibria are computed using replicator dynamics.

44

players choosing that strategy: u(s) = vb(s) − vl(s)n(s) − vq(s)(n(s))2. CredNet games
are generated based on data from the credit network formation game simulator described
in Chapter 2.

In my initial experiments, I generated a CredNet game with 6 players, 6 strategies, and
2644 samples of each payoff, but found that it had unreasonably high variance. I therefore
also generated a second data set with the same players and strategies called CredNet-agg,
where each of the 1000 samples comes from 20 pre-aggregated runs of the simulator. The
true game in the CredNet experiments is always the simulation-based game constructed
using the full set of samples. To facilitate comparison of regret values across classes, I
applied an affine transformation to rescale each uSym and Cgst true-game payoff matrix to
match range [0, 100], which closely matches the payoff range of the CredNet true game.

Given a true game from the uSym or Cgst classes, I created noisy samples of each pay-
off by drawing from a known distribution centered at the true-game payoff and constructed
sample games from these sample sets. For Cgst, I added only normally distributed noise,
but across uSym experiments I varied the noise distribution among normal, uniform, bi-
modal Gaussian mixture, and Gumbel (a skewed distribution with mode < mean). Each
of these distributions has some parameter corresponding to data spread, which I refer to as
z. For all experiments, I drew z ∼ U [0, z̄] independently for every true-game payoff. The
maximum value for the spread parameter z̄ ∈ {0.1, 1, 10, 100, 1000} was varied over four
orders of magnitude. For normally distributed noise, observations of each payoff are drawn
from a normal distribution with variance z; for bimodal Gaussian, the z parameter controls
the variance of the two Gaussians, which are spread apart by a random draw from |N(0, z̄)|;
for uniform noise, z is equal to the half-width of the distribution; for Gumbel noise, z is the
scale parameter. I also tested drawing noise from different models for different payoffs in
the same game, and found similar results (not shown). To create each sample game for the
CredNet class, I selected a subsample without replacement out of the full set of simulator
observations.

3.3.2 Experimental Results

For each combination of synthetic game class, number of players/strategies, and noise
model, I generated 1000 true games. For each synthetic and simulated true game, I gen-
erated sample games with sample sizes ranging from 5 to 500, and in each sample game,
I computed pure- and mixed-strategy Nash equilibria. I then computed bootstrap distribu-
tions for the regret of each equilibrium, which I compared to that equilibrium’s true-game
regret. Table 3.2 shows, in the “95% calibration” columns, the fraction of true-game re-

45

game, noise samples 95% calibration 95% regret 95% calibration 95% regret
z̄ = 100 pure pure mixed mixed

uSym, normal 10 0.924 34.4 0.951 25.9
uSym, normal 100 0.947 1.5 0.955 6.3
uSym, bimodal 10 0.949 71.6 0.957 50.1
uSym, bimodal 100 0.935 13.5 0.949 12.7
Cgst, normal 10 0.928 20.6 0.966 18.1
Cgst, normal 100 0.972 0 0.941 1.8
CredNet-agg 10 0.981 1.51 0.997 1.04
CredNet-agg 100 0.971 0 0.927 0.23

Table 3.2: Calibration and mean regret of 95% confidence bounds for regret of simulation-
based game equilibria across various game classes. Calibration measures the fraction of
the time that true-game regrets fall below the 95th percentile of the bootstrap distribution.

grets that fell below the 95th percentile of the bootstrap distribution for a subset of game
settings, noise models, and sample sizes. The data indicates that the 95th percentile of the
regret bootstrap distribution provides a reasonably well-calibrated 95% confidence interval
for true-game regret of both pure and mixed-strategy Nash equilibria computed in noisy
games. The confidence intervals for the CredNet games are the least accurate; this is borne
out much more starkly by Figure 3.5 below.

Table 3.2 also shows the average regret value of the 95% confidence bound. Two trends
are noteworthy here: first, the bounds tighten when going from 10 to 100 samples; this is
explored further in Figure 3.6 below. Second, the average regret at the bound is in many
cases extremely high relative to the [0, 100] payoff scale of the games. These profiles should
clearly not be reported as equilibria, and their presence in the noisy games demonstrates
the importance of including confidence interval estimation in the simulation-based game
analysis process. The results for uSym and Cgst games in Table 3.2 are broadly representa-
tive of similar experiments with different numbers of players and strategies, different noise
distributions and magnitudes, and different numbers of samples.

While Table 3.2 shows good calibration for the 95% bootstrap confidence bound, one
would hope that the whole bootstrap regret distribution, and not just the 95th percentile is
well-calibrated. Figure 3.3 shows that for 4-player, 4-strategy uSym games with normal
noise this is indeed the case: each curve shows the cumulative fractions of noisy game
equilibria for which the true-game regret fell below each successive percentile of the boot-
strap distribution. Because the curves closely track the 45◦ line, it can be concluded that on
average the shape of the bootstrap distribution closely matches that of the sampling distri-
bution for regret. Such plots for other uSym games with other player and strategy counts,

46

0 20 40 60 80 100
bootstrap regret distribution percentile

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fra
ct

io
n

of
 tr

ue
 g

am
e

re
gr

et
s

z̄ = 100.0

perfect calibration
5 samples
10 samples
20 samples
50 samples
100 samples
200 samples
500 samples

Figure 3.3: Bootstrap distributions are well-calibrated for 4-player, 4-strategy uSym games
with z̄ = 100 Gaussian noise. Curves show the fraction of true-game regrets falling below
each bootstrap distribution percentile.

47

0 20 40 60 80 100
bootstrap regret distribution percentile

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fra
ct

io
n

of
 tr

ue
 g

am
e

re
gr

et
s

z̄ = 1000.0

perfect calibration
5 samples
10 samples
20 samples
50 samples
100 samples
200 samples
500 samples

Figure 3.4: Bootstrap distributions are poorly calibrated when noise swamps payoff infor-
mation. Settings identical to Figure 3.3, except z̄ = 1000.

other noise distributions, and smaller noise magnitudes are broadly similar, as are results
for Cgst games.

Two cases where bootstrap calibration breaks down are illustrated in Figures 3.4 and
3.5. Figure 3.4 shows an experiment identical to Figure 3.3, except that noise magnitude has
been increased to z̄ = 1000. It is relatively unsurprising that regret estimates are poor when
noise variance is an order of magnitude larger than the difference between the minimum
and maximum payoffs in the game. Figure 3.5 shows results for a similar experiment
on the CredNet-agg data set. Note that all CredNet-agg experiments used the same true
game: mean payoffs from the full data set, while each experiment’s sample game was a
random subsample of those observations. As a result, the experiments are not independent:
similar candidate equilibria may be found across experiments, causing clusters of similar
true-game regrets. Further, Table 3.2 shows that the 95% confidence bounds for CredNet-
agg equilibria are quite tight, and except in the 500-sample case those bounds are rarely
over-estimates. This indicates that the CredNet-agg games may have simple equilibria that
can be identified using only a small number of samples, which would tend to compress the
scale of the bootstrap distribution and exacerbate the aforementioned clustering of regret
observations. In spite of this, my co-authors showed that the regret confidence interval from

48

0 20 40 60 80 100
bootstrap regret distribution percentile

0.0

0.2

0.4

0.6

0.8

1.0

cu
m

ul
at

iv
e

fra
ct

io
n

of
 tr

ue
 g

am
e

re
gr

et
s

perfect calibration
5 samples
10 samples
20 samples
50 samples
100 samples
200 samples
500 samples

Figure 3.5: Bootstrap distributions are poorly calibrated for CredNet games. This may
occur because the CredNet experiments all use the same true game.

the bootstrap can be used effectively as part of a stopping rule that makes good sampling
decisions in CredNet games.

Figure 3.6 shows that the secondary implications of my hypothesis are borne out ex-
tremely well by the synthetic game experiments. It plots the regret value of the 95% con-
fidence bounds for various levels of noise and numbers of samples in 4-player 4-strategy
uSym games; results for other games are similar. Confidence intervals consistently grow
tighter as the number of samples increases, with the largest gains coming from the first
few samples. Moreover, whenever noise increases by an order of magnitude the confidence
intervals grow wider by roughly an order of magnitude.

3.4 Conclusions

Experimental evidence demonstrates that the bootstrap method of confidence interval gen-
eration is approximately accurate for bounding the true-game regret of candidate equilibria
in simulation-based games. Accuracy is lower in the experiments on credit network games
than on randomly generated games, but the random game experiments may be more repre-
sentative of simulation-based games in practice, due to the implausible true-game model in

49

0 100 200 300 400 500
samples

10-3

10-2

10-1

100

101

102

103

re
gr

et
 (l

og
 s

ca
le

)

average 95% confidence bounds
variance = 1e+03
variance = 1e+02
variance = 1e+01
variance = 1e+00
variance = 1e-01

Figure 3.6: Bootstrap-estimated 95% confidence bounds for regret exhibit desirable prop-
erties of confidence intervals: they shrink with more data and grow with more noise.

the CredNet-agg domain forced by the limitations of conducting experiments with costly
simulation data. Because the experiments show bootstrap confidence intervals to be accu-
rate across multiple synthetic game classes, as well as across noise distributions and mag-
nitudes, I recommend that practitioners of simulation-based game theory employ bootstrap
methods to give regret bounds for reported equilibria.

My co-authors went on to show that the bootstrap confidence intervals could be used
to control sequential sampling: running more samples until a desired confidence bound is
achieved. They demonstrated that this method outperformed common rules of thumb for
when to stop sampling, and that despite possible repeated testing concerns, the bootstrap
method proves approximately accurate in constructing confidence intervals on regret at the
conclusion of sequential sampling procedures.

This work constitutes a first systematic effort to develop and validate practical statis-
tical methods for simulation-based game theory; future work could focus on developing
theoretical foundations of applying the bootstrap to simulation-based games, and charac-
terizing games for which the bootstrap approach is reliable. Additionally, there are other
interesting properties of games, such as social welfare of equilibria, that may also benefit
from using the bootstrap for statistical analysis. Other avenues of research include evalu-

50

ating different bootstrap designs, and using information obtained through the bootstrap to
guide more sophisticated sampling, such as profile exploration [Jordan et al., 2008].

51

CHAPTER 4

Deviation-Preserving Reduction

In principle, an environment simulator, a set of agent strategies, and a modeling function
constitute a complete description of a simulation-based game. From these elements, an
analyst could simulate all profiles in the game, compute equilibria, and repeat until the
methods described in Chapter 3 indicate adequate statistical confidence in our conclusions.
However, in practice, simulating all profiles in a game is often infeasible. Consider for
example the credit network formation game described in Chapter 2. The simulated envi-
ronment had 61 agents, and a total of 32 agent strategies were explored. Constructing the
full game for this environment would require simulating 2.98 × 1024 profiles. In general,
a role-symmetric game has

∏
r∈R
(
Nr+|Sr|−1

Nr

)
profiles. Some relief from this combinato-

rial explosion is provided by iterative exploration of the strategy space via the inner and
outer loops (Section 1.5), yet the large number of agents still poses a major challenge to
enumerating all relevant profiles.

My method, deviation-preserving reduction (DPR), enables approximate analysis of
environments with a very large number of agents while sampling only a small fraction of
the profiles. DPR belongs to a family of player reduction techniques that approximate a
game with many agents by constructing a smaller game that aggregates over those agents.
Player reductions specify a set of full-game profiles to simulate, and a modeling function
that maps payoffs from those full-game profiles to payoffs in a reduced game with nr � Nr

players for some or all roles. Game-theoretic analysis of the reduced game is then viewed
as holding approximately in the full game.

In what follows, I compare three player reduction methods: hierarchical, twins, and
deviation-preserving. I argue that deviation-preserving reduction is more effective than
its predecessors at capturing key strategic properties of the full game. I also provide ex-
perimental evidence that equilibria computed in reduced games constructed by DPR have
lower regret in the full game than equilibria of reduced games constructed by other meth-
ods.

