
Image Stained Glass using Voronoi Diagrams

Michael Gorbach
mgorbac1@cs.swarthmore.edu

Abstract

The geometrical concept of the Voronoi
diagram was used to create an image
filter providing a “stained glass” or mo-
saic effect on an image. The Voronoi
diagram was calculated by exploiting
its dual relationship with the Delaunay
triangulation, which was in turn calcu-
lated using a randomized incremental
algorithm and stored in a DCEL. Var-
ious methods were tried for selecting
the points, including sampling from a
distribution built using edge detection.
Sampling using edge detection distri-
butions was shown to provide results
significantly better than uniform ran-
dom sampling.

1 Introduction

Voronoi diagrams, when calculated on some
set of N points in the 2d plane, segment the
space into regions surrounding every point. The
polygonal regions are such that, within a region
surrounding some point p0, the point p0 is closer
to any point p in that region than any other of
the N points included in the Voronoi diagram.
The mapping between points in the plane and
surrounding regions is one to one.

This information has many uses, but one of
the most obvious is processing an image for an
artistic effect. The representation created by
shading a Voronoi diagram on N points in the
image plane with colors from each sample point
creates a “stained glass” or mosaic version of the
image. One of the key problems here is effective
selection of the point set P for the Voronoi dia-
gram.

2 Theory

2.1 Voronoi Diagrams

First, it is appropriate to examine the algo-
rithms involved in the efficient calculation of a
Voronoi diagram on a set of N points. The goal
is a polygonal map of the plane consisting of a
set of polygons surrounding the N points. The
polygon surrounding a point p covers the area
for which p is the closest of the N points.

Given two points p and p′, we can create a
Voronoi diagram by drawing a line perpendic-
ular to the line pp′, intersecting pp′ at its mid-
point. A Voronoi diagram with more points in-
cludes many such lines, meaning that each poly-
gon has straight edges consisting of line seg-
ments which are sections of such perpendiculars.

Voronoi diagrams can be calculated directly,
using for example the beach line algorithm from
the work (Fortune, 1986). It is often simpler,
however, to take advantage of the close rela-
tionship that exists between the structure of the
Voronoi diagram, and that of the Delaunay tri-
angulation. (Guibas et al., 1990)

2.2 Delaunay Triangulation

A triangulation of some point set P is a planar
subdivision such that every polygon is a triangle
(except for the unbounded face), and the ver-
tices are points in P . A triangulation exists for
every point set P , as any bounded face can be
split up into triangles, and the unbounded face
is simply the complement of the convex hull for
P . There are, of course, many different trian-
gulations on any one set of points P . Given
two triangles bordered by a common edge, it is
always possible to “flip” this edge such that it
connects the remaining two points, assuming the
quadrilateral in question is convex. (Berg, 2000)

In a triangulation, it is undesirable to have
small (sharp) angles. There is one triangula-



tion, called the Delaunay triangulation, which
maximizes the minimum angle and therefore is
the “best” triangulation. One simple way to find
this triangulation is to take an arbitrary trian-
gulation and flip all illegal edges. Here, an il-
legal edge is defined as an edge for which flip-
ping will improve the triangulation: the ordered
set of angles after flipping will be lexicographi-
cally greater than the set before flipping. (Berg,
2000) Of course, an edge can only be flipped in
the case of a convex quadralateral. An example
of such an edge flip is shown on fig. 1.

It is not necessary to calculate all the angles
to determine the legality of an edge. Consider
two triangles abc and dbc that share an edge cb.
Let C be the circle defined by abc. The edge ij
is illegal if an only if the point d lines inside C.
A proof can be found in (Berg, 2000).

Figure 1: An edge flip during the process of
creating a Delaunay triangulation.
http://www.cescg.org/CESCG-
2004/web/Domiter-Vid/

A Delaunay triangulation can be constructed
using an incremental algorithm based on the
above. (Berg, 2000) Randomizing the point set
P , add the points sequentially to the triangula-
tion. Each time a point is added, start by trian-
gulating the face containing the new point, and
then legalize edges recursively until all edges in
the triangulation are legal. Thus, the algorithm
maintains a correct Delaunay triangulation of
the currently included points as an invariant.

2.3 Dual Transformation

The last step in constructing a Voronoi diagram
on P is to convert the Delaunay triangulation
on P into a Voronoi diagram. The structures
are related through duality.

A face in the Delaunay triangulation corre-
sponds to a vertex of the Voronoi diagram, such
that the location of the Voronoi vertex is the
center of circumcircle for the (triangular) De-
launay face. A vertex in the Delaunay trian-
gulation corresponds to a face in the Voronoi
diagram. This Voronoi face surrounds the De-
launay vertex and represents the Voronoi cell for
this vertex. An edge in the Delaunay triangula-
tion corresponds to a perpendicular edge in the
Voronoi diagram. Two Voronoi vertices are con-
nected if an only if the corresponding Delaunay
faces are adjacent. Figure 2 shows a Delaunay
triangulation and the corresponding Voronoi di-
agram.

