
The Coin Problem, and Pseudorandomness for Branching Programs

Joshua Brody
Computer Science Department

Swarthmore College
Swarthmore, PA, USA

joshua.e.brody@gmail.com

Elad Verbin
ITCS

Tsinghua University
Beijing, China

elad.verbin@gmail.com

Abstract

The Coin Problem is the following problem: a coin is given, which lands on head with probability
1/2 + β or 1/2 − β. We are given the outcome of n independent tosses of this coin, and the goal
is to guess which way the coin is biased, and to answer correctly with probability ≥ 2/3. When our
computational model is unrestricted, the majority function is optimal, and succeeds when β ≥ c/

√
n for

a large enough constant c. The coin problem is open and interesting in models that cannot compute the
majority function.

In this paper we study the coin problem in the model of read-once width-w branching programs.
We prove that in order to succeed in this model, β must be at least 1/(log n)Θ(w). For constant w, this
is tight by considering the recurfsive tribes function, and for other values of w, this is nearly tight by
considering other read-once AND-OR trees.

We generalize this to a Dice Problem, where instead of independent tosses of a coin we are given
independent tosses of one of two m-sided dice. We prove that if the distributions are too close and the
mass of each side of the dice is not too small, then the dice cannot be distinguished by small-width
read-once branching programs.

We suggest one application for this kind of theorems: we prove that Nisan’s Generator fools width-w
read-once regular branching programs, using seed length O(w4 log n log log n + log n log(1/ε)). For
w = ε = Θ(1), this seedlength is O(log n log log n). The coin theorem and its relatives might have
other connections to PRGs. This application is related to the independent, but chronologically-earlier,
work of Braverman, Rao, Raz and Yehudayoff.

In December 2017, Avishay Tal brought to our attention a bug in the proof of our width-
elimination lemma (Lemma 11 in the conference version, Lemma 10 in the full version). As a
result, we retract our claim on this lemma, as well as the overall Coin Problem lower bound for
ROBPs (Theorem 5 in both versions). Note: this lower bound still holds; we retract only the proof.
In fact, this result has already been reproved and strenghthened by Steinberger (CCC 2013), who
replaces our random restriction with a novel ”interwoven hybrid” argument. In his proof, Stein-
berger uses our Collision Lemma, which we do not retract. We encourage the interested reader
to consult the Steinberger paper for a proof of the Coin Problem lower bound for constant-width
ROBPs.

1

The Coin Problem, and Pseudorandomness for Branching Programs

Joshua Brody1

Department of Computer Science
Dartmouth College
Hanover, NH, USA

jbrody@cs.dartmouth.edu

Elad Verbin2

ITCS
Tsinghua University

Beijing, China
elad.verbin@gmail.com

Abstract—The Coin Problem is the following problem: a coin
is given, which lands on head with probability either 1/2 + β
or 1/2− β. We are given the outcome of n independent tosses
of this coin, and the goal is to guess which way the coin is
biased, and to answer correctly with probability ≥ 2/3. When
our computational model is unrestricted, the majority function
is optimal, and succeeds when β ≥ c/

√
n for a large enough

constant c. The coin problem is open and interesting in models
that cannot compute the majority function.

In this paper we study the coin problem in the model of
read-once width-w branching programs. We prove that in order
to succeed in this model, β must be at least 1/(log n)Θ(w).
For constant w this is tight by considering the recursive tribes
function, and for other values of w this is nearly tight by
considering other read-once AND-OR trees.

We generalize this to a Dice Problem, where instead of
independent tosses of a coin we are given independent tosses
of one of two m-sided dice. We prove that if the distributions
are too close and the mass of each side of the dice is not too
small, then the dice cannot be distinguished by small-width
read-once branching programs.

We suggest one application for this kind of theorems: we
prove that Nisan’s Generator fools width-w read-once regular
branching programs, using seed length O(w4 log n log log n+
log n log(1/ε)). For w = ε = Θ(1), this seedlength is
O(log n log log n). The coin theorem and its relatives might
have other connections to PRGs. This application is related to
the independent, but chronologically-earlier, work of Braver-
man, Rao, Raz and Yehudayoff [1].

Keywords-pseudorandomness; branching programs; lower
bounds

I. INTRODUCTION

Suppose you have an unfair coin that is either slightly
biased toward heads, or slightly biased toward tails, and the
goal is to determine in which direction the coin is biased.
What is the best strategy for determining which way the coin
is biased? The naive solution is to flip the coin several times
and guess heads if the results of the coin flips were heads
more often than tails. If the outcome is tails more often than
heads, guessing tails is the right choice.

1Supported in part by NSF Grant CCF-0448277.
2This research was supported in part by the National Natural Science

Foundation of China Grant 60553001, and the National Basic Research
Program of China Grant 2007CB807900, 2007CB807901.

In this game, the naive solution turns out to be optimal.
Furthermore, if the goal is to guess correctly most of the
time, there is a well-known tradeoff between the error prob-
ability and the number of coin flips required. Specifically,
if the coin is heads with probability 1/2 + 1/t or heads
with probability 1/2 − 1/t, then Θ(t2) flips are needed to
guess the correct bias with 2/3 confidence. Conversely, if
you are restricted to flipping the coin at most n times, and
you want to be 2/3 confident of guessing correctly, the bias
must Ω(1/

√
n).

There is a subtle drawback to the solution described
above: in order to output whether at least half the coin flips
were heads, one must count the number of heads, using logn
bits of space; n could be quite large, and in such cases we
would want to use less space. At a high level, we consider
the following:

Question: Suppose n coin flips are available, but
computation is restricted to a machine M that
uses only a constant amount of space. What is the
smallest β such that M distinguishes a coin which
lands on head with probability 1/2 + β from one
which lands on heads with probability 1/2− β ?

Several possibilities to model constant-space computation
exist. In this work, we consider width-w read-once branching
programs (ROBPs). These machines are just like w-state au-
tomata, except that the transition function can be different at
each time-step. Specifically, read-once branching programs
are layered directed acyclic graphs. There are n+ 1 layers.
The first layer consists of one vertex (the start state), the
last layer consists of two vertices (the accept state and the
reject state), and each other layer consists of w vertices. Each
vertex in layer i has two edges leaving it: one labeled ‘0’
and the other labeled ‘1’; both edges go into vertices in level
i + 1. The vertices at the final layer have out-degree zero.
Given an input x ∈ {0, 1}n the program starts at the start
state, and proceeds according to the bits of x in the natural
way (the edge taken at layer i is chosen according to the
bit xi). The output of the program is ‘accept’ or ‘reject’
according to which state this walk ends at. Such machines
can be thought of as performing “streaming computation”
with logw bits of memory.