52

4.1 Background

Player reductions work by simulating profiles in the full game, and using payoff data ob-
served in those simulations to fill in a reduced game with a much smaller number of players.
Player reduction methods differ in terms of which full-game profiles are required, and how
payoffs from those profiles map to entries in the reduced-game payoff matrix. Two player-
reduction methods were proposed previously: hierarchical reduction (HR) [Wellman et

al., 2005], and twins reduction (TR) Ficici et al. [2008]. I describe each reduction method
by specifying its mapping functionM, which determines how full-game payoff values are
used to fill the reduced-game payoff matrix. M(~s, r, s) takes a reduced-game profile ~s,
a role r ∈ R, and a strategy s ∈ Sr, and outputs the corresponding full-game profile ~t,
such that ureduced(~s, r, s) = ufull(~t, r, s). This mapping implicitly defines the set of profiles
required to construct the reduced game: those that result from applyingM to every profile
and strategy in the reduced game. The mapping function is, in a rough sense, the inverse of
the model function M that maps simulation data to a game model.

4.1.1 Hierarchical Reduction

Of the two previous methods, hierarchical reduction has been more extensively used [Cas-
sell and Wellman, 2012; Jordan et al., 2007; Schvartzman and Wellman, 2009]. HR allows
the analyst to select the number of players nr in each role of the reduced game. As orig-
inally proposed, HR applied only to fully symmetric games where n evenly divides N ,
but the extensions to role-symmetric games and non-divisible player counts are straightfor-
ward. The key idea of hierarchical reduction is preserving the fraction of players in a role
choosing each strategy. The mapping function for HR multiplies the reduced game count
for each strategy by Nr

nr
, the reduction factor by which the number of players in role r has

been scaled. Formally, M(~s, r, s) =
〈〈Nρ

nρ
~sρ
〉
ρ∈R

〉
, as long as Nr

nr
∈ Z, ∀r ∈ R. When

nr does not divide Nr, the closest full-game profile by L1 distance is used, breaking ties
such that lower-index strategies have higher counts. Note that this mapping is independent
of both r and s, so payoff data for all roles and strategies in a reduced-game profile comes
from a single full-game profile.

As an example, consider a full game with roles R = {1, 2}, players N1 = 50 and N2 =

12, and strategies S1 = {A,B,C} and S2 = {D,E}. The mapping function for HR5,2 is
M(~s, r, s) =

〈
〈10, 10, 10〉, 〈6, 6〉

〉
◦ ~s, where ◦ denotes element-wise multiplication. For

the reduced-game profile
〈
〈2, 0, 3〉, 〈1, 1〉

〉
, payoffs are determined by simulating the full-

game profile
〈
〈20, 0, 30〉, 〈6, 6〉

〉
. If instead, the full game had N1 = 51 and N2 = 11, then

element-wise multiplication by Nr
nr

would give
〈
〈20.4, 0, 30.6〉, 〈5.5, 5.5〉

〉
, but L1 distance

53

resolves the counts for role 1, and the tie-breaking rule comes into play for role 2, selecting
M(
〈
〈2, 0, 3〉, 〈1, 1〉

〉
, r, s) =

〈
〈20, 0, 31〉, 〈6, 5〉

〉
.

4.1.2 Twins Reduction

Twins reduction was originally proposed for an empirical game setting where payoffs can
come from observational data, and agents’ roles may be unknown. Ficici et al. propose
learning the assignment of agents to roles via clustering, and using linear regression over
observed payoff data to fill in the reduced game; I refer to this variant as TR-R. In the
simulation-based setting, these steps are generally unnecessary because agent roles are
specified by the environment simulator and specific profiles can be simulated on demand
for better estimates of reduced-game payoffs. I therefore focus primarily on the player
reduction component, TR, but run a few experiments that include TR-R. I also return to
the idea of using regression to fill in reduced-game payoffs in Chapter 5.

Twins reduction creates a game with nr = 2 for every role. Unlike HR, the payoffs for
one reduced game profile derive from several full-game profiles. Reduced-game players
view themselves as controlling a single full-game agent, their twin (the other player with
the same role) as controlling all other agents in their role, and the pair of players for any
other role each controlling half of that role’s agents. Formally, M(~s, r, s) =

〈
〈~fρ〉ρ∈R

〉
,

where

~fρ =

{
(Nρ − 1)(~sρ − ŝ) + ŝ : ρ = r
Nρ
2
~sρ : ρ 6= r

Note that because each reduced-game role has only two players, in any profile at most two
strategies are played by each role. This mapping gives non-integer counts whenever Nr is
odd, but as with HR, we can accommodate odd numbers of full-game players by breaking
ties in favor of lower-index strategies.

Returning to the example of a full game with roles R = {1, 2}, players N1 = 50 and
N2 = 12, and strategies S1 = {A,B,C} and S2 = {D,E}, consider the reduced-game
profile ~s =

〈
〈1, 0, 1〉, 〈2, 0〉

〉
. Unlike HR, the TR mapping function depends on r and s:

M(~s, 1, A) =
〈
〈1, 0, 49〉, 〈12, 0〉

〉
M(~s, 1, C) =

〈
〈49, 0, 1〉, 〈12, 0〉

〉
M(~s, 2, D) =

〈
〈25, 0, 25〉, 〈12, 0〉

〉
Each distinct strategy gets its payoff from a unique full-game profile, meaning that up to
2|R| distinct full-game profiles contribute to the payoffs of a single reduced-game profile.

54

However, the reduced game remains role-symmetric as each player faces the same incen-
tives as its twin.

4.1.3 Comparison of Hierarchical and Twins Reductions

The reasoning behind hierarchical reduction is that while payoffs vary with the number of
agents playing each strategy, they can often be expected to do so smoothly. Kearns and
Mansour [2002] formalize a related condition called bounded influence to define a class of
compactly representable and solvable games. Even though it is easy to construct games
that violate this assumption, in many natural settings with a large number of agents, it
is reasonable to expect that payoffs vary smoothly with the number of agents using each
strategy, and a coarse summarization of their actions could suffice for analysis.

However, hierarchical reduction fails to capture the most critical information for iden-
tifying full-game Nash equilibria. In a Nash equilibrium, no individual agent can gain by
deviating to another strategy; reduced games constructed by HR contain no information
about full-game unilateral deviations. In an equilibrium of HR(Γ), no Nr

nr
-agent coalition

can gain by all deviating to the same strategy. The conditions for reduced-game equilibria
have very little to do with those for full-game equilibria, so only in very special cases can
the two be expected to correspond.

Consider the general form of the credit network formation games described in Chap-
ter 2. One can construct relatively simple examples, where reductions ought preserve equi-
librium analysis, but where HR performs very poorly. First, in cases where defaults are
likely, the full game tends to have an empty-network equilibrium. However, if transactions
are relatively profitable, a group of agents deviating to issue credit simultaneously can cre-
ate a network that is dense enough to be profitable in expectation. The empty network will
therefore not be an equilibrium of the reduced game, where each player controls the actions
of a large number of full-game agents. On the other hand, if transaction values are low and
information about default probabilities is noisy, we might find spurious trade-based equi-
libria in the HR game. In such settings, most agents need to issue credit for the network
to be dense enough to be profitable, so if a large number of agents deviated to issue no
credit, the network would fail to route most transactions and the reduced-game player con-
trolling them would be worse off. However, in the full game, a single agent might be able
to get away with free-riding, meaning that the reduced-game equilibrium has a beneficial
deviation in the full game.

The natural solution to this problem is to incorporate information about the value of
unilateral agent deviations into the payoffs of the reduced game. Twins reduction takes a

55

first step in this direction, correctly capturing individual agents’ incentives to deviate when-
ever their role is playing a single pure strategy. In fact, TR perfectly captures any full-game
role-symmetric pure-strategy equilibria, as demonstrated by the following proposition.

Proposition 4.1
A role-symmetric profile1 ~t =

〈
〈~tr〉r∈R

〉
is a pure-strategy Nash equilibrium of TR(Γ) if

and only if the role-symmetric profile ~f =
〈
〈dNr

2
e~tr〉r∈R

〉
is a pure-strategy Nash equilib-

rium of Γ.

Proof. ~t is a Nash equilibrium of TR(Γ) iff for all roles r ∈ R we have for all strategies
s played in ~tr and all deviations s′ ∈ Sr, that uTR(~t, r, s) ≥ uTR(~t − ŝ + ŝ′, r, s′). For
a twin-symmetric profile, the mapping function gives the same full-game profile for every
strategy, namely for each such r and s, we haveM(~t, r, s) = ~f . For a deviating profile, the
twins reduction mapping givesM(~t− ŝ+ ŝ′, r, s′) = ~d, where ~d =

〈
〈~dρ〉ρ∈R

〉
is defined as

follows:

~dρ =

{
(Nρ − 1)ŝ+ ŝ′ : ρ = r
~fρ : ρ 6= r

So for each such ~d, we have u(~f, r, s) ≥ u(~d, r, s′). The set of ~d profiles is precisely the set
of single-agent deviations from ~f in the full game, so whenever ~t is a Nash equilibrium of
TR(Γ), we know that ~f is a Nash equilibrium of Γ.

Despite its ability to capture role-symmetric pure-strategy equilibria, twins reduction
is generally ineffective at identifying mixed-strategy Nash equilibria of the full game. Be-
cause each reduced-game role has only two players, profiles with more than two strategies
for the same role are entirely unrepresented. This makes reduced-game expected value
estimates for mixed strategies with more than two strategies in the support almost entirely
worthless. Even mixtures with support-size of two will have reduced-game expected values
that are linear combinations of profiles with Nr or Nr− 1 agents playing the same strategy.
This will give reasonable estimates of full-game expected values only if payoffs are linear
in the number of players choosing each strategy.

Because a twins reduction game always has two players per role, the size of the full-
game profile set that must be simulated depends only on the number of roles and strate-
gies: |~STR| =

∑
r∈R|Sr|2

∏
ρ∈R\{r}

|Sρ|(|Sρ|+1)

2
, which simplifies to |~STR| = |S|2 in a

symmetric game. Under hierarchical reduction, the one-to-one mapping between full-
game and reduced-game profiles means that the set of full-game profiles required has size

1 Ficici et al. [2008] refer to twin-symmetric equilibria, because they only consider reduced game roles
with exactly two players. They do not state this proposition. In their setting, clustering and regression are
applied before reduction, introducing extra errors that prevent capturing full-game equilibria exactly.

56

|~SHR| = ∏r∈R
(
nr+|Sr|−1

nr

)
, or in a symmetric game |~SHR| =

(
n+|S|−1

n

)
. Both reductions re-

quire a number of profiles that is exponential in the number of roles, but TR grows quadrat-
ically in |S| and fixes n, while HR games grow exponentially in the smaller of n and |S|.
HR lets the analyst select the reduced-game player counts nr to trade off simulation time
and approximation accuracy.

4.2 The Deviation-Preserving Reduction Method

Deviation-preserving reduction is designed to capture the best aspects of both hierarchical
reduction and twins reduction. DPR achieves sensitivity to unilateral deviation by borrow-
ing from TR the idea that a deviation by a reduced-game player should correspond closely
to a deviation by a full-game agent. It achieves better approximation of mixed-strategy
equilibria by borrowing HR’s aggregation of agents and adjustable granularity. In a DPR

game, each player views itself as controlling a single full-game agent, but views the profile
of opponent strategies in the reduced game as an aggregation of all other agents in the full
game. Formally, we can represent the DPR mapping as follows: M(~s, r, s) =

〈
〈~fρ〉ρ∈R

〉
,

where

~fρ =

{
Nρ−1

nρ−1
(~sρ − ŝ) + ŝ : ρ = r

Nρ
nρ
~sρ : ρ 6= r

Note that the other-role component is identical to HR, and that the same-role component
holds out one deviator like TR, but then aggregates the remaining agents in a manner sim-
ilar to HR. As before, a slight extension is required to handle non-divisible reduced-game
player counts; as with HR, the closest profile by L1 distance is used, with ties broken in
favor of the profile with more players choosing the lower-index strategy. DPR’s divisibility
condition on role-symmetric games is somewhat stricter that that of HR: for each role, nr
must divideNr and (nr−1) must divide (Nr−1) to avoid tie-breaking. For fully symmetric
games, only the second criterion is required.