2.4 Point Sampling

One of the primary difficulties in using Voronoi
diagrams to create stained glass effects is the
selection of the point set P on which to build
the diagram. Badly chosen points create a re-
sult that captures none of the features in the
original image. In this project, the implemen-
tation of fully automated, intelligent point se-
lection was a key goal. Point selection can be
done, or adjusted, manually, however the need
for such intervention limits to applicability of
the processing, and so was not studied here.

2.4.1 Naive Approaches

The simplest method for point selection uses
a random sample of N points, distributed uni-
formly within the boundaries of the image. Such
a method is of course very simple to implement,
and also has an advantage that follows from its
uniformity. Because the distribution is uniform,
the sizes of all the Voronoi cells will be relatively
small, and thus a badly-colored Voronoi cell can
have only a limited size. The obvious issue with
such a method is that it fails to account for the
global features of an image. Random point se-
lection, in practice, results in significantly dis-
torted representations, especially in high-detail
regions of the image, even at large N .

A grid-based point selection approach is an-
other simple alternative. It has the advantage of
highly uniform cell size, similar to that seen in a
real mosaic. Like uniform random sampling, it



Figure 2: Example of a Delaunay triangulation
(top) and corresponding Voronoi diagram (bot-
tom). The colors have no meaning.

suffers from a failure to account for the image’s
important features. Good representations can
only be obtained with fairly large N values.

2.4.2 Distribution Sampling

The earlier discussion of uniform sampling can
be generalized to an arbitrary probability distri-
bution on the 2d plane of the image. The ques-
tion, then, is what distribution Ps(x, y) on the
image pixels would, when sampled from for a
total of N points, produce the best representa-
tion of the image. One quantitative criterion
for Ps(x, y) is the error between the colored,
N-point Voronoi representation with sampling
from Ps(x, y) and the real image. Such a value,
however, does not necessarily reflect an aesthetic
judgment of the colored Voronoi mosaic.

Edge detection appears as an efficient way to
obtain a good Ps(x, y). Good mosaics are cre-
ated when Voronoi cell edges fall on edges of
the image. In order for this to happen, Voronoi
points must be located at equal distances from
an edge line. It is undesirable for sampled points
to fall on image edges themselves, as then the
Voronoi cell surrounding that point is likely to
be badly colored, in a way that is not expressive
of key image features. The goal then, is to re-
ceive a distribution that has symmetric and sig-
nificant values around edges (leading to points
likely sampled there), and low values directly on
edges. Here, symmetric means that values are
equal at equal distances along a perpendicular
to the edge.

Such a distribution can be achieved using
basic edge detection and blur filters. Specifi-
cally, it is effective to use a distribution of the
form Ps(x, y) = Pblur(x, y)− Psharp(x, y). Here,
Psharp(x, y) comes from an sharp, or only very
slightly blurred, black and white edge detection
image. Pblur(x, y) comes from an image pro-
cessed with the same edge detection filter, fol-
lowed by a significant (on the order of 5 pix-
els) gaussian blur. The subtracted distribution
has low (dark) values immediately on the edges,
and higher (lighter) values farther out from the
edges. Due to the Gaussian blur, the lighter val-
ues decrease in intensity with distance from the
edge. Example distributions are presented on



fig. 3. Note that the distribution along both
sides of an edge is symmetric, which is good for
Voronoi point selection.

2.4.3 Related Work

In addition to considering the distribution
Ps(x, y), it is also possible to look instead at the
representation error discussed earlier. This was
implemented in the work (Dobashi et al., 2002).
The authors started with a simple set of points
leading to a hexagonal Voronoi diagram across
the image. They then adjust the locations of
the Voronoi points to decrease the error (calcu-
lated as difference in colors per pixel) between
the mosaic and real image representation. In the
first phase, the entire set of points is moved in
batch, with each point moving somewhere in its
surrounding 8 pixels in such a way as to decrease
the error. This process continues until changes
in error are below a threshold. The second phase
implements finer adjustment where each site is
moved individually within its 8 pixels and the
error is recalculated each time.

While this approach appears to be effective,
it requires significant computational power even
with approximations, and the inclusion of man-
ual adjustments in the paper makes it difficult
to judge the effectiveness of such a method for
purely autoamted processing.

3 Methodology and Implementation

3.1 The Doubly-Connected Edge List

The most important component in an implemen-
tation of the above algorithms is the data struc-
ture used to represent the planar subdivision,
whether it be the Delaunay triangulation or the
Voronoi diagram. This data structure must sup-
port several operations in a performant way. It
needs to allow fast adding of points into an exist-
ing triangulation structure, flipping of any par-
ticular edge, and traversal of a face to find its
boundary edges.

The most common data structure used to
meet the above requirements is called a dou-
bly connected edge list (DCEL) (Muller and
Preparata, 1977). The structure contains sev-
eral types of records: faces, edges, and vertices.

Figure 3: Examples of sampling distributions
created using edge detection: Psharp(x, y) (top),
Pblur(x, y) (middle), and Ps(x, y) (bottom).
Edge detection and blur were implemented us-
ing Apple Inc.’s Core Image processing filters.