Two special classes of ROBPs are of particular interest: A
regular read-once branching program (rROBP) is a ROBP
where every state has in-degree 0 or 2. (Only the nodes in
the first layer have in-degree 0.) A permutation read-once
branching programs (pROBP) is a regular ROBP where for
every state with in-degree 2, the two edges entering it are
labeled ‘0’ and ‘1’. These kinds of programs have appealing
properties, and several recent PRG results have concentrated
on them.

Read-once branching programs seem quite weak; for
example, by a simple communication complexity argument it
is easy to prove that they can compute the majority function
only if w ≥ n. However, these machines are not as weak as
they may seem: For example, a width-3 ROBP can compute
the TRIBES function, and the TRIBES function can solve
the coin problem with parameter β = Θ(1/ logn) (see
Section V). In contrast, Cover and Hellman [2] proved that
an automaton would need a superconstant number of states
to solve the coin problem with such β. We discuss this
further in Section I-B. In the main part of this paper, we
bound the power of ROBPs, by proving they cannot solve
the coin problem when β is too small.

The results that we prove on the coin problem and its
relatives might have various applications to the study of
small-space computation, such as in the field of streaming
algorithms. Furthermore, the ideas we introduce here might
be useful for studying other “low” models such as AC0,
ACC0, and low-degree polynomials, among others. (Here,
by “low” model, we mean a model that does not seem
to be able to compute the majority function.) Finally, the
coin problem seems particularly relevant in the study of
pseudorandom generators, and we present an application of
our results in that field.

A. Our Results on the Coin and Dice Problems

Let X = (X1, . . . , Xn) be a product distribution, i.e.
the distribution of the coordinates is mutually independent.
Similarly, let Y = (Y1, . . . , Yn) be a product distribution.
Our task is to construct width-w ROBPs that distinguish
X and Y , when for each i, Xi is close to Yi. In the coin
problem, each input is a random coin, i.e., Xi and Yi take
values in {0, 1}. We also consider a more general problem,
where the inputs take values in {1, . . . ,m}. We think of
these variables as m-sided dice, and call the problem of
distinguishing such distributions the dice problem. In either
case, we wish to determine how close X and Y can be and
still be distinguishable by a width-w ROBP f . Note that
we do not require coordinates to correspond to the “same”
coin/die – Xi and Xj may have different distributions. Our
only requirement is that the distributions are independent.

Our first theorem shows that if f distinguishes X from
Y , then the statistical distance between pairs of variables
(Xi, Yi) cannot be too small.

Theorem 1. (Main Theorem, informally stated). If a width-
w read once branching program distinguishes X and Y such
that Δ(Xi, Yi) ≤ β for all i, then β = Ω((δ/ logn)w). This
assumes that for each outcome e, Pr[Xi = e],Pr[Yi = e] ≥
δ.

In this formulation we required that the “mass” of the
sides of the dice not be too small (or, in coin problem
language, that the “gap” of the coins not be around 0 or
1). As an extreme case of the coin problem where this
does not hold, consider the coin problem where the coin
in world 1 is heads with probability 1/n, and in world 2
the coin is heads with probability zero.1 Then, a width-2
ROBP can distinguish X and Y by computing the OR of
the input variables. We thus see that branching programs
can exploit small differences in probabilities to distinguish
X and Y , when the probabilities themselves are small. To
avoid this case, we must either require a lower bound on
the masses of the elements in the coin/dice, as we did in
Theorem 1, or define β based on ratios of probabilities, e.g.,
Pr[Xi = e]/Pr[Yi = e] instead of absolute differences, as
in the following theorem.

Theorem 2. (Lower Bound, relative version, informally
stated). If a read once branching program distinguishes
X from Y such that

1

1 + β
≤ Pr[Xi = e]

Pr[Yi = e]
≤ 1 + β

for all i and all outcomes e, then

• β = Ω
(
(logn)−2w

)
when m = 2.

• β = Ω
(
(logn)−3w

)
for any m.

For the case of coins, we give an almost matching upper
bound.

Theorem 3. (Coin Problem Upper Bound). For any con-
stant w, there exists a width-w read once branching program
that distinguishes coins that are heads with probability
1/2+O

(
(logn)2−w

)
from coins that are heads with prob-

ability 1/2−O
(
(logn)2−w

)
.

A similar result holds for super-constant w. We defer the
details of this to the full version.

B. Work Related to the Coin Problem

The problem of distinguishing two distributions has been
widely studied in the literature, under various names. Cover
and Hellman, in a series of works in the late ‘60s and
early ‘70s, studied the question of how well small-space
machines can distinguish between two distributions. See for
example [2], [3], [4]. The problems they studied are more
general than the coin problem, but their work in particular

1To reduce mathematical notation, we sometimes refer to coins from
“world 1” and “world 2” instead of referring to the distributions X and Y
that these coins might take

shows if a w-state automaton solves the coin problem with
parameter β, then w = Ω(1/β) (see [2]). Cover also
shows that constant-space ROBPs can perform significantly
better than this [3]. In other works from that period Cover
and Hellman studied how well randomized automata can
distinguish between two distributions.

The recent paper of Braverman et al [1] contains an
impossibility result for the coin problem on regular ROBPs.
They prove that to solve the coin problem, w must be at
least Ω(1/β).

Both of the above results are tight up to polynomial
factors, by considering appropriate modifications of the
majority function over w (or

√
w) variables. We omit the

details here.
In the quantum world, things are radically different:

Aaronson and Drucker [5] show a 3-state quantum ROBP
that can solve the coin problem with β = Θ(1/

√
n). Disre-

garding constant factors, this matches the majority function!
In fact, the quantum ROBP that they give is actually a
reversible quantum automaton; this class can be thought of
as the quantum analogue of pROBPs, where in addition the
transition function at each time-step is the same.

For AC0, Aaronson [6] showed that if a depth-d AC0

circuit solves the coin problem with parameter β, then
β ≥ Ω(1/ logd+2 n). Amano’s work [7] constructs AC0

circuits that can solve the coin problem; for constant depth
d, his constructions solve the coin problem with parameter
β = Θ(1/ logd−1 n).

The coin problem can be thought of as approximating
the majority function in a restricted computational class.
The approximate-majority problem is well-studied in the
literature, for various notions of approximation. Some recent
works on this topic are O’Donnell and Wimmer [8], and
Viola [9]. Also see the references therein. We remark that
the notion of approximation considered in the coin problem
is of dual nature: it both concentrates on inputs that are
significantly biased, and it allows mistake of 1/3 (in the dis-
tributional sense); this typically makes proving impossibility
results more difficult than in other notions of approximation.

C. Outline of the Proof

In this subsection, we briefly outline the proof of Theo-
rem 1, for the case of the coin problem, where the probability
of heads is either 1/2 + β or 1/2− β.