For an illustrative example, consider again the game with roles R = {1, 2}, players
N1 = 25 and N2 = 12, and strategies S1 = {A,B,C} and S2 = {D,E}. The mapping for
DPR5,2 operates on the profile ~s =

〈
〈2, 0, 3〉,

〈
1, 1
〉〉

as follows:

M(~s, 1, A) =
〈
〈7, 0, 18〉, 〈6, 6〉

〉
M(~s, 1, C) =

〈
〈12, 0, 13〉, 〈6, 6〉

〉
M(~s, 2, D) =

〈
〈10, 0, 15〉, 〈1, 11〉

〉
M(~s, 2, E) =

〈
〈10, 0, 15〉, 〈11, 1〉

〉
57

Note that the player counts for role 2, which has two reduced-game players, could belong to
a TR game. If all roles have reduced-game players nr = 2, then DPR is identical to TR. In
addition, DPR inherits from twins reduction the ability to exactly identify role-symmetric
pure strategy Nash equilibria.

Proposition 4.2
A role-symmetric profile ~t =

〈
〈~tr〉r∈R

〉
is a pure-strategy Nash equilibrium of any reduced

game DPR(Γ) if and only if the role-symmetric profile ~f =
〈
〈dNr

2
e~tr〉r∈R

〉
is a pure-

strategy Nash equilibrium of Γ.

Proof. Identical to Proposition 4.1.

Like hierarchical reduction, deviation-preserving reduction allows the analyst to specify
the size of the reduced game, trading off approximation accuracy with model tractability.
However, for any given reduced game size, DPR requires a larger set of full-game pro-
files: one for every reduced game payoff value, as opposed to HR’s one-per-profile. The
reduced game has |~SDPR| = ∑r∈R|Sr|

(
nr+|Sr|−2
nr−1

)∏
ρ∈R\{r}

(
nρ+|Sρ|−1
nρ−1

)
payoff values, or in

a symmetric game |~SDPR| = |Sr|
(
nr+|Sr|−2
nr−1

)
. In symmetric games, |DPR(Γ)| is larger than

|HR(Γ)| by a factor of n|S|
n+|S|−1

; with multiple roles, the difference grows. Figure 4.1 shows
the number of full-game profiles required to construct HR and DPR games with one role,
five strategies, and various numbers of players. In general, reduction methods should be
evaluated according to the tradeoff they provide between computational resources required
and accuracy of analysis. DPR is therefore preferable only if it can give better analysis
results as a function of the number of full-game profiles required; performing better as a
function of reduced-game size is insufficient.

Many of the profiles simulated to construct a deviation-preserving reduction game are
quite similar. ConsiderM(

〈
〈2, 0, 3〉, 〈1, 1〉

〉
, 1, C) =

〈
〈12, 0, 13〉, 〈6, 6〉

〉
from above and

M(
〈
〈3, 0, 2〉, 〈1, 1〉

〉
, 1, A) =

〈
〈13, 0, 12〉, 〈6, 6〉

〉
from the same reduced game. These

profiles differ by the deviation of a single role-1 agent between strategies A and C, both
of which are played by many other agents. The basic assumption made when aggregating
agents—that payoffs vary smoothly in the number of agents playing each strategy—implies
that these profiles should have very similar payoffs, suggesting that we could get away with
simulating only one of the two.

I therefore also tested a variant on DPR, called DPR′ that arbitrarily selects one pro-
file out of each such set of similar profiles, reducing the total number required. Whenever
DPR would prescribe simulating several full-game profiles that differ by one strategy and
no strategy is played by exactly one agent, DPR′ requires only one. As with the tie-
breaking rules for non-divisible profiles, DPR′ uses the full-game profile with more agents

58

Figure 4.1: Number of full-game profiles required to construct reduced games (log scale),
for R = {0}, and |S0| = 5.

playing the lower-index strategy. In the example above, M(
〈
〈3, 0, 2〉, 〈1, 1〉

〉
, 1, A) =

M(
〈
〈2, 0, 3〉, 〈1, 1〉

〉
, 1, C) =

〈
〈13, 0, 12〉, 〈6, 6〉

〉
. Constructing a symmetric DPR′ game

takes a total of |S|
2+n−2
|S|+n−2

(
n+|S|−2
n−1

)
profiles. DPR′ always requires strictly more full-game

profiles than HR, but as long as nr > 2 for some role, DPR′ requires strictly fewer profiles
than DPR. When nr = 2 for all roles, DPR′ is also equivalent to TR. The red curve in
Figure 4.1 shows the growth of DPR′.

4.3 Validation Experiments

To demonstrate the effectiveness of deviation-preserving reduction as a method for approx-
imating large simulation-based games, I employ a set of validation experiments. While
player reduction can be applied to any role-symmetric game, I focus my experiments, as
in Chapter 3, on fully symmetric games. Because symmetric games have only one role,
I refer to N , n, and |S| in place of Nr, nr, and |Sr|, and also subscript reductions with
the number of players in the reduced game, for example HR4 for a 4-player hierarchical-
reduction game. The goal of a player reduction is to replace a full game that is too large

59

to effectively analyze with a more manageable reduced game. Comparing across reduction
methods thus requires evaluating how well analysis that was performed on a reduced game
translates back to the full game. This presents a problem, in that full games of interest for
reduction methods are by definition far too big to effectively analyze. I therefore perform
experiments on medium-size full games with N = 12, |S| = 6, giving |~S| = 6188 as well
as N = 100, |S| = 2, giving |~S| = 101. These games are small enough to be represented
fully and admit Nash equilibrium computation, but large enough that reduced games of
varying size can be constructed.

Player reductions can potentially support a variety of game-theoretic analyses, but of
paramount importance is identifying (role-) symmetric mixed-strategy ε-Nash equilibria.
Successful player reduction methods will construct reduced games where the approximate
equilibria of the reduced game are approximate equilibria of the full game, though nec-
essarily with larger ε. My primary metric for comparing among reduction methods is the
regret in the full game of approximate equilibria computed in the reduced game. Analysts
often draw conclusions from the set of strategies supported in equilibrium, and to a lesser
extent, the probabilities with which those strategies are played. It is therefore better for
reduced games to give equilibria with similar distributions to full-game equilibria in terms
of strategies supported and their probabilities. Finally, it can be helpful to identify domi-
nated strategies in simulation-based games, so a reduction that more-accurately represents
full-game dominance relationships is preferable.

As discussed in Sections 4.1.3 and 4.2, HR and DPR require different numbers of full-
game profiles. My experiments therefore tested the hypothesis that DPR outperforms HR
relative to the number of profiles simulated, not simply relative to the size of the reduced
game. Because TR requires a fixed set of profiles, the relevant question is whether ad-
justing the size of the reduced game can help: I hypothesized that DPR analyses would
improve when more data was added by increasing the number of players in the reduced
game. Twins reduction with regression can use any set of profiles, so experiments involv-
ing TR-R varied the size of the input set over a range similar to that required to construct
other reduced games.

4.3.1 Regret of Reduced Game Equilibria

The first set of experiments explores full-game regret of reduced-game equilibria. These
experiments use three classes of 12-player 6-strategy games: congestion games, local-effect
games, and credit network games. In a congestion game [Rosenthal, 1973], agents select a
fixed-size subset of available facilities and payoffs are decreasing in the number of agents

60

choosing a facility. Unlike Chapter 3 (5 agents, 3 facilities, 1 selected), here I generated
congestion games where agents select two out of four possible facilities, and each facil-
ity has a quadratic cost in the number of agents selecting it; agents’ utilities sum over the
congestion costs incurred. Parameters of the quadratic cost functions are drawn randomly
to generate congestion game instances. Local-effect games [Leyton-Brown and Tennen-
holtz, 2003] have a directed graph over actions and each action’s payoff is a function of
the number of agents choosing it and adjacent actions. I constructed local-effect games by
generating random graphs and random quadratic functions for the cost of each strategy. In
addition, for each pair of adjacent strategies, I generated a random quadratic payoff func-
tion that was not necessarily negative. For each of these classes, I generated 250 random
game instances. The credit network games differ from those analyzed in Chapter 2 in that
only 12 agents participated (for tractability), and only trade-based strategies were used (to
avoid trivial no-trade or central currency equilibria). 250 random credit network game in-
stances were generated by collecting 100 samples of each profile, and then for each game,
selecting the outcome of one simulation of every profile uniformly at random.

For each random full game, I constructed the following set of reduced games:

• HR: 2–8 players

• TR (fixed size), and TR-R: various input set sizes

• DPR: 3–6 players (DPR2 ≡ TR)

For TR-R, I followed Ficici et al. [2008] in sampling profiles from the full game uniformly
at random, and I chose various sample set sizes ranging over the number of profiles required
to construct the various other reduced games. In each reduced game, I computed a single
symmetric mixed-strategy ε-Nash equilibrium using replicator dynamics, initialized from a
uniform mixture. I then computed the full-game regret of each reduced game equilibrium.
Regret values averaged over each set of 250 reduced games are shown in Figures 4.2 and
4.3.

The first finding of note is that twins reduction performs very poorly with linear re-
gression. The top line in Figure 4.2a shows the regret of equilibria found in TR-R games
with random sampling of profiles, which is an order of magnitude worse than the HR, TR,
DPR, and DPR′. Two observations led me to try the method labeled TR-DPR: first, that
sampling profiles according to uniform agent play leads to a very low likelihood of observ-
ing payoffs for profiles where almost all agents play the same strategy, and these are exactly
the profiles whose payoffs the regression estimates. Second, simulating all the profiles for
DPR or DPR′ makes available a substantial amount of payoff data that goes unused in

61

(a) all reduction types

(b) rescaled to exclude regression-based twins reductions

Figure 4.2: Average full-game regret of reduced-game equilibria in local-effect games.
N = 12, |S| = 6, 2 ≤ n ≤ 8.

62

Figure 4.3: Average full-game regret of reduced-game equilibria in credit network games.
N = 12, |S| = 6, 2 ≤ n ≤ 8.

constructing the reduced game. I therefore thought to try using all of the profiles simulated
for the deviation-preserving reduction as input to the linear regression of TR-R. As is clear
from Figure 4.2a, this improves very little on random sampling.

In retrospect, it is not particularly surprising that approximating payoffs by linear re-
gression performs so poorly: all of three classes of test games and most games requiring
simulation have nonlinear payoffs. A better regression model could potentially alleviate
this problem, and I return to this and related questions in Chapter 5. I also ran TR-R and
TR-DPR on each of the other game classes, but the results are similarly poor, and are
excluded from subsequent figures.

Figures 4.2b, 4.3, and 4.4 show that deviation-preserving reduction outperforms hierar-
chical reduction and twins reduction in a wide variety of settings. In 12-agent, 6-strategy
local-effect games, DPR is clearly better than HR, but the comparison to DPR′ is less
conclusive. It seems initially surprising that hierarchical reduction would perform worse
with increased reduced-game size; generally adding more data should improve the model.
Note, however, that in the reduced games where HR performance degrades (n ∈ {5, 7, 8}
in Figure 4.2b, n ∈ {7, 8} in Figure 4.3), n does not divide N = 12. This also leads to
the observation that because 11 is prime, the deviation-preserving reduction never has the
advantage of n− 1 dividing N − 1, and yet consistently performs well. Results for the 12-
agent, 6-strategy credit network game appear in Figure 4.3. Here again, DPR and DPR′

63

Figure 4.4: Full-game regret of reduced-game equilibria in congestion games. N = 100,
|S| = 2, 2 ≤ n ≤ 10.

perform similarly, and better than HR. The results from 12-agent, 6-strategy congestion
games (not shown) are broadly similar.

In a first attempt to understand effect of very substantial player reductions, I created
an additional set of congestion games with N = 100 and |S| = 2, and performed the
same experiments. The results in Figure 4.4 show clear separation between hierarchical
reduction and both variants of deviation-preserving reduction, suggesting that the differ-
ence DPR and DPR′ may shrink with the size of the full game. Further, DPR with n > 2

outperforming TR with |S| = 2 indicates that its advantage stems in part from better repre-
sentation of non-linear payoff functions, not merely from representing interactions among
more than two strategies.