Edges are represented as half edges, storing a
pointer to their twin, adjacent face, and dou-
bly linked list pointers allowing traversal of face
boundaries. A face record simply contains a
pointer to one half-edge along the face’s outer
boundary (if it exists), and a set containing one
edge along every “hole” inside the face. The
Delaunay triangulation was constructed in a
DCEL, and then the Delaunay DCEL was trans-
formed into its dual, representing the Voronoi
diagram.

The DCEL structure described here meets all
the requirements for storing a planar subdivi-
sion. However, given a point, the structure does
not provide a fast way to locate the face con-
taining a point. For this purpose, an additional
DAG (Directed Acyclic Graph) data structure
is layered on top of the DCEL.

3.2 DAG For Point Location

A Directed Acyclic Graph was constructed to
provide fast point location during triangulation.
This point location was used during the first tri-
angulation step, where it is necessary to find
the face containing the point being added. The
DAG algorithm used was described in (Berg,
2000).

The leaf nodes of the DAG correspond to the
current triangulation. The other nodes corre-
spond to previous triangles that existed ear-
lier during the incremental triangulation pro-
cess. When a point p is added, causing a split
of the face f , the leaf node representing f re-
ceives 3 children for the newly created triangles.
The DAG is also updated on edge flips, leading
to situations where a leaf node has more than 1
pointer leading to it.

Using such a DAG structure, a point can be
located by starting from the root and navigating
down the children, checking for containment in
the process.

4 Results and Discussion

The figures below present the results of con-
structing mosaic representations for a test im-
age.

The butterfly image was chosen as it is sim-
ilar to example images used in (Dobashi et al.,

2002). It is extremely difficult to constructed au-
tomated mosaic representations on images with
many human faces.

Looking at the images on figs 4 and 5, we can
see that the representation unsurprisingly im-
proves with increasing N . It is clear that the
images generated using edge-detection distribu-
tion based sampling retain significantly more of
the key features, and also have a far cleaner
appearance. This is due to points being sam-
pled from a distribution symmetric around the
edges, leading to Voronoi cell edges matching up
with image edges. The improvement using edge-
detection distribution based sampling is partic-
ularly evident with lower N values.

Significant artifacts still exist with edge-
detection based sampling under lower point
counts. This is because the correct distribution
does not guarantee a good set of sampled points
with low N , meaning that there are or empty ar-
eas in the points. One approach to remedy this
would be to adjust the distribution during the
sampling process, subtracting discreet, 2d Gaus-
sians from the distribution around each point as
it is sampled. This would help prevent clusters
of points and empty areas, improving uniformity
with low N .

Ideally, it would be effective to add equidis-
tant points in pairs, one on each side of an edge.
Doing this, however, requires knowledge of the
edges as vector paths instead of as lighter pix-
els in an image. Such an approach would not
require sampling, and would probably work sig-
nificantly better than a distribution-based ap-
proach. It does, however, require a very different
kind of processing.

5 Conclusion

A stained glass / mosaic filter was successfully
implemented based on Voronoi diagrams. Sev-
eral solutions to the problem of sampling points
were compared. While the solution by (Dobashi
et al., 2002) provides good results, it requires
both significant processing power and manual
adjustment. A simple, fully automated sam-
pling method was proposed based on subtraction
of blurred distributions obtained using edge de-



Figure 4: An example image (top), rendered us-
ing distribution-based point selection. The dis-
tribution was created by subtracting two blurred
edge detection distributions, with a blur of 5.0
and a blur of 1.0. The middle image has N =
1000 points sampled, and the lower image has
N = 5000.

Figure 5: An example image (top), rendered us-
ing uniformly random point selection. The mid-
dle image has N = 1000 points sampled, and the
lower image has N = 5000.



tection. Results presented from application of
this method, shown on figs. 4 and 5, are both
significantly cleaner than the mosaics created
using random sampling, and more reflective of
key image features.

References

Mark de Berg. 2000. Computational geometry: al-
gorithms and applications. Springer, Berlin, 2nd
rev. ed edition.

Y. Dobashi, T. Haga, H. Johan, and T. Nishita.
2002. A method for creating mosaic images us-
ing voronoi diagrams. In Proc. EUROGRAPHICS
2002 Short Presentations, pages 341–348.

S Fortune. 1986. A sweepline algorithm for voronoi
diagrams. In SCG ’86: Proceedings of the sec-
ond annual symposium on Computational geome-
try, pages 313–322, New York, NY, USA. ACM.

Leonidas J. Guibas, Donald E. Knuth, and Micha
Sharir. 1990. Randomized incremental construc-
tion of delaunay and voronoi diagrams. In Pro-
ceedings of the seventeenth international collo-
quium on Automata, languages and programming,
pages 414–431, New York, NY, USA. Springer-
Verlag New York, Inc.

N. E. Muller and F. P. Preparata. 1977. Finding the
intersection of two convex polyhedra. Technical
Report ADA056889, U. Illinois at Urbana Cham-
paign, Coordinated Science Lab, October.