A ROBP is called weakly monotone if for each state s,
the arrow of the 1-transition out of s always points above or
equal to arrow of the 0-transition out of s. Note that such
ROBPs can in fact compute non-monotone functions.2

In the first step of the proof of the coin theorem, we
perform a monotonization step, that shows that without loss
of generality we can just consider weakly monotone ROBPs

2Our concept of “weakly monotone ROBPs” is not the same as the
concept of “monotone ROBPs” used by Meka and Zuckerman in [10].

(henceforth called mROBPs). To prove this, we show that for
any width-w ROBP M , there is a weakly-monotone width-
w ROBP M ′ such that if M solves the coin problem with
parameter β then M ′ also solves the coin problem with
parameter β. We now show how to get M ′ from M . We
show this only for the problem of distinguishing a fair coin
from a β-biased coin: in this case the transformation from
M to M ′ is particularly simple. To get M ′ from M , we
start with M , and re-order the states s of each layer from
the top to the bottom, according to the probability that if
we start at state s and we are in the β-biased world, then
the program will answer correctly. Then, if for any state s
its 0-transition goes above its 1-transition, then flip the two
such that the 0-transition becomes the 1-transition and vice-
versa. The new branching program is M ′. M ′ is weakly
monotone. It is easy to see that if the input comes from the
fair coin, the distribution of the output did not change. Also,
it is easy to see that if the input comes from the β-biased
coin, then M ′ outputs the correct answer with at least the
same probability that M did. Therefore, M ′ is at least as
good as M .

The second step of the proof is to show that in an mROBP,
for each variable xi, either xi is irrelevant (meaning it has
no influence on the output), or there is a 0-collision at layer
xi (meaning there are two 0-edges that point to the same
state), or there is a 1-collision at layer xi (meaning there are
two 1-edges that point to the same state). This is an easy
combinatorial statement; the reader is referred to Lemma 9.

The third step of the proof is to prove that a random re-
striction with parameter p = Θ(1/logw−1n) kills any width-
w mROBP, in the sense that with high probability it turns
the mROBP into a function that only depends on O(log n)
variables.3 (Note that this does not hold for ROBPs: for
example, a width-2 ROBP can compute the parity function,
which is not killed by random restrictions.) To show this, we
perform a series of w−1 random restrictions with parameter
p′ = 1/3 logn each. (Overall this is equivalent to performing
one random restriction with parameter Θ(1/logw−1n).) We
show that, essentially, each random restriction reduces the
width of the mROBP by one. This is not strictly true
and has some complications that we deal with in Section
III, but we can show here a version of this argument,
assuming that random variables actually behave like their
expectation. Consider a relevant unfixed layer xi, and let xj

be the first relevant unfixed layer following xi. If random
variables behave like their expectation, then between xi and
xj there will be 3 logn relevant fixed layers. By the previous

3A random restriction with parameter p is a probabilistic operator on
functions. It sets each variable independently to 1 with probability (1 −
p)/2, to 0 with probability (1− p)/2, and to ‘*’ with probability p. Each
variable which is set to 0 or 1 is fixed to that value and never changes, and
each variable set to ‘*’ stays unfixed. Therefore, after the restriction, we
get a function of some number k < n of variables; k is a random variable,
its expectation is pn. The concept of random restriction was useful e.g. to
prove lower bounds in AC0, see for example [11]

paragraph, each of these layers has either a 0-collision or
a 1-collision. Therefore, if we start in layer xi and place
a pebble on each state (w pebbles in total) and then we
walk according to the values of the fixed variables, with
probability 1 − 1/n3 two pebbles will collide, and by the
time the pebbles arrive at layer xj , at least one state will not
get a pebble. The state that did not get a pebble will never
be reached after applying the restriction, so layer xj lost a
state, and now its width is at most w−1. By union bounding
over ≤ n events with probability ≤ 1/n3 each, we see that
with probability 1/n2, all unfixed relevant layers lost a state,
so after one random restriction the width of the mROBP is
w − 1. Continuing this argument w − 1 times, we get that
after w − 1 random restrictions, with high probability the
width of the program is 1, i.e. with high probability it is a
constant function.

The argument in the last paragraph crucially relied on the
“cheat” that we assume that random variables act according
to their expectations. The argument above is not actually
correct: for example, when performing a random restriction
with parameter 1/3 logn, there will likely be Θ(n/ log2 n)
pairs of adjacent layers that are both unfixed. The argument
in Section III deals with this kind of complications and that
makes the argument significantly more complex.

Finally, the fourth step of our proof is to show that if a
random restriction with parameter p of a function f turns
it with high probability into a function with only k relevant
variables, then f could only solve the coin problem when
β is at least p/k. This is a rather straightforward argument,
proved as part of the proof of Theorem 10.

To generalize this proof for the case of dice, or to the case
of biases than 1/2±β, we use couplings instead of random
restrictions. (Interestingly, couplings can be seen to be a nat-
ural generalization of random restriction in our setting.) We
also need to generalize the above concepts appropriately. For
the “relative” coin/dice theorem (Theorem 2), we perform a
careful reduction to the non-relative case.

All of the above claims are formalized and proved in
Section III.

D. Our results on PRGs

One of the main open questions in theoretical computer
science is to derandomize log-space computations, namely to
prove that L=RL. One approach for doing that is to construct
pseudorandom generators (PRGs) for ROBPs with width
w = poly(n). The PRG should use seedlength O(log n), and
the PRG itself should be computable in log-space. For width
2 it is known how to construct such PRGs with seedlength
O(log n), see [12], but for width 3 the problem is already
wide open. (See more background in Section VI).

In Section VI we take one step in this direction. We
show how to achieve seedlength O(w4 logn log logn +
logn log(1/ε)) for regular read-once branching programs
of width w. Here, ε is the error parameter of the PRG.

The generator we use is Nisan’s generator [13] or the
INW generator [14]. For ε = O(1/ logn) and w = O(1),
the seedlength of our generator is just O(log n log logn),
while the traditional Nisan’s generator requires seedlength
O(log2 n). For more information and a more complete
literature survey, see Section VI.

In Section VII we show why our techniques cannot be
used to fool non-regular ROBPs, and in general, why the
INW generator fails to fool even width-3 non-regular ROBPs
with seed length o(log2 n). In fact, we prove that INW
with seedlength o(log2 n) is not even a hitting set generator
against width-3 ROBP.

We note that the work of Braverman et al [1] also
shows that Nisan’s generator fools small-width regular read-
once branching programs, and their work achieve better
seedlength than ours. The main advantage of our work is
that all of Braverman et al’s approach works only for regular
ROBPs, while in our work, the coin and dice theorems work
for all ROBPs. Thus, our work may be useful in the future
in order to get PRGs even against non-regular ROBPs.