Across all game classes and sizes examined (including those not shown), for any given
HR game size, there is a DPR game that provides more accurate analysis on average,
while simulating fewer full-game profiles. Virtually all of these differences are significant
at p < 0.05; the only exceptions are 4-player DPR versus 6-player HR in the 12-player
congestion game (Figure 4.4) and 12-player credit network game (Figure 4.3). In addition,
DPR3 outperforms TR across all game classes; the difference is significant at p < 0.05

in all cases except the credit network game. The difference between DPR4 and TR is
significant in all cases.

64

credit network congestion local-effect
n HR DPR HR DPR HR DPR
2 3.72 1.49† 1.68 0.39† 2.72 0.45†
3 3.72 1.64† 0.99* 0.17†* 1.04* 0.20†*
4 3.72 1.60† 1.05 0.10†* 0.98 0.12†*
5 1.98* 1.54† 1.10 0.08† 1.01 0.09†
6 1.19†* 1.39 0.98 0.05† 0.85* 0.08†

Table 4.1: Average number of strategies by which reduced- and full-game NE support
sets differ. * indicates significant difference between n and n − 1; † indicates significant
difference between DPRn and HRn.

credit network congestion local-effect
n HR DPR HR DPR HR DPR
2 0.713 0.703 0.435 0.069† 0.503 0.128†
3 0.764* 0.690† 0.141* 0.039†* 0.154* 0.064†*
4 0.860 0.640† 0.117* 0.022†* 0.117* 0.037†*
5 0.643* 0.641 0.141 0.019†* 0.144 0.027†*
6 0.467†* 0.564* 0.099* 0.018† 0.088* 0.026†

Table 4.2: Average L2 distance between full- and reduced-game NE distributions. * indi-
cates significant difference between n and n− 1; † indicates significant difference between
DPRn and HRn.

4.3.2 Comparison to Full-Game Equilibria

I also compared reduced-game equilibria under HR and DPR to equilibria computed di-
rectly in the corresponding 12-agent, 6-strategy full games. The comparisons use two
metrics: similarity of support sets, and L2 distance between distributions. I computed one
symmetric mixed-strategy ε-Nash equilibrium in each full game and another in each re-
duced game by running replicator dynamics initialized with a uniform mixture. Table 4.1
shows mean differences in support sets of corresponding full- and reduced-game equilib-
ria. I consider a strategy to be in the support of a symmetric ε-Nash equilibrium if it is
played with probability 0.01 or greater and compute the size of the symmetric difference
between the support sets. In nearly all cases, support sets of DPRn match those of full-
game equilibria significantly (p < 0.05) better than both HRn and HRn+1. In addition, for
congestion games and local-effect games, DPR>2 significantly outperforms TR, whereas
in credit network games, there is no significant difference between TR and DPR.

Table 4.2 shows the mean L2 distance between the vector representations of the same
full- and reduced-game equilibria. For congestion and local-effect games equilibria of
DPR games match full-game equilibria significantly better than those of HR and TR

65

(a) HR2 (21 profiles) (b) HR4 (126 profiles)

(c) TR ≡ DPR2 ≡ DPR′2 (36 profiles)

Figure 4.5: Histograms showing the number of strategies surviving iterated elimination of
dominated strategies in full but not reduced congestion games. N = 12, |S| = 6, 250
random games. TR ≡ DPR2 outperforms HR, sampling far fewer profiles.

games. In the credit network games, HR and DPR perform similarly, and DPR’s ad-
vantage over TR is smaller.

4.3.3 Dominated Strategies

Another useful operation in the analysis of simulation-based games is to check for domi-
nated strategies. A dominated strategy is one that no agent should ever play because there
is an alternative strategy that is at least as good in response to any profile of opponent
strategies. I ran experiments on the aforementioned 12-agent, 6-strategy congestion and
credit network games, comparing the set of strategies that remain after iterated elimina-
tion of strictly dominated strategies in the full game against those that remain in 2, 4, and
6-player reduced games. DPR and DPR′ produce very similar results, and both improve
over hierarchical and twins reduction. Figures 4.5 and 4.6 show histograms of the number

66

(a) TR ≡ DPR2 ≡ DPR′2 (36 profiles) (b) DPR′4 (336 profiles)

Figure 4.6: Histograms showing the number of strategies surviving iterated elimination of
dominated strategies in full but not reduced credit network games. N = 12, |S| = 6, 250
sample games. DPR′4 avoids the aggressive elimination occurring in TR.

of strategies eliminated in reduced games but not eliminated in full games.
In congestion games (Figure 4.5), twins reduction and both forms of deviation-preserving

outperform hierarchical reduction, eliminating fewer strategies in the reduced game that
survive in the full game, even when hierarchical reduction samples vastly more profiles.
These congestion games often exhibit dominated strategies in the full game, but strategies
almost never survived in a reduced game that were dominated in the full game.

In credit network games (Figure 4.6), no strategies are dominated in the full game,
but in the twins reduction game, many strategies are eliminated. Moving to DPR4 or
DPR′4 solves this problem almost entirely. These experiments also confirm that for all
reduction types, increasing the number of players in the reduced game reduces the number
of strategies erroneously found to be dominated.

4.4 Conclusions

Deviation-preserving reduction combines the most appealing aspects of hierarchical reduc-
tion and twins reduction. It also performs better than both prior methods experimentally:
equilibria from DPR games have lower full-game regret and more closely resemble full-
game equilibria, even when sampling fewer full-game profiles. In addition, performing
iterated elimination of dominated strategies on deviation-preserving reduction games stays
more faithful to the full game compared to other player reductions. The alternative DPR′

formulation performs reasonably well in the same tests. The simulation savings from DPR′

are greatest when the reduced game has many players but few strategies, so DPR′ may

67

prove useful in such cases. Though it may not be obvious how to choose between DPR

and DPR′, the evidence is quite compelling that deviation-preserving reduction is the best
available player reduction method for analyzing large simulation-based games.

Since the paper proposing deviation-preserving reduction [Wiedenbeck and Wellman,
2012] first appeared, DPR has largely supplanted HR as the reduction method of choice for
simulation-based game modeling. Projects applying deviation-preserving reduction have
included my own work on strategic formation of credit networks described in Chapter 2,
and several studies related to market-making and high-frequency trading, most recently that
of Wah and Wellman [2015].

A useful direction for future work in this domain would be investigating the sorts of
games that are most amenable to reduction. Player reduction relies fundamentally on as-
sumptions about payoff smoothness, but these assumptions have not been characterized for-
mally. It seems likely that certain properties of role-symmetric games could be established
that suggest whether or how player reduction should be applied. In general, simulation-
based game theory is applied when payoffs are not well understood, so such properties
would be most valuable if they could be inferred from simulation data.

The work I describe in Chapter 5 can also be viewed as an extension of player reduction.
Those methods fundamentally solve the same problem: facilitating approximate analysis
of role symmetric games with many players without enumerating the full normal form
representation of the game. It may turn out to be the case that constructing a reduced game
as an intermediate representation is not the only or even the best way of achieving this goal.

68

CHAPTER 5

Learning Game Models

As described in Chapter 4, deviation-preserving reduction improves on prior player reduc-
tion methods, enabling higher-fidelity analysis of large simulation-based games from lim-
ited samples. My evaluation of DPR focused on the accuracy of game-theoretic analysis
performed in the reduced game, rather than on directly comparing reduced- and full-game
payoff matrices, because the purpose of any simulation-based game model is to describe
equilibrium behavior in the simulated environment, and reduced games are of interest pri-
marily as a tool for achieving this goal. Acknowledging this objective changes the problem
of approximating large games from one of constructing the best reduced game to one of
performing the best analysis with limited sampling, and opens the door to techniques that
identify equilibria without explicitly constructing a payoff matrix.

5.1 Motivation: Limitations of Player Reduction

Viewed as tools for approximate equilibrium analysis, DPR and other reductions serve two
key functions: identifying the set of profiles simulated to construct the observation set Θ,
and specifying through M(Θ) how data from those profiles contributes to computation of
approximate equilibria. Recall from Chapter 1 that replicator dynamics computes equilibria
iteratively by evaluating the expected utility of a mixture1 and updating the mixture relative
to those expectations. Equation 1.12, reproduced below, gives the formula for expected
utility of strategy s played against mixture ~σ as a sum over the game’s profiles of the
payoff to s weighted by the profile’s probability under ~σ:

u(~σ, r, s) =
∑
~s∈~S

P (~s− ŝ | ~σ)u(~s, r, s) (1.12)

Computation of expected utilities in a reduced game can be viewed as an approximate
1Estimating expected utilities is also a crucial step in other equilibrium computation algorithms.

69

computation of expected utilities in the full game. The approximate sum is restricted to
a the subset of profiles ~S DPR used to construct the reduced game, and profilesM(~s, r, s)

are re-weighted according to their probability of occurrence P (~s − ŝ | ~σ) under ~σ in the
reduced game:

uDPR(~σ, r, s) =
∑

M(~s,r,s)∈~S DPR

P (~s− ŝ | ~σ)u(M(~s), r, s) (5.1)

As a method for choosing profiles to simulate and providing weights for the result-
ing observations, deviation-preserving reduction has a couple of clear shortcomings. First,
DPR makes inefficient use of simulation data. When a profile ~s is simulated, the simu-
lator outputs a payoff value for every strategy s ∈ ~s. However, because each reduced-
game payoff comes from a distinct full-game profile, DPR uses the payoff value from only
one strategy of each simulated profile. In the example from Chapter 4 with R = {1, 2},
N1 = 25, N2 = 12, S1 = {A,B,C}, and S2 = {D,E}, the mapping for DPR5,2 gave
M
(〈
〈2, 0, 3〉,

〈
1, 1
〉〉
, 1, A

)
=
〈
〈7, 0, 18〉, 〈6, 6〉

〉
. Simulating this profile gives payoff data

for strategies A, C, D, and E, but only the data for A is used in constructing the reduced
game; this profile is not in the domain of the mapping function M(·, r, s) for any other
strategy, and therefore does not contribute to expected utility estimates for other strategies.
Figure 5.1 shows the fraction of simulation data wasted in various symmetric DPR games.
In games with multiple roles, significantly more data is wasted. In the credit network study
discussed in Chapter 2, approximately two thirds of all payoff data in θ was ignored by
M(θ).

Player reductions are also also overly rigid in how they constrain the sampling process.
Like other player reductions, DPR provides a mapping from reduced-game profiles to
full-game profiles. To accurately estimate payoffs, each full game profile in the range of
M is simulated repeatedly, but other full-game profiles cannot contribute to the reduced
game model. As more samples of a single profile are collected, the returns to additional
samples of that profile diminish, and using DPR, the only alternative to sampling the same
profiles again is to increase the number of players in the reduced game. The experiments
in Chapter 4 show that this generally improves accuracy, but few full-game profiles are
shared across reduced-game sizes, requiring that sampling start almost from scratch in the
larger reduced game. If an alternative M could make use of a broader set of observations,
simulation resources could probably be allocated more effectively by taking fewer samples
of a larger set of profiles.

In this chapter, I dispense with the idea of fully enumerating the payoff matrix for
a reduced game and develop a machine-learning-based approach to estimating expected

70

2 4 6 8 10 12 14 16

reduced-game players (n)

0.0

0.2

0.4

0.6

0.8

1.0

fr
ac

ti
on

of
da

ta
w

as
te

d

|S| = 16

|S| = 8

|S| = 4

|S| = 2

Figure 5.1: DPR uses only one strategy’s payoff from each simulated profile; payoff data
for all other strategies is ignored. In a symmetric game, a (n−1)(|S|−1)

n|S|−1
fraction of payoff

data is ignored. This fraction is plotted for various plausible reduced-game sizes.

values of role-symmetric mixtures from simulation data. This approach uses Gaussian
process regression to take arbitrary simulation data as input and learn a utility function for
each strategy. It exploits the vector representation of a profile, concatenating role profiles
into a vector of counts for all strategies as the independent variable input to each regression.
I test several methods for estimating expected values from these regression functions. I
validate the learning method experimentally, using an experimental suite that allows testing
on much larger games than those in Chapter 4 and on noisy sample data. The experiments
demonstrate that learning methods can outperform DPR in estimating expected values and
enabling Nash equilibrium computation, but leave several open questions about the best
ways to select profiles to simulate and to incorporate information about payoff variance.