E. Organization of the Paper

In Section II, we formalize many of the concepts and
tools used in the rest of the paper. Sections III and IV
develop our lower bounds, and Section V constructs the
upper bound. In Section VI we show our results on PRGs for
rROBPs. Section VII explains the barrier stopping the PRG
results from giving PRGs for ROBPs. Finally, Section VIII
concludes the paper and presents some open problems.

Due to space restrictions, we have had to omit consider-
able parts of the paper from this version, most notably the
later sections which deal with PRGs. We recommend the
reader to read the full version, available online.

II. PRELIMINARIES AND NOTATION

In this section, we provide some technical background
and concepts needed in the rest of the paper.

Definition 4 (Statistical Distance). Let X and Y be random
variables that both take values on a finite set V . The
statistical distance between X and Y is defined as

Δ(X,Y) :=
1

2

∑
v∈V

|Pr[X = v]− Pr[Y = v]| .

We now formalize what it means for a branching program
to distinguish two distributions. The branching programs we
consider take as input n-bit strings, which correspond to
n coin flips. We consider distributions X = (X1, . . . , Xn)
where the Xi are mutually independent. In the coin problem,
all Xi come from the domain {0, 1}; in the dice version,
variables come from some finite domain [m] := {1, . . . ,m}.

We say that f distinguishes X and Y if Δ(f(X), f(Y)) >
1/3. A branching program f distinguishes β if f distin-
guishes distributions X,Y such that Δ(Xi, Yi) ≤ β for all
i. Width-w branching programs distinguish β if there exists

a width-w branching program that distinguishes β. Our goal
is to determine the smallest β distinguishable by width-w
branching programs.

Note that this definition of distinguishing two distributions
is weaker than the version described in the introduction—if
we output 1 (i.e. accept) with probability at least 2/3 when
the inputs come from X and at most 1/3 when the inputs
come from Y , then necessarily we have Δ(f(X), f(Y)) >
1/3. This weaker notion of distinguishability only makes our
lower bounds stronger. The upper bound we present uses
the more robust notion; it creates a branching program that
outputs 1 with probability > 2/3 when inputs are from world
1, and it outputs 1 with probability < 2/3 when inputs come
from world 2.

Finally, we define several concepts that we’ll use to ana-
lyze branching programs. For any state s and any e ∈ [m],
let s(e) denote the state reached by following the e-transition
from s.

For any branching program f and any input x, we define
f(x) := 1 if f accepts x, and f(x) := 0 if f rejects. For
a random variable X and state s, let f(X |s) denote the
expected output of f given X , conditioned on the event
that we reach state s. Also, let βX(s) := PrX [f reaches s].
Define the support of f at level k given X to be the set of
states at level k that are reachable from the start state, given
X . Usually, both f and X will be clear from context; in this
case, we say “the support of level k”.

The probabilities {βX(s)} provide a convenient way of
expressing f(X) in terms of the states at a particular level.
Specifically, let s1, . . . , sw denote the states at some arbitrary
level k. Then, we have

f(X) =

w∑
j=1

βX(sj)f(X |sj) . (1)

Suppose that s is a state at level k. It’s not hard to see that
f(X |s) is a convex combination of {f(X |s(e)) : e ∈ [m]}.
Specifically, we have

f(X |s) =
∑
e∈[m]

Pr[Xi = e]f(X |s(e)) . (2)

III. THE LOWER BOUND

In this section, we prove the following theorem, which is
the main result of our paper:

Theorem 5 (Main Theorem). Suppose X = (X1, . . . , Xn)
and Y = (Y1, . . . , Yn) are collections of independent ran-
dom variables, all on a finite set [m]. Further suppose that
for all e ∈ [m] and i ∈ [n]

1) Pr[Xi = e] = 0 if and only if Pr[Yi = e] = 0 ,
2) Pr[Xi = e],Pr[Yi = e] ≥ δ whenever they are

nonzero,
3) Δ(Xi, Yi) ≤ β .

Then, for all constant w, if a width-w ROBP distinguishes
X from Y , then β = Ω((δ/(logn))w).

We prove this theorem in three steps. First we prove
a collision lemma. A branching program has the collision
property if the transitions from any level k to the next level
k + 1 either form an identity permutation, or for some
e ∈ [m], the e-wires collide; that is, there are s, t such
that s(e) = t(e). In the collision lemma, we show that any
good branching program has this property—if a branching
program f does not have the collision property, then we can
replace it with one that does, and simultaneously increase
the statistical distance Δ(f(X), f(Y)).4

In the second step, we use the coupling method, together
with a an iterative sampling process—each variable xi will
be sampled with probability 1 − p, and if a variable is
sampled, what value it takes will come from the average
of Xi and Yi. We show that after conditioning on w − 1
such samplings, the function is a O(log n)-junta with high
probability.

Our final step shows that any function that depends on a
few variables cannot distinguish two close distributions.

To prove the main theorem, we must surmount sev-
eral technicalities. For this reason, we divide the proof
into sections. In Section III-A, we establish our notion of
monotonicity and prove the collision lemma. Section III-B
uses the collision lemma to prove the main theorem. This
proof requires a technical lemma; we sketch the proof in
Section III-C.

A. The Collision Lemma

In this section, we develop our notion of monotonicity
and state our collision lemma. Because of a lack of space,
we defer proofs of the lemmas in this section to the full
paper.

We wish to determine the smallest β such that
Δ(f(X), f(Y)) > 1/3. Without loss of generality, assume
that the branching program attempts to accept strings from
world 1, and reject when strings come from world 2. Thus
we may assume that Pr[f(X) = 1] > Pr[f(Y) = 1]. It fol-
lows that Δ(f(X), f(Y)) = Pr[f(X) = 1]−Pr[f(Y) = 1].

For any level of the branching program, define an ordering
on the states at that level in terms of f(X |s). Specifically,
define s ≤ t if and only if f(X |s) ≤ f(X |t). Next, label
the states s1, . . . , sw in increasing order of f(X |s). Thus,
we have f(X |si) ≤ f(X |sj) for all i < j. We call this the
canonical ordering of {s1, . . . , sw}. Our next lemma states
that this ordering holds for Y as well.

4In fact, we prove several lemmas in terms of good branching pro-
grams; in all cases, the meaning of “good branching program” is similar.
Specifically, we take the statement “any good branching program f has
property P” as shorthand for “if a branching program does not have
property P then there exists a branching program g that has P such that
Δ(f(X), f(Y)) ≤ Δ(g(X), g(Y))”

Lemma 6. In any good branching program, s < t implies
f(Y |s) < f(Y |t).

Next, we show that good programs obey a certain form
of monotonicity. We first formalize this notion.

Definition 7. A branching program is weakly monotone
if for all levels i and for all a, b ∈ [m] such that
Pr[Xi = a] ≥ Pr[Yi = a] but Pr[Xi = b] ≤ Pr[Yi = b],
it holds that s(a) ≥ s(b).

Lemma 8. All good branching programs are weakly mono-
tone.

Our final lemma in this section is a collision lemma. In
general, only collisions among states in the support of a level
concern us, since the other states are unreachable. Now, it’s
easy to see by the pigeonhole principle that if there are d
states in the support of level k and fewer than d states in the
support of level k + 1, then some collision(s) must occur.
The next lemma characterizes when collisions occur in the
case that consecutive levels have the same support size.

Lemma 9 (Collision Lemma). Let s1, . . . , sd and t1, . . . , td
denote the support of two consecutive levels of a good
branching program. Suppose there are no collisions among
s1, . . . , sd. Then, the transitions from {si} to {ti} form an
identity permutation; that is, si(e) = ti for all 1 ≤ i ≤ d
and for all e ∈ [m].

We call a layer irrelevant if the transitions from {si} to
{ti} form an identity permutation, and relevant otherwise.
Thus, all relevant layers of a good branching program have
collisions.

B. Proof of Main Theorem

Given distributions X,Y , define pi,e := Pr[Xi = e] and
qi,e := Pr[Yi = e]. Let ri,e := (pi,e + qi,e)/2 denote the
average of the probabilities pi,e and qi,e, and let δi,e :=
(pi,e − qi,e)/2.

In this section, we prove the following theorem.

Theorem 10. Fix p := δ/(1000 logn) for some constant δ,
and suppose that X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn)
are each a collection of mutually independent random vari-
ables such that for all e ∈ [m] and i ∈ [n] the following
conditions hold:

1) pi,e = 0 if and only if qi,e = 0,
2) pi,e, qi,e ≥ δ whenever pi,e and qi,e are nonzero,
3) Δ(Xi, Yi) ≤ β.

If f is a good branching program, then we have
Δ(f(X), f(Y)) ≤ β · p−w.

Our main theorem follows directly from Theorem 10.

Proof of Theorem 5. If f distinguishes β, then there
exist two β-close distributions X and Y such that

Δ(f(X), f(Y)) > 1/3. By Theorem 10, Δ(f(X), f(Y)) ≤
β · p−w. Hence, we have β = Ω(pw) = Ω ((logn)−w). �

We will prove Theorem 10 using a coupling method. It’s
well known that under any coupling ω of distributions μ, ν,
we have Δ(X,Y) ≤ Prω[X �= Y]. Fix β′ := β · p−(w−1).
Define distributions X ′ and Y ′ in the following iterative
manner. Create a set of indices S1 ⊆ [n] by placing each
i ∈ S1 independently with probability 1−p. For each i ∈ S1

and each e ∈ [m] we set X ′
i := Y ′

i := e with probability
ri,e.

From the coordinates not in S1, we sample a new set of
coordinates S2 ⊆ [n]\S1 in the same manner, and again we
set X ′

i and Y ′
i for each i ∈ S2 in the same way.

We repeat this sampling process w− 1 times, after which
we set the remaining i ∈ [n] \

(⋃
j Sj

)
such that Pr[X ′

i =

e] = ri,e + δi,ep
−w+1, Pr[Y ′

i = e] = ri,e − δi,ep
−w+1,

and the joint distribution (X ′
i, Y

′
i) is distributed according

to a coupling ω2 to be defined later. Note that no matter the
choice of ω2, we have Δ(X ′

i, Y
′
i) ≤ β′. Simple calculations

show that

Pr[X ′
i = e] = (1 − pw−1)ri,e

+ pw−1(ri,e + δi,ep
−w+1)

= ri,e + δi,e

= pi,e .

In the same way, we have Pr[Y ′
i = e] = qi,e. Hence, X

and X ′ are equidistributed, as are Y and Y ′. It’s not hard to
see that the same holds for f(X) and f(X ′) and for f(Y)
and f(Y ′). Hence, the joint distribution (X ′, Y ′) defines a
coupling for f(X) and f(Y). For the sake of notation, we’ll
now drop the superscripts, and refer to X and Y instead of
X ′ and Y ′.

Our goal now will be to bound Pr[f(X) �= f(Y)]
by iteratively conditioning on S1, S2, . . . , Sw−1. We write
“conditioning on Sj” as shorthand for “conditioning on both
the choice of i ∈ Sj and on the setting of Xi, Yi for i ∈ Sj .”
If i �∈ ⋃

1≤j≤k Sj , then we say that Xi remains free after
the first k conditionings. When k is clear from context, we
simply say that Xi is free. If Xi is not free, we say that it
is restricted.

In the next lemma, we prove that conditioned on
S1, . . . , Sw−1, the branching program f is likely to be an
O(log n)-junta.

Lemma 11 (Width Elimination). Suppose there is a width-
w branching program that is weakly monotone. Then, after
conditioning on S1, . . . , Sw−1, the branching program is an
O(log n)-junta with probability greater than 1− 1/n.

This lemma crucially uses the Collision Lemma; we defer
this proof until Section III-C. The rest of the theorem follows
from the following lemma, whose proof is a simple hybrid
argument.

Lemma 12. Suppose that g is a k-junta and Δ(Xi, Yi) ≤ β
for all relevant variables i. Then, we have

Δ(g(X), g(Y)) ≤ kβ .

Proof of Theorem 10. Let R1 denote the random coins
used to generate the sampling S1, . . . , Sw−1, and let R2

denote the rest of the random coins, i.e., the randomness
used to choose Xi and Yi for those i that remain free after
the conditioning is complete. Then, we have Prω[f(X) �=
f(Y)] = PrR1,R2 [f(X) �= f(Y)].

For given random strings r1, r2, let E(r1, r2) be the
event that f(X) �= f(Y), given that R1 = r1 and R2 = r2.
Next, let h(r1, r2) be an indicator variable for the event
E(r1, r2), and set ζ(r1) := ER2 [h(r1, R2)]. Then, we have
ER1 [ζ(R1)] = Prω[f(X) �= f(Y)]. Now, let us call r1
good if ζ(r1) ≤ 2 ER1 [ζ(R1)], and bad otherwise. By
Markov’s Inequality, at most half the r1s are bad. By the
union bound and Lemma 11, there exists a good r1 such
that conditioned on R1 = r1, the branching program is an
O(log n)-junta. Fix this r1.