5.2 Related Work

This work is the first to use machine learning to approximate arbitrary symmetric games.
Vorobeychik et al. [2007] demonstrated the use of regression methods to learn payoff func-
tions over continuous strategy spaces. My work can be viewed as extending their work
to the domain of categorical strategies. Their learning methods relied on strategy sets that

71

were fully described by varying continuous parameters, such as bids in a single-unit auc-
tion and learned utility functions with respect to those parameters. My method relies on the
large number of symmetric players to provide learnable structure, allowing it to work on
arbitrary strategy sets. However, because utility functions are learned separately for each
strategy, my method provides no generalizability to unexplored strategies.

Some researchers have investigated explicitly learning compact representations of games.
Duong et al. [2009] developed a method for detecting graphical structures representing
independences among players’ payoffs. When present, such independences may allow
significantly compacted game representations, but may not exist, especially in symmetric
games, where independence of players’ payoffs would imply an environment devoid of
game-theoretic interactions. Honorio and Ortiz [2015] likewise learn graphical game mod-
els, in their case from observations of play rather than payoffs, using assumptions about
the structure of utility functions and the way that play is generated conditional on the ac-
tual payoff function. Gao and Pfeffer [2010] also exploit rationality assumptions in their
approach, which uses weighted constraint satisfaction to combine both payoff and play
observations in learning game models.

The most relevant prior work is the player reduction methods discussed in Chapter 4,
as they solve the same fundamental problem of exploiting symmetry and smoothness in the
utility functions to approximate large games from few samples. As the best of the player
reduction methods, DPR is the standard against which I evaluate the learning methods. In
the paper introducing twins reduction, Ficici et al. [2008] propose using linear regression
to learn the payoffs of a TR game from observation data. The experiments in Chapter 4
showed that this approach worked poorly on simulation-based games, but this could be
attributable to the inflexibility of either linear regression or twins reduction. This method
inspires one of the techniques I test for estimating expected values: constructing DPR

games from the learned payoff functions.

5.3 Learning and Applying Payoff Models

To learn a payoff model for a large simulation-based game, I perform a separate regression
to estimate utilities ûs for each strategy. The independent variable input to each regres-
sion is a vector representation of a profile ~s with dimension

∑
r∈R
|Sr|; for strategy s, the

dependent variable input is the payoff to strategy s in the corresponding profile u(~s, r, s). I
use Gaussian process regression [Rasmussen and Williams, 2006] to perform this learning.
Gaussian process regression is a locally-weighted method in which the estimated value at
any point is most heavily influenced by nearby training points. As such, it does not produce

72

a closed-form estimate of ûs, but rather permits queries at unknown points ûs(~s). Gaussian
process regression relies on a Gaussian process prior over possible regressor functions; this
prior can be viewed as a particular formalization of the implicit assumption behind player
reduction methods that utility functions are “smooth.”

For every strategy s ∈ ⋃
r∈R

Sr in any role, I run a regression to learn a mapping ûs

from profiles to payoffs that approximates the utility function u(·, r, s), where s ∈ Sr.
For any given profile ~s, the independent variable input to the regression for strategy s is
the concatenation of the role-profile vectors in ~s − ŝ. Returning to the example of profile〈
〈7, 0, 18〉, 〈6, 6〉

〉
, the input to the regression for ûA is the profile

〈
6, 0, 18, 6, 6

〉
, while the

regression for ûE receives the profile
〈
7, 0, 18, 6, 5

〉
. The example profile has no data for

strategy B and is therefore excluded from the regression for ûB.
Figure 5.2 gives an overview of the learning method. Given a set of profile observa-

tions Θ, a data set Θs = {θ ∈ Θ | s ∈ θ} is constructed for each strategy s, containing all
observations of payoffs to strategy s in profiles where s is played by at least one agent. For
each strategy, I then run Gaussian process regression on Θs to learn ûs. The regression uses
the payoff data Θs to perform a Bayesian update to its Gaussian process prior over possible
functions. The resulting Gaussian process process posterior does not have a known closed
form, but rather can be queried at any profile for mean and variance estimates. Gaussian
process regression was selected for its flexibility; polynomial regression or other methods
that output an explicit functional form could simplify subsequent analysis, but may not be
adequately expressive. In environments where simulation-based game modeling is neces-
sary, the analyst is unlikely to have advance knowledge of appropriate functional forms for
us.

Running Gaussian process regression on each of the observation sets Θs gives a model
that can be queried for estimates of u(~s, r, s) for any profile, role, and strategy. However,
finding Nash equilibria (and other analyses, like computing social welfare) requires esti-
mating the expected value to a single agent playing strategy s against opponents playing
a role-symmetric mixture ~σ. Recall from Equation 1.12 (reproduced in Section 5.1) that
this expectation is a weighted sum over all profiles with positive probability under ~σ. In
principle, ûs can be queried at each of these profiles, but in any game where player reduc-
tion or payoff learning is necessary, it is clearly infeasible to query the learned us function
for every profile ~s in the support of a mixture ~σ. If polynomial regression, or some other
method that outputs a suitable functional closed-form were used in place of Gaussian pro-
cess regression, this sum could in principle be approximated by an integral. However, with
locally-weighted regression methods that do not yield a closed form, other methods for
approximating û(~σ, r, s) are necessary.

73

noisy

observations

simulated
strategic

interaction

GP regression

Nash equilibrium

payoff Δ
(strat, player)

point estimation

payoffs

sampling
social welfare

{ } observation set

DPR construction ûs

Figure 5.2: Model construction. The dependent variable input for Gaussian process regres-
sion can be either payoffs or differences from average payoffs. Expected values—used in
social welfare and Nash equilibrium computation—can be estimated by sampling, point
estimation, or constructing a DPR game.

5.3.1 Estimating Expected Values

I propose and test three methods for estimating û(~σ, r, s) from the learned utility models:
sampling, point estimation, and constructing DPR games.

The sampling method draws a large number (k) of profile realizations ~sj ∼ ~σ randomly
according to the role-symmetric mixture. If evaluating ~σ =

〈
〈.2, .4, .4〉, 〈.7, .3〉

〉
in the

example game with N1 = 25 and N2 = 12, each profile realization is created by drawing
25 samples from 〈.2, .4, .4〉 and 12 samples from 〈.7, .3〉 to construct each profile ~sj . The
utility function us(~sj) is then queried at each profile realization and the resulting payoffs
are averaged:

û(~σ, r, s) ≈ 1

k

k∑
j=1

ûs (~sj ∼ ~σ) . (5.2)

This method provides an unbiased estimate of û(~σ, r, s) that is correct in the limit as
k → ∞. However, the sampling estimate requires time linear in k to compute, and gives
unstable payoff estimates. That is, if expected values for the same mixture were estimated
multiple times, each evaluation would give a slightly different result, potentially prevent-
ing replicator dynamics from converging. These drawbacks are acceptable when computing
regret and social welfare, but finding Nash equilibria involves a large number of expected
value computations, and requires stable expected value estimates to ensure convergence.

The second method, point estimation, relies on the large number of agents in the game.
As the number of agents approaches infinity, the distribution over profiles under a mixture
~σ approaches a point mass where the fraction of each role’s agents playing each strategy

74

is equal to that strategy’s probability in the mixture. The point estimation method makes a
single query to ûs at the point where population proportions match mixture probabilities:〈
Nr − Is∈Sr

〉
r∈R ◦ ~σ, where Is∈Sr is an indicator with value 1 if s belongs to Sr and 0

otherwise. In the example above, û(
〈
〈.2, .4, .4〉, 〈.7, .3〉

〉
, 1, A) is estimated by querying ûA

at the point
〈
〈4.8, 9.6, 9.6〉, 〈8.4, 3.6〉

〉
. The general formula for point estimation is given

by:
û(~σ, r, s) ≈ ûs

(〈
Nr − Is∈Sr

〉
r∈R ◦ ~σ

)
. (5.3)

This method is correct in the limit as Nr → ∞ for all r ∈ R (and may therefore be
adequate for large finite Nr), can be evaluated quickly, and provides numerically stable
expected value estimates amenable to use with replicator dynamics.

The final method for estimating û(~σ, r, s) constructs a DPR game from the learned
models and computes expected values in that game. For each payoff value uDPR(~s, r, s)

in a DPR game, the regression function ûs is queried at the full-game profile M(~s, r, s)

and the result entered in the reduced-game payoff matrix. The primary advantage of this
technique is that it allows a DPR game to be constructed from an arbitrary set of profile
observations. The first expected value computation with this method incurs overhead of
constructing the DPR game, but subsequent expected value computations are fast, and
when computing equilibria, the construction step can amortized over many queries.

Gaussian process regression has a number of hyperparameters, most importantly the
kernel and the characteristic length scale. I used the scikit-learn machine learning pack-
age [Pedregosa et al., 2011] to perform Gaussian process regression, and initial tests with
scikit-learn’s default parameters were disappointing; the learned Gaussian processes did a
poor job estimating expected values of symmetric mixed strategies. Choosing an appropri-
ate kernel by 3-fold cross-validation on the payoff data and determining the length scale by
maximum likelihood estimation drastically improved accuracy. This is, in retrospect, not
particularly surprising, but noteworthy because cross-validation on pure-strategy observa-
tion data led to better performance evaluating mixed strategies with the aforementioned
methods.

5.3.2 Computing Equilibria

As in previous chapters, I compute Nash equilibria in the learned game models using repli-
cator dynamics. Recall from Chapter 1 that on each iteration, replicator dynamics updates
the mixture in proportion to the expected value of each strategy. Any of the three methods
for estimating û can be used in place of u in the replicator dynamics update in Equa-
tion 1.11, but point estimation or DPR construction are preferred over sampling because

75

they give stable estimates when extremely similar mixtures are evaluated, enabling replica-
tor dynamics to converge.

Early experiments indicated success in estimating social welfare, but poor performance
computing equilibria. It seemed that the regressions were learning broad trends in payoffs
effectively, but failing to capture payoff differences crucial to computing regret and there-
fore finding Nash equilibria. To help the Gaussian processes capture payoff differences, I
modified the input to the regression so that instead of learning us for each profile ~s, it learns
the difference between the payoff to strategy s and the average payoff ū(~s) in the profile
for the role to which s belongs. I tried two variations on the payoff-difference calculation,
using the strategy-weighted and player-weighted averages. For strategy-weighted average,
the payoff difference u∆

strat is defined by

u∆
strat(~s, r, s) ≡ u(~s, r, s)− 1

|{s′ | s′ ∈ ~sr}|
∑
s′∈~sr

u(~s, r, s′).

For player-weighted average, the payoff difference u∆
player is defined by

u∆
player(~s, r, s) ≡ u(~s, r, s)− 1

Nr

∑
s′∈Sr

~s[r, s′]u(~s, r, s′).

The learned payoff differences û∆
s can be used in place of learned payoffs ûs as input to

replicator dynamics. Restricting Equation 1.11 to the components for a single role r and
strategy s for simplicity of exposition gives:

~σ i+1[r, s] ∝
(
u(~σ i, r, s)− µr

)
~σ i[r, s],

which, when û∆ is substituted for u, becomes

~σ i+1[r, s] ∝
(
û(~σ i, r, s)− 1

Nr

∑
s′∈Sr

~s[r, s′]û(~s, r, s′)− µr
)
~σ i[r, s].

When using point estimation, the profile-average payoff can, in a rough sense, be thought
of as absorbed into the minimum payoff term µ. The profile-average payoff depends on the
profile, but under point estimation only one profile is queried for each expected value cal-
culation, so subtracting the mean payoff simply lowers µ, causing replicator dynamics to
update more slowly. Importantly, if this update converges, all strategies played with posi-
tive probability have equal estimated expected value, making ~σ a Nash equilibrium, subject
to the inaccuracies of the Gaussian process and point estimation methods. Alongside payoff

76

Figure 5.3: Experiment design. Action-graph representations of random local-effect games
are generated and payoffs are sampled with Gaussian noise noise. Nash equilibria and
social welfare are estimated using both learning and DPR, and compared against the full
game.

differences, the mean payoff can be learned as a function of the profile, allowing expected
values to be estimated directly for computing regret or social welfare.