We now construct a branching program g on m := npw−1

variables that distinguishes β′. Let y be an input to g. We
“embed” this into an input x for f : for each free variable xi,
we assign a variable from y. Finally, let ω2 be a coupling
such that Δ(g(X), g(Y)) = Prω2 [g(X) �= g(Y)]. Note that
PrR2 [f(X) �= f(Y) | R1 = r1] = Prω2 [g(X) �= g(Y)].
Therefore, we have

Δ(f(X), f(Y)) ≤ Pr
ω
[f(X) �= f(Y)]

≤ 2Pr
ω2

[g(X) �= g(Y)]

= 2Δ(g(X), g(Y))

≤ 2β′ logn
= O (β(log n)w) ,

where the first inequality follows from the coupling of ω,
the second follows from our choice of r1, the penultimate
equality comes from the choice of ω2, and the final inequal-
ity comes from Lemma 12. �

C. Proof Sketch of Lemma 11

We give a sketch of the proof of Lemma 11 here, and
leave the complete proof to the full version of the paper.

Proof Sketch. We proceed by induction. We’d like to show
that each conditioning reduces the support at each level by
one, so after w−1 conditionings, each level has support size
of one. Note that if level k has support size one, then f is
trivially independent of all levels preceding k, as no matter
what happens, we always arrive at one particular state at
level k. Hence, if we were able to prove such a result, the
lemma would follow easily.

Unfortunately and unsurprisingly, the support size is only
likely to decrease by one after each conditioning. Instead,

we maintain an invariant throughout the induction process.
Let a := (50 logn)/δ. Our invariant is the following:

Invariant: Let xi be any variable that remains free
after conditioning on S1, . . . , Sk. If there are at
least a levels j such that xj is free and relevant
and j < i, then with probability at least 0.9, the
support of level i is at most w − k. 5

We call a layer xi nice after k conditionings if it has
support at most w − k. Note that throughout this proof, we
carry an implicit assumption that none of several unlikely
events occur. We call an event unlikely if it happens with
probability at most n−3. We condition on O(wn) unlikely
events, so by a union bound, the probability that none of the
unlikely events happen is at least 1−O(1/n).

Again, we prove the lemma by induction. As a base case,
consider the first conditioning. Fix an arbitrary free level
xi, and consider the a relevant levels preceding it. With
probability (1 − p)a ≥ e−2ap > 0.9, all a levels become
restricted. Each of these levels is relevant, so by the Collision
Lemma and the assumption that pi,e, qi,e ≥ δ, each level has
a collision with probability ≥ δ. Note that a collision at any
restricted level reduces the support size of the free level
following it by one. Therefore, the probability that none of
the restricted levels have collisions is at most (1 − δ)a ≤
e−δa = n−50/ ln 2, which is unlikely. It’s easy to see that
this collision reduces the support size by one.

Proving the induction step follows the same logic, but
there are some subtle complications. Chief among them is
that layers that become restricted during e.g., the (k + 1)th
conditioning are not guaranteed to have support size at most
w−k; instead, they have such support only with probability
> 0.9. To surmount this obstacle, proceed as before, consid-
ering a free layer xj , and noting that with probability > 0.9
the preceding a free layers become restricted. Note that if
any two consecutive layers xi, xi+1 are nice, then a collision
at xi decreases support by one, and if the support decreases
to w− k− 1 at any of these restricted layers, the support at
the next free layer is similarly at most w−k−1. Since each
layer is nice with probability 0.9, we expect 0.9a layers to
be nice. Therefore, the event that < 0.6a layers are nice is
unlikely. With 0.6a nice layers, there must exist at least 0.1a
pairs of consecutive nice layers. A collision at any of these
layers reduces the support at the next free layer to w−k−1.
The probability that none of these layers have collisions is
at most (1− δ)0.1a ≤ n−5/ ln 2, which is unlikely. It follows
that with probability at least 0.9, xj has support size at most
w − k − 1 after k + 1 conditionings, as desired.

5the requirement that there are a free, relevant levels preceding xi is
largely a technical one. We need it because we need a free active levels
preceding xi to show that the width of xi is likely to decrease. More subtly,
we also need it because in the full proof we cannot guarantee that the width
of the first a free active levels is nice. Hence, the invariant only speaks of
free levels that have a free levels preceding it. A complete argument appears
in the full paper.

The final step is to show that f is an O(log n)-junta. After
w−1 conditionings, let x∗ be the last layer with support size
1. Since each remaining free layer has support size 1 with
probability > 0.9, we expect very few layers to follow this.
Indeed, we prove that the event that more than O(log n)
free layers follow x∗ is unlikely. But f now depends on
only these layers, hence it is a O(log n)-junta with high
probability. �

IV. LOWER BOUNDS – RELATIVE VERSIONS

In this section, we generalize and strengthen the lower
bound from the previous section to handle outcomes that
occur with o(1) probability. We begin with the coin problem.

Theorem 13. Suppose X = (X1, . . . , Xn) and Y =
(Y1, . . . , Yn) are collections of mutually independent ran-
dom variables on a finite domain [m] such that

1

1 + β
≤ Pr[Xi = e]

Pr[Yi = e]
≤ 1 + β .

for all 1 ≤ i ≤ n and all e ∈ [m]. Then, if a width-w ROBP
distinguishes X and Y , then

• β = Ω
(
(logn)−2w

)
if m = 2 ,

• β = Ω
(
(logmn)−3w

)
if m > 2.

Proof: For the sake of brevity, we prove only the result
for the coin problem here. The case of the dice problem
is proved in the same way. We reduce from Theorem 5.
Specifically, we take a width-w branching program that
distinguishes distributions where the coins can have very low
probabilities, and construct a width-(2w) branching program
that distinguishes β, using only slightly unbalanced coins—
each of the coins we use will have probability of heads
between 1/4 and 3/4.

Let pi := Pr[Xi = 1] and qi := Pr[Yi = 1]. First, we
handle the case when pi /∈ (1/n2, 1 − 1/n2) by rounding.
Specifically, define a distribution X ′ = (X ′

1, . . . , X
′
n) in the

following manner. For each 1 ≤ i ≤ n, set

X ′
i =

⎧⎪⎨
⎪⎩

1 , if pi > 1− 1/n2 ,

0 , if pi < 1/n2 ,

Xi, otherwise.

Clearly, Δ(Xi, X
′
i) ≤ 1/n2, so by a hybrid argument,

Δ(f(X), f(X ′)) ≤ Δ(X,X ′) ≤ 1/n. Define Y ′ in
a similar fashion. By the triangle inequality, we have
Δ(f(X), f(Y) ≤ Δ(f(X ′), f(Y ′)) + 2/n.

Therefore, it suffices to bound Δ(f(X ′), f(Y ′)). For the
rest of the proof, we consider this case and assume that
pi, qi ∈ (1/n2, 1 − 1/n2). Our next step is to construct for
each i a width-2, depth-O(logn) ROBP Ci that uses only
balanced coins and accepts strings from world 1 with prob-
ability pi and accepts strings from world 2 with probability
qi. Then, we replace the transitions in our unbalanced ROBP
with these mini-ROBPs—for each state s, we first transition

t1

t2

t1

t2

s
1

0

1 1

00

0,1
0,1

s

1

0

Figure 1. Replacing each (s(0), s(1)) pair with a width-2 balanced ROBP

to Ci, except we replace the accept and reject states in Ci

with s(1) and s(0) respectively. The resulting branching
program will have width 2w and length O(n log n), and the
output distributions in worlds 1 and 2 will match those of
the original ROBP.

We now show how to construct Ci. Assume without
loss of generality that qi < 1/2 and pi = qi(1 + β).
We construct Ci to be width-2 ROBP that uses O(log n)
independent balanced coins and accepts strings from world
1 with probability pi and accepts strings from world 2 with
probability qi. If pi > 1/2, there is nothing to prove—Xi

and Yi are already balanced. Otherwise, Fix k ≥ 0 such that
k + 1 ≤ − log pi < k + 2. Let Ci be the AND of k + 1
coins. The first k coins will be fair in both worlds 1 and
world 2. The final coin will be heads with probability 2kpi
in world 1 and 2kqi in world 2. It is easy to see that Ci

accepts strings with probability 2−k · 2kpi = pi in world 1
and 2−k · 2kqi = qi in world 2.

The new branching program now has n · O(log n) =
O(n log n) coins and width 2w, and its output distribu-
tions given coins from world 1 or 2 matches those of the
original ROBP. From Theorem 5 we know that if the new
ROBP distinguishes β, then β = Ω

(
(log(n logn))−2w

)
=

Ω
(
(logn)−2w

)
. By reduction, the same bound holds for the

original ROBP.

V. THE UPPER BOUND

In this section, we construct width-w branching programs
that distinguish (1/2+β)-biased coins from (1/2−β)-biased
coins for some β = O

(
(logn)−(w−2)

)
.

Theorem 14. For all constant w, there exists β =
O
(
(logn)−(w−2)

)
and a width-w branching program f

such that, when fed a series of n independent β-biased coin
flips, f accepts with probability at least 2/3, and when fed
a series of n independent (−β)-biased coin flips, f rejects
with probability at least 2/3.

For the sake of brevity, we include only a proof sketch
here and leave the full proof to the full version of the paper.

Our branching programs will compute the output of AC0

circuits—specifically, of depth-(w−1) AND-OR trees. First,
we claim that width-w branching programs are able to
compute depth-(w − 1) AND-OR trees. This is somewhat
similar to a proof in [15, Sec. 5.1]. We argue this by
induction. As a base case, consider the number of states

needed to compute the AND of m coins, i.e., ∧xi. A width-
2 branching program can compute AND in the following
manner: transition to state 2 if x1 = 1 and to state 1
otherwise. For later levels, once we reach state 1, we stay
there, and if we are in state 2, we transition to state 1 if
xi = 0 and remain in state 2 otherwise. In this way, state
1 represents the event that xi = 0 for some i, and state 2
represents that xi = 1 for all i so far. At the end, we reject
from state 1 and accept if we remain in state 2 throughout.
The OR function is computed in the same way, except that
the roles of 0 and 1 are reversed.

For depth-(w − 1) AND-OR trees, suppose that the root
node is an AND gate. Use w−1 states to compute each child;
however, instead of accepting or rejecting, transition to state
w if the subtree evaluates to 0, and transition to state 1 if
the subtree evaluates to 1, allowing us to use w − 1 states
to compute the next subtree. If we ever reach state w, we
reject. Otherwise, we accept.

It remains to carefully choose the number of subtrees
at each level, and to show that these branching programs
distinguish 1/2±β coins for some β = O

(
(log n)−(w−2)

)
.

Our construction closely follows Amano’s construction [7]
of AC0 circuits that approximate MAJ and is deferred to the
full version of the paper. One interesting example is the case
of w = 3, where the function is just the TRIBES function:
it is an AND of 2m clauses; each of the clauses is an OR of
m variables. We choose m such that m · 2m = n. An easy
computation, which we omit here, shows that this solves the
coin problem with β = Ω(1/ logn).

VI. THE INW GENERATOR FOOLS RROBP WITH SMALL

SEED

Let C be a set of functions from {0, 1}n to {0, 1}. For
example, C might be the set of functions computable by
width-w rROBPs.

Let G : {0, 1}s → {0, 1}n be another function, called the
pseudorandom generator. G is said to ε-fool C, if for every
f ∈ C,

∣∣Ex∈{0,1}n [f(x)]− Ey∈{0,1}s [f(G(y))]
∣∣ ≤ ε .

In other words, G ε-fools C if for any function in the class
C, the probability of f to be 1 when its input is uniform
is up to ε from its probability to be 1 when its input is
taken from the generator. The parameter s is called the seed
length.

We are interested in constructing explicit generators G
that fool interesting classes, and in making s as small as
possible. It is well known, and easy to see, that no matter
what C is, if G is taken to be a random function and
s = Θ

(
log

(
log|C|
ε2

))
then with high probability, G ε-fools

C. When C is the class of width-poly(n) ROBP, the size of
C is 2poly(n), and thus there is a PRG that 1/poly(n)-fools
C with seed length O(log n). The challenge is to find such
an explicitly-defined G, which is hopefully also computable

in a low complexity class, such as LOGSPACE. Such a G
will immediately imply that L = RL, a central outstanding
open problem. The best results that were known before 2010
were that for width-2 ROBP, O(log n) seed length is achiev-
able by using epsilon-biased generators, see e.g. [12], for an
extension see [16]; and that for the class C of width-poly(n)
ROBP, Nisan’s generator [13] can fool them with seed length
O(log2 n). An improvement/variant on Nisan’s generator is
the INW generator [14]. It is a famous still-open problem
even to get a PRG for width-3 ROBP that surpasses Nisan’s
generator. For more background on pseudorandomness, see
e.g. the survey by Luby and Wigderson [17].

So far in the year 2010, three works all prove that the
INW generator, or Nisan’s generator, fools similar restricted
classes of ROBPs: Braverman et al [1] show that Nisan’s
generator fools rROBP even with seed length O((logw +
log logn+log(1/ε)) logn), and in subsequent work Koucky
et al [18] show that the INW generator fools pROBP even
with seed length O((w! + log(1/ε)) logn). The latter seed
length is better when w is constant. In this section we show
that the INW generator fools rROBPs using seed length
O(w4 logn(w4 log logn+log(1/ε))). We do this by relating
it to the dice problem and then using the dice theorem.