5.4 Validation Experiments

To compare learned game models against deviation-preserving reduction, I developed new
machinery that permits evaluation on substantially larger and more complex full games.
The key to this experimental framework is the action-graph game representation [Jiang et

al., 2011]. In an action-graph game, strategies are embedded in a directed graph, and an
agent’s payoff depends on the strategy it chooses and the number of agents choosing the
same strategy or neighboring strategies. As in Chapter 4, the full games I generate have
local-effect game representations that are exponentially more compact than their symmetric
payoff matrix (or even action-graph game) representations, but these local effect functions
are useful only for profile-payoff queries, not for mixed-strategy analysis. However, the
action-graph representation allows me to compute exact values for regret and social welfare
in much larger true games than before. As opposed to the 12-player, 6-strategy games with
roughly 6 thousand profiles used to validate DPR in Chapter 4, the following experiments
include games up to 81 players and 8 strategies for a total of over 6 billion profiles in the
full symmetric representation.

77

Testing on a class of games with a compact representation, like local-effect games en-
sures that the ground-truth payoff functions contain internal structure that could be ex-
ploited in principle by a machine learning approach. The premise that learning can induce
reasonable game models from sparse data implies that games of interest will generally have
some amount of structure (else inducing from sparse data is hopeless), though the form of
this structure is not known a priori. The Gaussian process regression method is not in any
way tuned to learning local effect games with quadratic payoff functions, but these games
do satisfy the assumption that payoffs vary smoothly in profile space.

5.4.1 Experimental Setup

The general experimental setup is illustrated in Figure 5.3. For the experiments that fol-
low, I generated 100 random local-effect game instances of each of the following sizes: 8
strategies and 17, 33, 49, 65, and 81 players, as well as 6 strategies and 61 players. In all
of these games, strategies have two or three action-graph neighbors with equal probability,
and the neighbors are selected uniformly at random. This means that each strategy’s payoff
can depend on the number of players choosing three or four different strategies (including
the strategy itself). Each strategy’s payoff is the sum of self-interaction and neighbor inter-
action terms. Interaction terms are quadratic functions of the number of players choosing
a strategy with random coefficients. For self-interaction functions, I drew constant, linear,
and quadratic coefficients from N (0, 4), N (−4, 2), and N (−2, 1) respectively. These dis-
tributions result in roughly a 2.3% chance that any given linear or quadratic self-interaction
term will be positive, making symmetric pure-strategy equilibria possible but rare. For
neighbor-interaction functions, constant terms were set to 0, while linear and quadratic co-
efficients were drawn fromN (0, 2) andN (0, 1) respectively. When drawing samples from
these full games, I add noise drawn from N (0, 100).

Using these games, I performed two experimental settings. Setting 1 is intended to
demonstrate the validity of my learning approach as a replacement for the current state of
practice employing deviation-preserving reduction. Setting 2 explores various parameteri-
zations of the learning methods and various sampling regimes as input to DPR.

In Setting 1, I construct DPR games by drawing 10 samples of every required profile.
Across the 8-strategy games, I constructed only 5-player DPR games, while for the 6-
strategy games, I constructed 2, 3, 4, 5, 6, and 7-player DPR games. For each of these DPR
games, I drew an equal-size observation set, but spread those observations over a larger set
of profiles. These observation sets for learning were chosen by selecting random profiles
near those used by DPR, treating the fraction of agents playing each strategy in a DPR

78

profile as a probability distribution and drawing 10 samples. I also tested further spreading
of samples by selecting profiles near those required by a DPR game with extra players,
but drawing fewer samples per profile to hold the total number of samples constant. For
instance, adding one extra player when comparing against the 2-player, 6-strategy DPR

game, which has 36 profiles and therefore 360 total observations, would mean selecting
2–3 profiles to observe near each of the 126 profiles required to construct the 3-player,
6-strategy DPR game. I do not claim that these sampling methods are optimal, but rather
that they establish a baseline for the performance of my regression models.

On each observation set in Setting 1, I built learning models using payoff data directly
(û), and using differences from strategy-average payoffs (û∆

strat). The former were used
for computing social welfare of role-symmetric mixed strategies with both sampling and
point estimation, while the latter were used for computing role-symmetric mixed strategy
ε-Nash equilibria with point estimation. In all experiments from the first set, learning was
performed on mean payoffs whenever multiple samples were taken of the same profile,
rather than incorporating information about sample variance into the learned models.

In Setting 2, I used 6-strategy full games with 17, 33, 49, and 65 players, and con-
structed 3-player DPR games with 10, 20, 40, or 80 samples per profile, as well as 5-
player DPR games with 10, 20, or 40 samples per profile. For each of these DPR games, I
constructed regression game models from the same data set, learning payoffs directly and
player-average differences. All learning for the Setting 2 experiments made use of sample
variance information, adding normalized variance to the diagonal of the Gaussian process’s
covariance matrix.

In Setting 2, whenever payoff differences were learned, the mean payoff was also
learned, so that accurate expected value estimates could be recovered. In this set, I com-
puted social welfare using all three methods for expected value estimation, and regret of
estimated Nash equilibria using point estimation and by constructing DPR games. When
constructing DPR games from learned utility functions, I varied the size of the DPR game
to be both smaller and larger than the game from which samples were drawn. However,
constructing a DPR game performed very poorly in initial tests, and was therefore ex-
cluded from several of the experiments that follow. The preliminary experiments indicated
that increasing the size of the constructed DPR game improved expected value estima-
tion independent of the data set on which learning was performed. This may merit further
investigation in the future, but is unlikely to yield practical gains.

79

17 33 49 65 81
full-game players

0
100
200
300
400
500
600
700
800

m
ea

n
ab

so
lu

te
 e

rr
or

DPR
sampling
point estimation

Figure 5.4: Error of expected-value estimates, holding reduced-game size fixed. DPR
and learning perform similarly on 17-player full games, but the learning methods do much
better on larger games. Estimating expected values by sampling is only slightly better than
using point estimation.

2 3 4 5 6 7
reduced-game players

0

300

600

900

1200

1500

1800

m
ea

n
ab

so
lu

te
 e

rr
or

DPR
sampling
point estimation

Figure 5.5: Error of expected-value estimates, holding full-game size fixed. For most
reduced-game sizes, learning outperforms DPR, but the profiles used as input in the 2-
player case are concentrated around symmetric pure strategies, leaving most of the profile
space unlearned.

80

2 3 4 5 6 7
reduced-game players

0

300

600

900

1200

1500

1800

m
ea

n
ab

so
lu

te
 e

rr
or

0 extra
1 extra
2 extra

Figure 5.6: Error of expected-value estimates, holding full-game size fixed. Allocating
the same number of samples to the learning method, but spreading them over more profiles
by sampling as though the DPR game had extra players, overcomes the problems with the
smallest observation set, but is irrelevant for larger reduction sizes.

5.4.2 Experimental Results

The first experiments on Setting 1 compared performance of game learning using both sam-
pling and point estimation against DPR, at estimating u(~s, r, s). Accuracy in estimating
these expected values translates directly to accuracy in estimating mixed-strategy social
welfare, which is a probability-weighted sum of these values (Equations 1.9 and 1.10).

I evaluated each method on 321 mixtures spaced on a grid; each point plotted in Figures
5.4 and 5.5 shows a method’s average absolute error u(~s, r, s) − û(~s, r, s) across the 321
mixtures, 8 strategies, and 100 games. I varied both the size of the full game being approx-
imated and the amount of data used to approximate it. Figure 5.4 shows estimation error
plotted against the number of players in a full game with 8 strategies, holding the size of
the observation set fixed at a 5-player DPR game. Figure 5.5 plots estimation error against
the size of the DPR game, holding the full game fixed at 61 players and 6 strategies.

Figure 5.4 shows that for 17-player full games, all three methods have similar perfor-
mance (DPR in fact falls between sampling and point estimation), but for larger games,
the regression-based methods significantly outperform DPR. While it appears from the
figure that approximation error is exploding with the number of players for all three meth-
ods, two mitigating factors should be noted. First, the number of profiles in a symmetric

81

2 3 4 5 6 7
reduced-game players

0

200

400

600

800

1000

1200

m
ea

n
re

gr
et

DPR
regression

(a)

3 4 5 6 7
reduced-game players

0

40

80

120

160

200

m
ea

n
re

gr
et

DPR
regression

(b)

Figure 5.7: Regret of identified equilibria. The payoff difference regression method per-
forms extremely poorly at identifying equilibria with a very small amount of data, but
starting from 3-player reduced game data sets, its equilibria have significantly lower regret
than those from DPR.

82

2 3 4 5 6 7
reduced-game players

0

200

400

600

800

1000

1200

m
ea

n
re

gr
et

0 extra
1 extra
2 extra

Figure 5.8: Regret of identified equilibria. Spreading the observation set across more
profiles does not improve the quality of equilibria.

game with 8 strategies is O(N7), so the linear spacing of the horizontal axis undersells
the growth in game size. Second, the average payoff magnitude in our action-graph games
grows quadratically in the number of players, and I have not normalized estimation error
to the payoff scale.

Figure 5.5 shows that both reduction and regression perform extremely poorly on the
smallest data set—that corresponding to the 2-player DPR game, which has a total of
360 profile observations—but regression does much worse. Across all other data set sizes,
regression easily outperforms DPR. Once again, sampling holds a consistently small but
significant advantage over point estimation. The regression methods’ poor performance
on the 2-player reduction data set is attributable to the zero-mean Gaussian process prior.
Due to the manner in which DPR games are constructed, all observations in this setting
are allocated to profiles where nearly all players choose the same strategy. This means
that the regression has almost no data for profiles with a mix of several different strategies,
and is dominated by its prior over most of the profile space. DPR, by contrast, estimates
expectations in a 2-player game and therefore interpolates linearly between the extreme
profiles for which it has data.

Figure 5.6 plots estimation error against reduced-game size for the default data spread,
as well as one and two extra players, as explained above. In this graph, the curve labeled “0
extra” corresponds to the curve labeled “sampling” in Figure 5.5; the other two curves also

83

use the sampling method, but results for point estimation would look identical. Spreading
the 360 samples in the smallest input set over a wider collection of profiles vastly improves
results for the 2-player DPR input size. This confirms the explanation of the anomaly at 2
players in Figure 5.5. For reduced games with more than two players, the extra spread in
the profiles has a negligible effect on Gaussian process model accuracy.

The second set of experiments on Setting 1 compared the quality of equilibria computed
using the payoff-difference learning method and DPR. For each game in the 61-player 6-
strategy data set, I computed equilibria using each method at 2–7 reduced-game players,
and for each equilibrium, I computed regret in the full game. Figure 5.7 summarizes the
results; 5.7a shows that the Gaussian process method again performs extremely poorly on
the smallest data set, but 5.7b zooms in on the 3–7-player reduced games where learning
demonstrates a consistent advantage. Learning’s absolute regret advantage over DPR stays
roughly constant over the range shown in Figure 5.7b at approximately 50 in the arbitrary
payoff units of our action-graph games, but the relative advantage grows from a factor of
1.5 to 2.25.

As with the expected value experiments above, I tested the equilibrium computation
method using input data with observations spread over more profiles by adding extra play-
ers to the DPR profile set while holding the number of observations constant. Figure 5.8
shows the results of these experiments. Unlike expected values, even with the smallest data
set (corresponding to DPR2), equilibrium-finding did not benefit from more-widely spread
observations. While I cannot rule out the possibility that some better allocation of a small
sample set exists, I are forced to conclude that computing equilibria in 82 million-profile
games with payoff-difference learning will generally require more than 360 observations.

Results from Setting 2 are shown in Figures 5.9 and 5.10. In both figures, the points
at 792, 1584, and 3168 profiles sampled correspond to 5-player DPR games, while the
remaining four sample counts are from 3-player DPR games. For both regression and re-
duction, increasing the number of samples generally helped, but this effect was dwarfed by
the effect of spreading out the samples by increasing the number of players in the reduced
game. Regressions on player-weighted differences performed worse than learning payoffs
directly in both experiments across virtually all full-game and data set sizes. Results for
player-weighted differences are therefore not shown, and the points labeled GP correspond
to directly-learned payoffs.