In this section, we prove the following:

Theorem 15. The INW generator ε-fools the class of width-
w regular read-once branching programs of length n, with
seed length O(w4 logn log logn+ logn log(1/ε)) bits.

For ε = O(1/ logn) and w = O(1), this seedlength is just
O(log n log logn), while the traditional proof of the INW
generator requires seedlength O(log2 n).

Our proof also works for Nisan’s generator, but we find
it conceptually easier to work with the INW generator.

Our proof actually holds even for ROBPs as long as
the mass of every state is either 0 or not too small.
Here, by the mass of a state we mean the probability that
when applying the program to a uniformly random input,
the program passes through that state. When the mass of
every state is either 0 or ≥ μ, then our seed length is
O(log n(w4 log logn+w3 log(1/μ)+ log(1/ε))). A similar
result is found in [1].

Due to lack of space, and difficulty in even giving a sketch
of the arguments without a comprehensive exposition of the
background, we omit the rest of this section entirely, and
encourage the reader to get the full version online.

VII. WHY OUR TECHNIQUE FAILS TO FOOL ROBP

In this section we explain why our technique fails to fool
ROBPs, despite the fact that we do solve the coin and dice
problems for ROBPs. We omit the content of this section
because the required background takes up too much space,
and refer the reader to the full version.

VIII. CONCLUSIONS

In this paper, we provide nearly-tight upper and lower
bounds on how close two distributions can be and still be dis-
tinguishable by small-width read-once branching programs.

It would be interesting to make these results even tighter
and extend them in various directions. It would also be
interesting to study the coin problem on other classes of
functions. One interesting class is low-degree polynomials
over F2, where we conjecture that the best β would be
only a function of the degree, and not of the number
of variables. Another interesting class is ACC0: could a
technique based on couplings prove that ACC0 cannot solve
the coin problem? (This will in particular prove that majority
is not in ACC0, settling a major open problem.) Our work
uses only couplings in which the coordinates are mutually
independent, but to analyze the above classes, it might be
useful to use more complicated couplings.

Finally, can the ideas in this paper, possibly along with
other ideas, give a PRG against small-width ROBP with
good seedlength? Note that the coin theorem implies that
for any ε > 0, the PRG whose output is n coin-flips of a
Θ(ε/ log2w n)-biased coin is a good PRG: it ε-fools width-
w ROBPs. ([1] also prove something like this, but only for
rROBPs.) This PRG has terrible seedlength, though. It might
be possible to “derandomize the proof of the coin theorem”
in some way to prove that a much more randomness-efficient
PRG works as well.

ACKNOWLEDGEMENTS

The authors wish to thank Sourav Chakraborty for helpful
discussions. The first author would like to thank David
Barrington and the Dartmouth Theory Reading Group for
helpful discussions. The second author is grateful to Bren-
dan Juba, Jaikumar Radhakrishnan, Pranab Sen and John
Steinberger, for stimulating discussions and ideas that helped
progress this work. The second author would also like to
thank Boaz Barak, Swastik Kopparty, Shachar Lovett, Avi
Wigderson and David Xiao for helpful discussions. We thank
the anonymous referees for pointing us to some important
references. Some of this research was done while the authors
were visiting Peter Bro Miltersen at the Center for Algo-
rithmic Game Theory, Aarhus University. We would like to
thank Peter and the group for their gracious hospitality.

REFERENCES

[1] M. Braverman, A. Rao, R. Raz, and A. Yehudoff, “Pseudo-
random generators for regular branching programs,” in Proc.
51st Annual IEEE Symposium on Foundations of Computer
Science, 2010, to appear.

[2] M. E. Hellman and T. M. Cover, “Learning with finite
memory,” Ann. Math. Stat., vol. 41, no. 3, pp. 765–782, 1970.

[3] T. M. Cover, “Hypothesis testing with finite statistics,” Ann.
Math. Stat., vol. 40, no. 3, pp. 828–835, 1969.

[4] M. E. Hellman, “Learning with finite memory,” Ph.D. dis-
sertation, Stanford University, Department of Electrical Engi-
neering, 1969.

[5] S. Aaronson and A. Drucker, “When qubits go analog
(powerpoint talk),” 2008, based on unpublished work. Slides
available at http://www.scottaaronson.com/talks/analog.ppt.

[6] S. Aaronson, “BQP and the polynomial hierarchy,” in Proc.
42nd Annual ACM Symposium on the Theory of Computing,
2010, pp. 141–150.

[7] K. Amano, “Bounds on the size of small depth circuits for
approximating majority,” in Proc. 36th International Collo-
quium on Automata, Languages and Programming, 2009, pp.
59–70.

[8] R. O’Donnell and K. Wimmer, “Approximation by DNF:
Examples and counterexamples,” in Proc. 34th International
Colloquium on Automata, Languages and Programming,
2007, pp. 195–206.

[9] E. Viola, “On approximate majority and probabilistic time,”
Computational Complexity, vol. 18, no. 3, pp. 337–375, 2009.

[10] R. Meka and D. Zuckerman, “Pseudorandom generators for
polynomial threshold functions,” in Proc. 42nd Annual ACM
Symposium on the Theory of Computing, 2010, pp. 427–436.

[11] M. L. Furst, J. B. Saxe, and M. Sipser, “Parity, circuits,
and the polynomial-time hierarchy,” Mathematical Systems
Theory, vol. 17, no. 1, pp. 13–27, 1984.

[12] N. Alon, O. Goldreich, J. Hastad, and R. Peralta, “Simple
construction of almost k-wise independent random variables,”
in Proc. 31st Annual IEEE Symposium on Foundations of
Computer Science, 1990, pp. 544–553.

[13] N. Nisan, “RL ⊆ SC,” in Proc. 24th Annual ACM Symposium
on the Theory of Computing, 1995, pp. 619–623.

[14] R. Impagliazzo, N. Nisan, and A. Wigderson, “Pseudoran-
domness for network algorithms,” in Proc. 26th Annual ACM
Symposium on the Theory of Computing, 1994, pp. 356–364.

[15] F. Ergün, R. Kumar, and R. Rubenfeld, “On learning bounded-
width branching programs,” in Proc. 8th International Con-
ference on Learning Theory, 1995, pp. 361–368.

[16] A. Bogdanov, Z. Dvir, E. Verbin, and A. Yehudoff, “Pseudo-
randomness for width-2 branching programs,” 2009, ECCC
Technical Report TR09-070.

[17] M. Luby and A. Wigderson, “Pairwise independence and
derandomization,” Foundations and Trends in Theoretical
Computer Science, vol. 1, no. 4, pp. 237–301, 2006.

[18] M. Koucky, P. Nimbhorkar, and P. Pudlak, “Pseudorandom
generators for group products,” 2010, ECCC Technical Report
TR10-113.