The results for expected value estimation in Figure 5.9 indicate that with the help of
variance information, learned models can approximate true-game expected values better
than DPR even if both receive the same DPR data set. The results for regret of equilibria
computed in learned and DPR games shown in Figure 5.10 are less encouraging for the

84

0 5000 10000 15000 20000 25000 30000

profiles sampled

0

200

400

600

800

1000

m
ea

n
ab

so
lu

te
er

ro
r

N = 17 DPR
N = 33 DPR
N = 49 DPR
N = 17 GP
N = 33 GP
N = 49 GP

Figure 5.9: Setting 2: Error of expected-value estimates. Regression performs well here
despite using the same data set as DPR. Neither method benefits substantially for more
samples of the same profiles.

0 5000 10000 15000 20000 25000 30000

profiles sampled

0

50

100

150

200

250

300

350

tr
ue

-g
am

e
re

gr
et

N = 17 DPR
N = 33 DPR
N = 49 DPR
N = 65 DPR
N = 17 GP
N = 33 GP
N = 49 GP
N = 65 GP

Figure 5.10: Setting 2: Regret of identified equilibria. Regression never outperforms
DPR with n = 3, but in n = 5 reduced games, regression does as well as or better than
DPR.

85

learning method. In small games and with small amounts of data DPR gives consistently
lower-regret equilibria, though in the largest data sets, regression gives reasonable results.

Several additional sets of experiments are clearly necessary in Setting 2. First, spread-
ing samples over more profiles needs to be tested in combination with inputting variances
to the Gaussian process regression. This alone may make a pivotal difference in favor of the
learning model. Second, huge disparity between Setting 1 and Setting 2 results on learning
differences from profile-average payoffs needs to be explained.

5.5 Conclusions

I have demonstrated a method for approximating simulation-based games with a large num-
ber of players from a small amount of data using machine learning. The method uses Gaus-
sian process regression on a count-vector representation of profiles can learn utility func-
tions for each strategy. From the learned Gaussian processes, we can estimate expected
values of symmetric mixed strategies using either sampling or point estimation. Sampling
gives the most accurate estimates and is therefore preferable for computing social welfare,
while point estimation is nearly as accurate and numerically stable, making it best for input
to replicator dynamics when computing Nash equilibria. Learning payoff differences may
improve Nash equilibrium computation.

The action-graph game experimental framework allows testing on games with under-
lying payoff structure that should be learnable, but is unknown to the learning methods.
The test suite includes games many orders of magnitude larger than any used in previous
game-approximation experiments. Experimental results show that learning can outperform
DPR as it is commonly applied in approximating large simulation-based games, producing
lower error in social welfare estimates and lower regret of identified equilibria when given
sufficient data.

An advantage of learning over reduction is that it can take an arbitrary set of profiles
as input and could therefore be applied to empirical games based on data that derives from
an observational process rather than a directed simulation. In simulation-based games, this
opens an avenue for future research exploring better allocations of sampling effort for in-
put to payoff regression models. In addition, the flexibility of learned models to accept
additional data could facilitate interleaving of sampling and analysis, with preliminary es-
timates of equilibria guiding additional sampling.

The Gaussian process models that my method learns hold more information than I am so
far taking advantage of: I query the mean of the distribution at points of interest, but never
query variance. Variance information could help to guide sampling decisions, prioritizing

86

exploration in regions of the profile space where payoff estimates are uncertain. It would
also be useful to support additional types of game-theoretic reasoning—like identifying
dominated strategies—with the learned payoff models, and variance information might
contribute to confidence bounds on these analysis results.

87

CHAPTER 6

Conclusion

Game-theoretic reasoning is a powerful tool for understanding multi-agent systems that
relies on precise description of agent interactions and incentives. Simulation-based game
theory enables analysis based on procedural descriptions of agents and their environment,
but faces computational bounds when applied to large-scale interactions. This thesis pro-
vides methods that help address the scaling of simulation-based game analysis with respect
to the number of agents and the amount of data.

6.1 Summary of Contributions

The study of strategic formation of credit networks described in Chapter 2 demonstrates the
value of simulation-based game theory as a modeling tool where classical game-theoretic
analysis comes up short. Because interactions among agents in a credit network depend on
the state of the network, which depends on the history of transactions, a clean analytical
characterization of agent incentives is out of the question. Further, because interactions
extend over a long period of time with branching possibilities for the network’s state, enu-
merating all possible outcomes is a fool’s errand.

One approach to understanding strategic behavior in such complex scenarios is to as-
sume away some of the complexity to produce an analytically tractable model, then solve
that model and follow up by exploring how insights from the simple model may generalize.
My co-authors pursue this simplification approach, but I show that their results generalize
poorly to even slightly more complex settings. Using simulation-based game analysis, I
analyze a much richer credit network formation scenario. This analysis necessarily pro-
vides weaker results than the analytical approach, but gives insights about a much more
realistic setting. I explore heuristics for issuing credit, and the sorts of credit networks that
can result, showing among other results that the information structure plays a critical role
in agents’ ability to form centralized networks.

88

The credit network domain demonstrates the need for new techniques to scale simulation-
based game theory. With 61 agents and 32 strategies, the full game would have 3.0× 1024

profiles, so simulating all of them is clearly infeasible. Iterative exploration through the
inner and outer loop procedures helps to reduce the number of strategies that must be con-
sidered simultaneously, but is not sufficient to ensure tractable analysis. Player reduction
was needed to allow exploration of a non-trivial number of strategies; the very first version
of the credit network study [Dandekar et al., 2011b] employed hierarchical reduction. The
recognition of potentially spurious HR equilibria in this setting motivated the development
of deviation-preserving reduction, which has been used in subsequent credit network SGT
studies.

The credit network simulator produces payoff observations with relatively high vari-
ance. To combat this, at least 1000 and sometimes many more samples were taken of every
profile simulated in the iterative exploration of the DPR game. The number of simulations
was generally chosen using a rule-of-thumb that could easily have led to far too much or
too little sampling effort. Too little sampling would jeopardize the validity of game anal-
ysis results, while too much sampling could have impeded exploration of a larger set of
strategies or additional environment parameters. Bootstrap-based statistical methods for
simulation-based game theory can help ensure that samples are allocated efficiently and
that results from the SGT study can be taken as serious scientific evidence about the simu-
lated environment.

In Chapter 3, I show how ideas from bootstrap statistics can be adapted to analysis of
simulation-based games. By simultaneously resampling all payoffs in a simulation-based
game, confidence intervals can be computed for SGT statistics. Most importantly, this tech-
nique allows analysts to report statistically valid regret estimates for equilibrium candidates
in simulation-based games. Confidence intervals for regret also allow for better sampling
control in SGT studies. I demonstrated empirically that bootstrap regret distributions and
the resulting confidence intervals are well-calibrated across a number of game classes and
noise distributions.

In Chapter 4, I describe deviation-preserving reduction, a player reduction method
for approximating games with a large number of agents by constructing smaller games
from simulation data. Deviation-preserving reduction improves over other player reduction
methods by ensuring that the information most crucial to computation of Nash equilibrium—
the payoff differences resulting from unilateral deviation—is preserved in the reduced
game. DPR also allows the analyst to choose the reduced game size, trading off time
to construct the model with accuracy of approximation. In my experiments, I applied DPR

and other player reductions to various classes and sizes of games, and demonstrated that

89

DPR provides better analysis with respect to the full game across a number of measures,
most importantly the full-game regret of reduced-game equilibria.

In Chapter 5, I re-frame the player reduction problem as a machine learning problem,
and propose methods based on Gaussian process regression to construct game models from
sparse simulation data. This approach makes use of data ignored by DPR and can allow
for better allocation of sampling effort. I test several approaches for learning payoff data
and for extracting expected values of mixed strategies from the learned models. I compare
DPR and learning approaches on much larger full games through an action-graph game test
suite. My experiments show that learned payoff models can yield better payoff estimates
and equilibria than DPR.

6.2 Future Directions

Deviation-preserving reduction has been employed in a number of recent simulation-based
game studies. This success is attributable in part to the strong similarity between DPR and
HR—which it has largely supplanted—from a methodological perspective. A researcher
interested in simulation-based analysis of a large game likely would already have needed
to employ player reduction, and substituting DPR for another reduction method is con-
ceptually straightforward. Another factor that certainly helped promote adoption of DPR
is ease of use: through the GameAnalysis package I have provided support for analyzing
deviation-preserving reduction games, and with my guidance, DPR schedulers were in-
corporated into the EGTA-Online system for running game-theoretic simulations [Cassell
and Wellman, 2013]. Finally, wider adoption was likely aided by my own use of DPR
in studying credit network formation, which both pushed me and my colleagues to im-
prove support for DPR and added further demonstration of its viability to the validation
experiments described in Chapter 4.

Evidence in this thesis indicates that my bootstrapping and model learning methods
represent substantial improvements over the current state of practice in simulation-based
game theory. I therefore want to learn from the example of deviation-preserving reduction
and take active steps to promote them, rather than allow them to fall out of use like a num-
ber of the related works cited throughout this thesis. To that end, I am actively engaged
in simplifying the interface to both methods and better integrating them with the rest of
the GameAnalysis suite. An obvious point for integrating bootstrapping with existing tools
is in the automated scheduling of simulations for the SGT inner loop. At present sam-
pling decisions are often driven by equilibria and regrets computed from a small number
of samples. Using bootstrapping to control these sampling decisions would immediately

90

improve the reliability of conclusions from the inner loop search process, and would also
promote the use of bootstrap statistics for the eventual reporting of results from studies
using automated strategy exploration.

The formulation of replicator dynamics that I give in Equations 1.11–1.13 bears a strong
resemblance to Markov chain Monte Carlo problems. This resemblance is strengthened
when considering sampling-based expected value estimates as input to replicator dynamics
in Section 5.3. Reformulating this problem to apply MCMC algorithms like Metropolis-
Hastings might yield significant benefit when computing equilibria from incomplete sam-
pling of the payoffs. Importance sampling approaches could similarly help to focus on
relevant regions of the strategy space and reduce the sampling burden in large games.

A number of practical questions about game model learning will probably be driven
forward best by practical application. For example, at present there is no clear prescription
for how to select profiles to simulate as inputs to the regression; in Chapter 5, I proposed
further methodological studies to resolve this question, but I expect that practical applica-
tion of game model learning is at least as likely to suggest good ideas. I therefore intend to
make sure that my next simulation-based game study can make use of learning to push the
method forward and provide practical demonstration of its applicability.

In Chapters 3, 4, and 5, I describe potential extensions to the proposed methods and av-
enues for additional validation, but there is also room for further work exploring combined
application of these techniques. In particular, bootstrapping and game model learning could
potentially be mutually reinforcing. At present, my methods do not take full advantage of
the learned Gaussian process models, ignoring the produced variance estimates. These
estimates provide additional information about model uncertainty that could contribute to
bootstrap-based confidence measures. The learning methods could also potentially benefit
from bootstrap statistics for model selection. Further, both tools open new questions about
how samples should be gathered for simulation-based game studies that should ideally be
explored in tandem. It is also worth considering how my discrete profile-based learning
methods could be combined with the prior work of Vorobeychik et al. [2007] learning
payoff functions over continuous strategy spaces, and with outer-loop strategy exploration
methods [Schvartzman and Wellman, 2009; Wellman et al., 2013] to improve scaling in the
size of the strategy set |Sr|.

My thesis provides several techniques that help improve analysts to derive generaliz-
able results from simulation-based game analysis. One sort of generalization that has to
date received little attention is how equilibrium analysis varies with the number of agents.
Many simulation-based game studies compare across multiple environments with differ-
ent simulation parameters, sometimes including different numbers of agents. However, the

91

number of simulated agents is often chosen fairly arbitrarily (this was certainly the case
in the credit network formation game), and can in principle have a large influence on the
results of SGT models. More principled techniques for generalizing game analysis across
simulations with a varying number of agents would greatly improve the explanatory power
of simulation-based game theory.

Another avenue for generalization through simulation-based game theory may lie in
incorporation of non-standard preference models. Much work in behavioral game theory
has explored ways that human decision-making differs from game-theoretic predictions,
but resulting models are often analytically intractable. SGT may present an easier route to
making use of behavioral models, and SGT could reap further benefits in generalizability
from methods to incorporate behavioral models of agent decisions. Simulation-based game
theory provides a computational approach that expands the reach of game-theoretic anal-
ysis. This thesis pushes the boundaries of what problems can be studied with simulation-
based game theory through better approximations and use of data, but much room for new
SGT techniques remains.

92

BIBLIOGRAPHY

Elliot Anshelevich and Martin Hoefer. Contribution games in networks. Algorithmica,
63:51–90, 2012.

Robert Axtell, Robert Axelrod, Joshua M. Epstein, and Michael D. Cohen. Aligning simu-
lation models: A case study and results. Computational and Mathematical Organization
Theory, 1(2):123–141, 1996.

Tim Baarslag, Katsuhide Fujita, Enrico H. Gerding, Koen Hindriks, Takayuki Ito,
Nicholas R. Jennings, Catholijn Jonker, Sarit Kraus, Raz Lin, Valentin Robu, and
Colin R. Williams. Evaluating practical negotiating agents: Results and analysis of the
2011 international competition. Artificial Intelligence, 198:73–103, 2013.

Venkatesh Bala and Sanjeev Goyal. A noncooperative model of network formation. Econo-
metrica, 68:1181–1229, 2000.

Ben-Alexander Cassell and Michael P. Wellman. Asset pricing under ambiguous informa-
tion: An empirical game-theoretic analysis. Computational and Mathematical Organi-
zation Theory, 18(4):445–462, 2012.

Ben-Alexander Cassell and Michael P. Wellman. EGTAOnline: An experiment manager
for simulation-based game studies. In Multi-Agent Based Simulation XIII, volume 7838
of Lecture Notes in Artificial Intelligence. Springer, 2013.

Paul R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, 1995.

Jacomo Corbo, Antoni Calvó-Armengol, and David Parkes. A study of Nash equilibrium
in contribution games for peer-to-peer networks. SIGOPS Operating Systems Review,
40:61–66, 2006.

Pranav Dandekar, Ashish Goel, Ramesh Govindan, and Ian Post. Liquidity in credit net-
works: A little trust goes a long way. In 12th ACM Conference on Electronic Commerce,
pages 147–156, San Jose, 2011.

Pranav Dandekar, Bryce Wiedenbeck Ashish Goel, and Michael P. Wellman. Strategic
formation of credit networks: Preliminary report. In Trading Agent Design and Analysis
Workshop, 2011.

93

Pranav Dandekar, Ashish Goel, Michael P. Wellman, and Bryce Wiedenbeck. Strategic
formation of credit networks. ACM Transactions on Internet Technology, 15(1):3:1–
3:41, 2015.

Constantinos Daskalakis, Paul W. Goldberg, and Christos H. Papadimitriou. The complex-
ity of computing a Nash equilibrium. Journal on Computing, 39(1):195–259, 2009.

A. C. Davison and D. V. Hinkley. Bootstrap Methods and their Application. Cambridge
University Press, 1997.

Dimitri B. DeFigueiredo and Earl T. Barr. TrustDavis: A non-exploitable online reputation
system. In 7th IEEE International Conference on E-Commerce Technology, pages 274–
283, Washington, DC, 2005.

Quang Duong, Yevgeniy Vorobeychik, Satinder Singh, and Michael P. Wellman. Learning
graphical game models. In 21st International Joint Conference on Artificial Intelligence,
pages 116–121, 2009.

Alex Fabrikant, Ankur Luthra, Elitza N. Maneva, Christos H. Papadimitriou, and Scott
Shenker. On a network creation game. In 22nd ACM Symposium on Principles of Dis-
tributed Computing, pages 347–351, 2003.

Sevan G. Ficici, David C. Parkes, and Avi Pfeffer. Learning and solving many-player games
through a cluster-based representation. In 24th Conference on Uncertainty in Artificial
Intelligence, pages 187–195, Helsinki, 2008.

Linda W. Friedman and Hershey H. Friedman. Analyzing simulation output using the
bootstrap method. Simulation, 64(2):95–100, 1995.

Xi Alice Gao and Avi Pfeffer. Learning game representations from data using rationality
constraints. In 26th Conference on Uncertainty in Artificial Intelligence, pages 185–192,
2010.

Arpita Ghosh, Mohammad Mahdian, Daniel M. Reeves, David M. Pennock, and Ryan
Fugger. Mechanism design on trust networks. In 3rd International Workshop on Internet
and Network Economics, pages 257–268, 2007.

Jean Honorio and Luis Ortiz. Learning the structure and parameters of large-population
graphical games from behavioral data. Journal of Machine Learning Research, to appear,
2015.

Matthew O. Jackson and Asher Wolinsky. A strategic model of social and economic net-
works. Journal of Economic Theory, 71(1):44–74, 1996.

Albert Xin Jiang, Kevin Leyton-Brown, and Navin A. R. Bhat. Action-graph games. Games
and Economic Behavior, 71(1):141–173, 2011.

Patrick R. Jordan and Michael P. Wellman. Generalization risk minimization in empirical
game models. In 8th International Conference on Autonomous Agents and Multi-Agent
Systems, pages 553–560, Budapest, Hungary, 2009.

94

Patrick R. Jordan, Christopher Kiekintveld, and Michael P. Wellman. Empirical game-
theoretic analysis of the TAC supply chain game. In 6th International Joint Conference
on Autonomous Agents and Multi-Agent Systems, pages 1188–1195, Honolulu, HI, 2007.

Patrick R. Jordan, Yevgeniy Vorobeychik, and Michael P. Wellman. Searching for approx-
imate equilibria in empirical games. In 7th International Conference on Autonomous
Agents and Multi-Agent Systems, pages 1063–1070, Estoril, Portugal, 2008.

Dean Karlan, Markus Mobius, Tanya Rosenblat, and Adam Szeidl. Trust and social collat-
eral. Quarterly Journal of Economics, 124(3):1307–1361, 2009.

Michael Kearns and Yishay Mansour. Efficient Nash computation in large population
games with bounded influence. In 18th Conference on Uncertainty in Artificial Intel-
ligence, pages 259–266, Edmonton, 2002.

Kevin Leyton-Brown and Moshe Tennenholtz. Local-effect games. In 18th International
Joint Conference on Artificial Intelligence, pages 772–780, Acapulco, 2003.

Freddy Limpens and Denis Gillet. A competence bartering platform for learners. In 10th
International Conference on Advances in Web-Based Learning, pages 148–153, Hong
Kong, China, 2011.

Richard J. Lipton, Evangelos Markakis, and Aranyak Mehta. Playing large games using
simple strategies. In 4th ACM Conference on Electronic Commerce, pages 36–41, San
Diego, CA, 2003.

Zhengye Liu, Hao Hu, Yong Liu, Keith W. Ross, Yao Wang, and Markus Mobius. P2P
trading in social networks: The value of staying connected. In 29th IEEE International
Conference on Computer Communications, pages 1–9, San Diego, CA, 2010.

Alan Mislove, Ansley Post, Peter Druschel, and Krishna P. Gummadi. Ostra: Leverag-
ing trust to thwart unwanted communication. In 5th Usenix Symposium on Networked
Systems Design and Implementation, pages 15–30, San Francisco, 2008.

Dov Monderer and Lloyd S. Shapley. Potential games. Games and Economic Behavior,
14:124–143, 1996.

John Nash. Non-cooperative games. Annals of Mathematics, 54(2):286–295, 1951.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-
del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

Ryan Porter, Eugene Nudelman, and Yoav Shoham. Simple search methods for finding a
Nash equilibrium. Games and Economic Behavior, 63(2):642–662, 2008.

C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. Adap-
tive Computation and Machine Learning. MIT Press, 2006.

95

Daniel M. Reeves. Generating trading agent strategies: Analytic and empirical methods
for infinite and large games. PhD thesis, University of Michigan, 2005.

Robert W. Rosenthal. A class of games possessing pure-strategy Nash equilibria. Interna-
tional Journal of Game Theory, 2:65–67, 1973.

L. Julian Schvartzman and Michael P. Wellman. Stronger CDA strategies through empirical
game-theoretic analysis and reinforcement learning. In 8th International Conference on
Autonomous Agents and Multi-Agent Systems, pages 249–256, Budapest, Hungary, 2009.

Peter D. Taylor and Leo B. Jonker. Evolutionary stable strategies and game dynamics.
Mathematical biosciences, 40(1):145–156, 1978.

Joel Veness, Marc Lanctot, and Michael Bowling. Variance reduction in Monte-Carlo tree
search. In Advances in Neural Information Processing Systems, pages 1836–1844, 2011.

Bimal Viswanath, Mainack Mondal, Krishna P. Gummadi, Alan Mislove, and Ansley Post.
Canal: Scaling social network-based Sybil tolerance schemes. In 7th European Confer-
ence on Computer Systems, Bern, Switzerland, 2012.

Yevgeniy Vorobeychik, Michael P. Wellman, and Satinder Singh. Learning payoff func-
tions in infinite games. Machine Learning, 67(1-2):145–168, 2007.

Yevgeniy Vorobeychik. Probabilistic analysis of simulation-based games. ACM Transac-
tions on Modeling and Computer Simulation, 20(3), 2010.

Elaine Wah and Michael P. Wellman. Welfare effects of market making in continuous
double auctions. In 14th International Conference on Autonomous Agents and Multi-
Agent Systems, pages 57–66, Istanbul, 2015.

Michael P. Wellman, Daniel M. Reeves, Kevin M. Lochner, Shih-Fen Cheng, and Rahul
Suri. Approximate strategic reasoning through hierarchical reduction of large symmetric
games. In 20th National Conference on Artificial Intelligence, pages 502–508, Pitts-
burgh, 2005.

Michael P. Wellman, Anna Osepayshvili Jeffrey K. MacKie-Mason, and Daniel M. Reeves.
Bidding strategies for simultaneous ascending auctions. B. E. Journal of Theoretical
Economics (Topics), 8(1), 2008.

Michael P. Wellman, Tae Hyung Kim, and Quang Duong. Analyzing incentives for protocol
compliance in complex domains: A case study of introduction-based routing. In Twelfth
Workshop on the Economics of Information Security, Washington, 2013.

Michael P. Wellman. Methods for empirical game-theoretic analysis (extended abstract).
In 21st National Conference on Artificial Intelligence, pages 1552–1555, Boston, 2006.

Bryce Wiedenbeck and Michael P. Wellman. Scaling simulation-based game analy-
sis through deviation-preserving reduction. In 11th International Conference on Au-
tonomous Agents and Multi-Agent Systems, pages 931–938, Valencia, 2012.

96

Bryce Wiedenbeck and Michael Wellman. Learning payoffs in large symmetric games
(extended abstract). In 14th International Conference on Autonomous Agents and Multi-
Agent Systems, pages 1745–1746, 2015.

Bryce Wiedenbeck, Ben-Alexander Cassell, and Michael P. Wellman. Bootstrap statistics
for empirical games. In 13th International Conference on Autonomous Agents and Multi-
Agent Systems, pages 597–604, Paris, 2014.

97

	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	The Role-Symmetric Game Representation
	Game-Theoretic Analysis Concepts
	Computing Equilibria with Replicator Dynamics
	Simulation-Based Game Theory
	Strategy Exploration
	Thesis Overview

	Credit Networks
	Credit Network Formation Game
	Theoretical Analysis
	Simulation-Based Game Analysis
	Simulation Setup
	Results

	Conclusions

	Bootstrap Methods for Statistical Confidence
	Background
	Bootstrap Statistics
	Related Work

	Computing Bootstrap Confidence Intervals for Regret
	Calibration Experiments
	Experimental Setup
	Experimental Results

	Conclusions

	Deviation-Preserving Reduction
	Background
	Hierarchical Reduction
	Twins Reduction
	Comparison of Hierarchical and Twins Reductions

	The Deviation-Preserving Reduction Method
	Validation Experiments
	Regret of Reduced Game Equilibria
	Comparison to Full-Game Equilibria
	Dominated Strategies

	Conclusions

	Learning Game Models
	Motivation: Limitations of Player Reduction
	Related Work
	Learning and Applying Payoff Models
	Estimating Expected Values
	Computing Equilibria

	Validation Experiments
	Experimental Setup
	Experimental Results

	Conclusions

	Conclusion
	Summary of Contributions
	Future Directions

	Bibliography

